JP3117276B2 - Hydrogen separation membrane - Google Patents

Hydrogen separation membrane

Info

Publication number
JP3117276B2
JP3117276B2 JP04088723A JP8872392A JP3117276B2 JP 3117276 B2 JP3117276 B2 JP 3117276B2 JP 04088723 A JP04088723 A JP 04088723A JP 8872392 A JP8872392 A JP 8872392A JP 3117276 B2 JP3117276 B2 JP 3117276B2
Authority
JP
Japan
Prior art keywords
hydrogen
separation membrane
thin film
gas
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04088723A
Other languages
Japanese (ja)
Other versions
JPH05285357A (en
Inventor
哲也 今井
好夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13950830&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3117276(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04088723A priority Critical patent/JP3117276B2/en
Publication of JPH05285357A publication Critical patent/JPH05285357A/en
Application granted granted Critical
Publication of JP3117276B2 publication Critical patent/JP3117276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は混合ガス中の水素を分離
するための水素分離膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separation membrane for separating hydrogen in a mixed gas.

【0002】[0002]

【従来の技術】省エネルギー型分離技術として、近年、
膜による気体の分離方法が注目を集めている。水素含有
気体から水素を分離し、99.99%以上の高純度の水
素を得る方法としてPd(パラジウム)を主体とする膜
(Pd膜と呼ぶ)を使用する方法(Pd膜方法と呼ぶ)
が知られている{石油学会誌Vol.15、No.1
(1972年)p.64}。従来Pd膜はPdまたはP
dを主体とする合金を伸延し薄膜とすることによって製
造され、この膜は支持枠で支持して使用されていた。伸
延方法によって得られる膜の厚みの下限には限度があ
り、また、この膜は支持枠で支持して使用されるため、
このような支持方法に耐えるだけの機械的強度を付与す
る必要があり、あまり薄い膜を使用すると使用中膜が破
損しやすい。
2. Description of the Related Art In recent years, as an energy-saving separation technology,
Attention has been focused on gas separation methods using membranes. As a method of separating hydrogen from a hydrogen-containing gas and obtaining high-purity hydrogen of 99.99% or more, a method using a film mainly containing Pd (palladium) (called a Pd film) (called a Pd film method).
Are known. Journal of the Japan Petroleum Institute, Vol. 15, No. 1
(1972) p. 64}. Conventionally, the Pd film is Pd or Pd.
It was produced by extending an alloy mainly composed of d into a thin film, and this film was used by being supported by a support frame. There is a limit to the lower limit of the thickness of the film obtained by the distraction method, and since this film is used by being supported by a support frame,
It is necessary to provide mechanical strength enough to withstand such a supporting method, and if a too thin film is used, the film during use is easily damaged.

【0003】混合ガスから特定ガスをガス拡散方法によ
って分離する一手段として、ガス分子の平均自由工程よ
り小さな孔径、例えば数10Å〜数100Åの細孔をも
つ多孔質のガス分離膜を使用するクヌーセン拡散による
分離方法が知られている。例えば、かかる分離方法は、
比較的分子量比の大きい水素(H2 )、窒素(N2 )、
一酸化炭素(CO)などの混合ガス中のH2 ガス分離に
有効であり、一般にはガス分離膜として有機高分子膜が
採用されている。しかしながら、かかる有機高分子膜は
耐熱性、耐薬品性など耐久性に劣るという欠点があるた
め、セラミック多孔体など無機質材料からなる多孔質の
ガス分離膜の使用が試みられており、また、特開昭59
−59223号公報には、かかる無機質材料からなる多
孔質のガス分離膜が提案され、かつ従来例として示され
る。
As one means for separating a specific gas from a mixed gas by a gas diffusion method, a Knudsen using a porous gas separation membrane having pores smaller than the mean free path of gas molecules, for example, pores of several tens to several hundreds of degrees. A separation method by diffusion is known. For example, such a separation method is:
Hydrogen (H 2 ), nitrogen (N 2 ) having a relatively large molecular weight ratio,
It is effective for separating H 2 gas in a mixed gas such as carbon monoxide (CO). Generally, an organic polymer membrane is used as a gas separation membrane. However, such organic polymer membranes have a drawback of inferior durability such as heat resistance and chemical resistance. Therefore, use of a porous gas separation membrane made of an inorganic material such as a ceramic porous body has been attempted. Kaisho 59
JP-A-59223 proposes a porous gas separation membrane made of such an inorganic material and shows it as a conventional example.

【0004】また、上記問題点を解決する方法として、
無機質材料からなる多孔質支持体にPdを含有する薄膜
を形成させた水素分離膜を使用する方法が特開昭62−
121616号公報に示されている。さらに、また、金
属多孔体にPdを含有する薄膜を形成させた水素分離膜
を使用する方法については特開平3―52630号公報
に提案されている。
[0004] As a method of solving the above problems,
A method using a hydrogen separation membrane in which a thin film containing Pd is formed on a porous support made of an inorganic material is disclosed in
No. 121616. Further, a method of using a hydrogen separation membrane in which a thin film containing Pd is formed on a porous metal body has been proposed in Japanese Patent Application Laid-Open No. 3-52630.

【0005】[0005]

【発明が解決しようとする課題】前述した従来の方法に
ついては各々次のような問題点がある。 (1)クヌーセン拡散による分離方法における混合ガス
の透過係数の比は、理論的には各ガスにおける分子量の
逆数の平方根に等しいため、かなり小さく、高濃度の水
素ガスを得るのは困難である。 (2)Pd膜方法は60〜150μm程度の比較的厚い
ものを使用せざるを得ず、高価なPdの使用量が増大
し、また水素の透過速度が小さい。 (3)特開昭62−121616号公報に示されている
無機質材料からなる多孔質支持体にPdを含有する薄膜
を形成させた水素分離膜は強度が弱いため破損しやす
く、また分離膜と管板とのシールが難しい。 (4)特開平3―52630号公報に示されている金属
多孔体にPdを含有する薄膜を形成させた水素分離膜は
600℃以上の高温で使用すると、金属多孔体の金属成
分とPdとの熱拡散反応を起こし水素透過性能が低下す
るという問題がある。
The above-mentioned conventional methods have the following problems. (1) Since the ratio of the permeation coefficients of the mixed gases in the separation method by Knudsen diffusion is theoretically equal to the square root of the reciprocal of the molecular weight of each gas, it is very small, and it is difficult to obtain a high concentration of hydrogen gas. (2) A relatively thick Pd film method having a thickness of about 60 to 150 μm has to be used, the amount of expensive Pd used increases, and the permeation rate of hydrogen is low. (3) A hydrogen separation membrane having a thin film containing Pd formed on a porous support made of an inorganic material and disclosed in JP-A-62-121616 has a low strength and is easily broken, Difficult to seal with tube sheet. (4) The hydrogen separation membrane disclosed in JP-A-3-52630, in which a thin film containing Pd is formed on a porous metal body, is used at a high temperature of 600 ° C. or more, and the metal component of the porous metal body and Pd are not dissolved. This causes a problem that a thermal diffusion reaction occurs to lower hydrogen permeation performance.

【0006】本発明は従来技術が有する上記の問題点を
解決することを目的としたものであり、金属多孔体の金
属成分とPdの熱拡散反応が防止でき、かつPdを含有
する膜の薄膜化が可能になることを利用し、水素を含有
する混合ガスから高濃度の水素を分離する膜を提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to prevent a thermal diffusion reaction between a metal component of a porous metal body and Pd, and to form a thin film containing Pd. It is an object of the present invention to provide a membrane for separating high-concentration hydrogen from a hydrogen-containing gas mixture by utilizing the fact that the gasification is possible.

【0007】[0007]

【課題を解決するための手段】本発明は0.1〜20μ
mの細孔を有する金属多孔体を支持体とし、該支持体
少なくとも一方の表面に、予め膜厚が50μm以下の
熱性酸化物の薄膜を形成させた後、膜厚が50μm以下
のパラジウムまたはパラジウム合金の薄膜を形成させて
なることを特徴とする水素のみを選択的に透過する水素
分離膜である。
According to the present invention, there is provided a liquid crystal display device comprising:
A metal porous body having pores of m is used as a support, and a thin film of a heat-resistant oxide having a thickness of 50 μm or less is formed on at least one surface of the support in advance. A hydrogen separation membrane selectively permeating only hydrogen, wherein a thin film of palladium or a palladium alloy having a thickness of 50 μm or less is formed.

【0008】本発明において、細孔を有する金属多孔体
としては300℃以上の温度に耐える耐熱性を有し、処
理すべき気体と反応性を有せず、かつ0.1〜20μm
の範囲の中で、できるだけ均一な細孔を有する金属多孔
体を使用するのが適している。細孔径を0.1μm以上
としたのは、ガス拡散の妨害にならないようにするため
であり、20μm以下としたのはパラジウムを含有する
薄膜を膜厚50μm以下にコーティングした場合、ピン
ホールが生じやすくなるからである。なお、金属多孔体
としては、円筒状または板状のものを使用するのが適当
であり、支持体としての強度及び加工性などから、0.
1〜2mmの厚みものが好ましい。
In the present invention, the porous metal body having pores has heat resistance to withstand temperatures of 300 ° C. or more, has no reactivity with the gas to be treated, and has a thickness of 0.1 to 20 μm.
It is suitable to use a porous metal body having pores as uniform as possible in the range of the above. The reason why the pore diameter is set to 0.1 μm or more is to prevent gas diffusion from being hindered. When the pore diameter is set to 20 μm or less, when a thin film containing palladium is coated to a thickness of 50 μm or less, pinholes are generated. It is easier. It is appropriate to use a cylindrical or plate-shaped metal porous body.
Thicknesses of 1-2 mm are preferred.

【0009】本発明において金属多孔体の一例としては
以下のものがあげられる。 (1)発泡(多孔質)金属をプレス成型し細孔径を制御
したもの、さらにこれに溶射またはめっきなどにより細
孔を小さくしたもの。 (2)粒径の小さい金属微粒粉末(50μm以下)を成
型したもの。 (3)化学反応により除去可能な粉末(例えば、燃焼除
去が可能なグラファイト)を金属粉末に混合または溶融
した金属に添加した後、粉末を化学反応により除去し細
孔を生成させたもの。 (4)繊維径1〜20μmの金属繊維の不織布を圧延・
焼結させたもの。
In the present invention, examples of the porous metal body include the following. (1) A foamed (porous) metal obtained by press-molding to control the pore diameter, and the pores are reduced by spraying or plating. (2) Molded metal fine powder (50 μm or less) having a small particle size. (3) Powder obtained by adding a powder that can be removed by a chemical reaction (for example, graphite that can be removed by burning) to a metal mixed or melted with a metal powder, and then removing the powder by a chemical reaction to form pores. (4) Rolling a non-woven fabric of metal fiber having a fiber diameter of 1 to 20 μm
What was sintered.

【0010】本発明において、パラジウムを含有する薄
膜とはPd100%またはPdを10重量%以上含有す
る合金からなり、薄膜の厚さは、50μm以下、特に2
〜20μmのものが適当である。パラジウムを含有する
薄膜とは、パラジウム以外にもPt、Rh、Ru、I
r、Fe、Ni、CoなどのVIII族元素、Cu、Ag、
AuなどのIb族元素、MoなどのVIa族元素を含有す
るものを指す。
In the present invention, the thin film containing palladium is made of 100% Pd or an alloy containing 10% by weight or more of Pd, and the thickness of the thin film is 50 μm or less, particularly 2 μm.
Those having a thickness of 2020 μm are suitable. Palladium-containing thin films include, in addition to palladium, Pt, Rh, Ru, I
Group VIII elements such as r, Fe, Ni, Co, Cu, Ag,
It refers to those containing a Group Ib element such as Au and a Group VIa element such as Mo.

【0011】本発明において、耐熱性酸化物の薄膜とは
SiO2、Al23、ZrO2、TiO2、La23など
の融点が1000℃以上の周期律表IIIa、IIIb、IVb
族の酸化物を含有したもので、膜厚が50μm以下のも
のを指す。
In the present invention, the heat-resistant oxide thin film is defined as a periodic table IIIa, IIIb, IVb having a melting point of 1000 ° C. or more such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , La 2 O 3.
It refers to those containing oxides of group III and having a film thickness of 50 μm or less.

【0012】金属多孔体の少なくとも一方の表面に耐熱
性酸化物の薄膜を形成させる方法の一例としては下記の
方法が用いられる。 (1)耐熱性酸化物、水酸化物のゾル、ゲルまたはこれ
らを含有するスラリーを金属多孔体に塗布または浸漬
し、焼成する。 (2)耐熱性酸化物または水酸化物を金属多孔体に容射
する。 (3)真空蒸着方法、イオンプレーティング、気相化学
反応(CVD)方法などの気相方法。
The following method is used as an example of a method for forming a thin film of a heat-resistant oxide on at least one surface of a porous metal body. (1) A sol or gel of a heat-resistant oxide or hydroxide or a slurry containing these is applied or immersed in a porous metal body and fired. (2) The heat-resistant oxide or hydroxide is sprayed on the porous metal body. (3) A vapor phase method such as a vacuum deposition method, an ion plating, and a vapor phase chemical reaction (CVD) method.

【0013】金属多孔体の少なくとも一方の表面に形成
させた耐熱性酸化物の薄膜上に膜厚が50μm以下のパ
ラジウムを含有する薄膜を形成させる方法の一例として
は下記の方法が用いられる。 (1)めっきなどの液相方法 表面活性化処理(塩化錫の水溶液と塩化パラジウムの各
液に交互に浸漬)後、無電解めっき(パラジウムの化合
物と還元剤及びバナジウム粉末を含有する液に浸漬)さ
らには、無電解めっき後に電気めっきしたもの、あるい
は電気めっき後に無電解めっきしたもの。 (2)真空蒸着方法、イオンプレーティング、気相化学
反応方法(CVD)などの気相方法
Formed on at least one surface of the porous metal body
The following method is used as an example of a method for forming a thin film containing palladium having a thickness of 50 μm or less on the heat-resistant oxide thin film thus formed. (1) Liquid phase method such as plating After surface activation treatment (immersion alternately in tin chloride solution and palladium chloride solution), electroless plating (immersion in solution containing palladium compound, reducing agent and vanadium powder) ) Further, those which are electroplated after electroless plating, or those which are electrolessly plated after electroplating. (2) Vapor phase methods such as vacuum deposition, ion plating, and gas phase chemical reaction (CVD)

【0014】以上のようにしてパラジウムを含有する薄
膜を形成させた金属多孔体は、水素のみを選択的に透過
する水素分離膜として使用できる。
The porous metal body on which the thin film containing palladium is formed as described above can be used as a hydrogen separation membrane that selectively permeates only hydrogen.

【0015】上記水素分離膜の一方の側に水素を含有す
る混合ガスを供給すると、水素分離膜は水素のみを選択
的に透過させ、水素分離膜の他方の側から純粋な水素が
流出する。水素の透過速度は温度が高いほど大きく、ま
た水素分離膜の両側の水素の圧力差が大きいほど大きく
なる。本発明の水素分離膜の好ましい使用温度範囲は8
00℃以下であり、水素分離膜の両側の水素圧力差の好
ましい範囲は0.5〜10kg/cm2 である。
When a mixed gas containing hydrogen is supplied to one side of the hydrogen separation membrane, the hydrogen separation membrane selectively permeates only hydrogen, and pure hydrogen flows out from the other side of the hydrogen separation membrane. The hydrogen permeation rate increases as the temperature increases, and increases as the pressure difference between the hydrogen on both sides of the hydrogen separation membrane increases. The preferred operating temperature range of the hydrogen separation membrane of the present invention is 8
The preferred range of the hydrogen pressure difference on both sides of the hydrogen separation membrane is 0.5 to 10 kg / cm 2 .

【0016】水素の透過速度は極めて大きく、400
℃、圧力差2kg/cm2 の場合15〜60cm3 /c
2 ・min程度であり、この値は従来のPd膜方法の
3〜15倍に達する。
The permeation rate of hydrogen is extremely high, 400
15-60cm 3 / c in case of ℃, pressure difference 2kg / cm 2
m 2 · min, which is 3 to 15 times that of the conventional Pd film method.

【0017】ブリードガスは水素分圧が内側の水素の圧
力と等しい状態で取出される。従って取り出すべき、内
側の水素圧力を制御することによりブリードガスの組
成、水素の分取率を制御することが可能となる。
The bleed gas is extracted with the hydrogen partial pressure equal to the pressure of the inner hydrogen. Therefore, the composition of the bleed gas and the fraction of hydrogen can be controlled by controlling the pressure of the inner hydrogen to be extracted.

【0018】[0018]

【作用】本発明の水素分離膜においては、耐熱性酸化物
の薄膜及びパラジウムを含有する薄膜を金属多孔体で支
持しているため、高い強度を有するとともに加工性に富
み、モジュール化が容易で、かつ高価なパラジウムの使
用量が少なくて済むという利点がある。
In the hydrogen separation membrane of the present invention, the thin film of the heat-resistant oxide and the thin film containing palladium are supported by the porous metal material, so that they have high strength, are excellent in workability, and are easy to modularize. In addition, the use of expensive palladium is small.

【0019】[0019]

【実施例】 (実施例1)平均粒子径5μmのSUS316Lの金属
微粉末を用い、平均細孔径が2μmの金属多孔体パイプ
(外径10mm、内径8mm、長さ250mm)を成型
した。このパイプの外側の面に、東亜合成化学のアロン
セラミックC(シリカ含有ペースト)、アロンセラミッ
クD(アルミナ含有ペースト)、アロンセラミックE
(ジルコニア・シリカ含有ペースト)をそれぞれ塗布
し、800℃で焼成を行い、金属多孔体の表面に酸化物
の薄膜をそれぞれ5μm(サンプル1―1)、10μm
(サンプル2―1)、30μm(サンプル3―1)形成
させた。
(Example 1) A metal porous pipe (outer diameter 10 mm, inner diameter 8 mm, length 250 mm) having an average pore diameter of 2 μm was formed using SUS316L metal fine powder having an average particle diameter of 5 μm. Alon ceramic C (silica-containing paste), Alon ceramic D (alumina-containing paste), and Aron ceramic E from Toa Gosei Chemical Co., Ltd.
(Zirconia / silica-containing paste), respectively, and baked at 800 ° C. to form an oxide thin film on the surface of the porous metal body at 5 μm (sample 1-1) and 10 μm, respectively.
(Sample 2-1) and 30 μm (Sample 3-1) were formed.

【0020】サンプル1―1の外側の面にパラジウムの
みを蒸着したサンプル1、サンプル2−1の外側の面に
パラジウムと銀の合金(Pd:Ag=80:20重量
比)を蒸着したサンプル2、サンプル3―1の外側の面
にパラジウムと銅の合金(Pd:Cu=90:10重量
比)を蒸着したサンプル3を調整した。
Sample 1-1 in which only palladium was deposited on the outer surface of Sample 1-1, and Sample 2 in which an alloy of palladium and silver (Pd: Ag = 80: 20 weight ratio) was deposited on the outer surface of Sample 2-1. Sample 3 was prepared by depositing an alloy of palladium and copper (Pd: Cu = 90: 10 weight ratio) on the outer surface of sample 3-1.

【0021】シリカ、アルミナ、ジルコニア・シリカを
コーティングした後にパラジウムまたはパラジウム合金
をコーティングした金属多孔体パイプ(サンプル1〜
3)を水素分離膜として使用し、図1に示す試験装置で
水素透過試験を行った。水素分離膜1をOリング2でス
テンレス鋼製外管3に固定し、その外側を電気炉(図示
省略)で加熱する。温度はサーモカップル8を使用し、
内管の中心部で測定した。
A porous metal pipe coated with silica, alumina, zirconia-silica and then coated with palladium or a palladium alloy (samples 1 to 5)
Using 3) as a hydrogen separation membrane, a hydrogen permeation test was performed with the test device shown in FIG. The hydrogen separation membrane 1 is fixed to a stainless steel outer tube 3 with an O-ring 2 and the outside thereof is heated by an electric furnace (not shown). The temperature uses thermocouple 8,
It was measured at the center of the inner tube.

【0022】供給孔4からH2 /N2 =1(モル)の混
合ガスを連続的に供給し、排出孔5からブリードガスを
排出し、下部の取出孔6から99.99%以上の純粋な
水素(圧力:1kg/cm2 abs.)を得ることがで
きた。なお、図1中、7はスィープガス供給口で、こゝ
からスィープガス(N2 、スチームのような不活性ガ
ス)を供給した。
A mixed gas of H 2 / N 2 = 1 (mol) is continuously supplied from the supply hole 4, bleed gas is discharged from the discharge hole 5, and 99.99% or more pure gas is discharged from the lower discharge hole 6. Hydrogen (pressure: 1 kg / cm 2 abs.) Was obtained. In FIG. 1, reference numeral 7 denotes a sweep gas supply port from which a sweep gas (an inert gas such as N 2 and steam) is supplied.

【0023】混合ガスの圧力を3kg/cm2 G、流量
を20Nl/minで、500℃で試験した結果を表1
に示す。
Table 1 shows the results of a test conducted at 500 ° C. at a mixed gas pressure of 3 kg / cm 2 G and a flow rate of 20 Nl / min.
Shown in

【0024】[0024]

【表1】 上記サンプル1〜3について、500℃で1000時間
エージング試験を行った結果、水素透過性能は一定であ
った。
[Table 1] As a result of performing an aging test at 500 ° C. for 1000 hours for Samples 1 to 3, the hydrogen permeation performance was constant.

【0025】サンプル2について、混合ガスの圧力及び
温度を変えて試験した結果を表2に示す。
Table 2 shows the results of a test conducted on sample 2 while changing the pressure and temperature of the mixed gas.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例2)繊維径2μmのSUS316
製金属繊維不織布と200メッシュ、100メッシュ及
び40メッシュの金網(SUS316)を重ねたものを
1200℃で3時間加熱し、積層焼結した金属多孔体を
巻き加工し、溶接して径20mm×長さ300mmの金
属多孔体を製作した。このパイプの全厚みは約0.6m
mであり、焼結後の前記金属繊維不織布の細孔径は5〜
7μm、厚みは0.05mmとなった。
Example 2 SUS316 having a fiber diameter of 2 μm
A metal-fiber nonwoven fabric and a 200-mesh, 100-mesh and 40-mesh wire mesh (SUS316) are superimposed on each other, and heated at 1200 ° C. for 3 hours. A metal porous body having a thickness of 300 mm was manufactured. The total thickness of this pipe is about 0.6m
m, and the pore diameter of the metal fiber nonwoven fabric after sintering is 5 to 5.
The thickness was 7 μm and the thickness was 0.05 mm.

【0028】濃硝酸2gに水100gを添加して調整し
た硝酸水溶液にテトラエトキシシラン100gを添加
し、急速攪拌しながら80℃に加熱しシリカゾルを調整
した。このシリカゾルを上記金属多孔体の表面に塗布
し、500℃で焼成する操作を繰り返し、金属多孔体の
表面にシリカの薄膜を10μm形成させた。このサンプ
ルを50℃の無電解パラジウム用の液(Pd化合物及び
ヒドラジン、アンモニア水を含有)に浸漬しPdを10
μmコーティングした。
To a nitric acid aqueous solution prepared by adding 100 g of water to 2 g of concentrated nitric acid, 100 g of tetraethoxysilane was added, and heated to 80 ° C. with rapid stirring to prepare a silica sol. The operation of applying the silica sol to the surface of the porous metal body and firing at 500 ° C. was repeated to form a 10 μm thin silica film on the surface of the porous metal body. This sample was immersed in a liquid for electroless palladium (containing a Pd compound, hydrazine, and aqueous ammonia) at 50 ° C. to reduce Pd to 10%.
μm coating.

【0029】実施例1と同様の試験(混合ガス圧力3k
g/cm2 G、流量20Nl/min、500℃)を行
った結果、99.99%以上の水素が5.6Nl/mi
n得られた。なお、上記サンプルについて、500℃で
1000時間エージング試験を行った結果、水素透過性
能は一定であった。
Test similar to Example 1 (mixed gas pressure 3 k
g / cm 2 G, flow rate 20 Nl / min, 500 ° C.). As a result, 99.99% or more of hydrogen was 5.6 Nl / mi.
n were obtained. The sample was subjected to an aging test at 500 ° C. for 1000 hours. As a result, the hydrogen permeation performance was constant.

【0030】[0030]

【比較例】シリカの薄膜を形成させないこと以外は、実
施例2と同様の方法で、実施例2の金属多孔体パイプを
直接50℃の無電解パラジウム用の液に浸漬し、Pdを
30μmコーティングし、水素透過試験を行った結果、
99.99%以上の水素が1.4Nl/min得られ
た。なお、上記サンプルについて、500℃で1000
時間エージング試験を行った結果、水素流量は0.5N
l/minに低下した。
Comparative Example A porous metal pipe of Example 2 was immersed directly in a solution for electroless palladium at 50 ° C. and coated with 30 μm of Pd in the same manner as in Example 2 except that a thin film of silica was not formed. As a result of the hydrogen permeation test,
At least 99.99% of hydrogen was obtained at 1.4 Nl / min. In addition, about the said sample, 500 degreeC
As a result of the time aging test, the hydrogen flow rate was 0.5 N
1 / min.

【0031】[0031]

【発明の効果】以上、実施例から明らかなように、本発
明の水素分離膜は、高温下で水素のみを選択的に透過す
る水素分離膜として使用できる。
As is clear from the examples, the hydrogen separation membrane of the present invention can be used as a hydrogen separation membrane that selectively permeates only hydrogen at a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明水素分離膜の水素分離効果を実証するた
めに使用した試験装置の概略図である。
FIG. 1 is a schematic diagram of a test apparatus used to demonstrate the hydrogen separation effect of the hydrogen separation membrane of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−52630(JP,A) 特開 昭62−121616(JP,A) 特開 昭62−273030(JP,A) 特開 昭63−171617(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 71/02 500 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-52630 (JP, A) JP-A-62-121616 (JP, A) JP-A-62-273030 (JP, A) JP-A-63-263 171617 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 71/02 500

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.1〜20μmの細孔を有する金属多
孔体を支持体とし、該支持体の少なくとも一方の表面
に、予め膜厚が50μm以下の耐熱性酸化物の薄膜を形
成させた後、膜厚が50μm以下のパラジウムまたはパ
ラジウム合金の薄膜を形成させてなることを特徴とする
水素のみを選択的に透過する水素分離膜。
1. A metal porous body having pores of 0.1 to 20 μm is used as a support, and a thin film of a heat-resistant oxide having a thickness of 50 μm or less is formed on at least one surface of the support.
After the formation, palladium or
Characterized by forming a thin film of radium alloy
A hydrogen separation membrane that selectively permeates only hydrogen.
JP04088723A 1992-04-09 1992-04-09 Hydrogen separation membrane Expired - Lifetime JP3117276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04088723A JP3117276B2 (en) 1992-04-09 1992-04-09 Hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04088723A JP3117276B2 (en) 1992-04-09 1992-04-09 Hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JPH05285357A JPH05285357A (en) 1993-11-02
JP3117276B2 true JP3117276B2 (en) 2000-12-11

Family

ID=13950830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04088723A Expired - Lifetime JP3117276B2 (en) 1992-04-09 1992-04-09 Hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3117276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185022A (en) * 1992-12-21 1994-07-05 Sekisui Jushi Co Ltd Luminous device for road reflecting mirror

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358078B1 (en) * 1999-08-23 2002-10-25 한국화학연구원 Silica stabilized palladium composite membranes and their preparation methods
DE10222568B4 (en) 2002-05-17 2007-02-08 W.C. Heraeus Gmbh Composite membrane and process for its production
CA2519774A1 (en) * 2003-03-21 2004-10-07 Worcester Polytechnic Institute Method for fabricating composite gas separation modules
JP2006520686A (en) * 2003-03-21 2006-09-14 ウスター ポリテクニック インスティチュート Composite gas separation module with intermediate metal layer
TW200619136A (en) * 2004-09-21 2006-06-16 Worcester Polytech Inst Membrane steam reformer
EP1791631A1 (en) * 2004-09-21 2007-06-06 Worcester Polytechnic Institute Reactor and process for steam reforming
WO2006034086A1 (en) * 2004-09-21 2006-03-30 Worcester Polytechnic Institute Membrane enhanced reactor
JP5354516B2 (en) * 2008-08-15 2013-11-27 日本碍子株式会社 Hydrogen separator
CN105498551A (en) * 2015-12-16 2016-04-20 西安工程大学 Preparation method of metal palladium loaded type SiO2 composite membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185022A (en) * 1992-12-21 1994-07-05 Sekisui Jushi Co Ltd Luminous device for road reflecting mirror

Also Published As

Publication number Publication date
JPH05285357A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
US8119205B2 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes
EP2091637B1 (en) Manufacturing method of a gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
JP4753180B2 (en) Hydrogen separation material and method for producing the same
Gil et al. A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation
JP3117276B2 (en) Hydrogen separation membrane
US7611565B1 (en) Device for hydrogen separation and method
US9149762B2 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP4521358B2 (en) Hydrogen or helium permeable membrane, storage membrane and method of forming the same
JP3174668B2 (en) Hydrogen separation membrane
KR100312069B1 (en) A palladium alloy composite membrane for permeances of hydrogen, and preparation thereof
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP4911916B2 (en) Hydrogen separator
JP2006314876A (en) Hydrogen separator
Chi et al. Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
JPH06304457A (en) Hydrogen separating membrane
JP2016175016A (en) Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method
JPH05285355A (en) Membrane for separation of hydrogen
JPH0352630A (en) Hydrogen separating membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12