JPH06304457A - Hydrogen separating membrane - Google Patents

Hydrogen separating membrane

Info

Publication number
JPH06304457A
JPH06304457A JP9397293A JP9397293A JPH06304457A JP H06304457 A JPH06304457 A JP H06304457A JP 9397293 A JP9397293 A JP 9397293A JP 9397293 A JP9397293 A JP 9397293A JP H06304457 A JPH06304457 A JP H06304457A
Authority
JP
Japan
Prior art keywords
palladium
thin film
hydrogen
vanadium
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9397293A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9397293A priority Critical patent/JPH06304457A/en
Publication of JPH06304457A publication Critical patent/JPH06304457A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Abstract

PURPOSE:To separate hydrogen with a high concn. from a mixture contg. hydrogen even at high temp. by forming a thin film of a heat-resistant oxide and a thin film with a specified value of film thickness and contg. vanadium and palladium on the surface of a metal porous body having fine holes with a specified dimension. CONSTITUTION:This hydrogen separating film is the one prepd. by forming a thin film of a heat-resistant oxide and a thin film with a film thickness of at most 50mum and contg. vanadium and palladium on a metal porous body with holes of 0.1-20mum. As the thin film contg. vanadium and palladium is supported by the metal porous body, this film exhibits high strength and is rich in processability and it is easy to make a module and there is no need to use a large amt. of expensive palladium. In addition, as there exists the thin film of a heat-resistant oxide between the metal porous body and the vanadium and palladium-contg. thin film, thermal diffusion reaction between the metal component of the metal porous body and vanadium and palladium at high temp. can be prevented from occurring and the hydrogen transmitting characteristics can 14 also be prevented from decreasing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は混合ガス中の水素を分離
するための水素分離膜に関する。
TECHNICAL FIELD The present invention relates to a hydrogen separation membrane for separating hydrogen in a mixed gas.

【0002】[0002]

【従来の技術】省エネルギー型分離技術として、近年、
膜による気体の分離法が注目を集めている。水素含有気
体から水素を分離し、99.99%以上の高純度の水素
を得る方法としてPd(パラジウム)を主体とする膜
(Pd膜と呼ぶ)を使用する方法(Pd膜法と呼ぶ)が
知られている{石油学会誌Vol.15、No.1(1
972年)p.64}。従来Pd膜はPdまたはPdを
主体とする合金を伸延し薄膜とすることによって製造さ
れ、この膜は支持枠で支持して使用されていた。伸延法
によって得られる膜の厚みの下限には限度があり、また
この膜は支持枠で支持して使用されるため、このような
支持方法に耐えるだけの機械的強度を付与する必要があ
り、あまり薄い膜を使用すると使用中に膜が破損しやす
い。
2. Description of the Related Art Recently, as an energy-saving separation technology,
Membrane separation methods for gas are drawing attention. As a method of separating hydrogen from a hydrogen-containing gas to obtain high-purity hydrogen of 99.99% or more, there is a method of using a film mainly containing Pd (palladium) (called a Pd film) (called a Pd film method). Known {Journal of Japan Petroleum Institute Vol. 15, No. 1 (1
972) p. 64}. Conventionally, a Pd film was produced by stretching Pd or an alloy mainly composed of Pd into a thin film, and this film was used while being supported by a support frame. There is a limit to the lower limit of the thickness of the film obtained by the distraction method, and since this film is used by being supported by a supporting frame, it is necessary to impart mechanical strength sufficient to withstand such a supporting method. If a thin film is used, the film is easily damaged during use.

【0003】混合ガスから特定ガスをガス拡散法によっ
て分離する一手段として、ガス分子の平均自由工程より
小さな孔径、例えば数10Å〜数100Åの細孔をもつ
多孔質のガス分離膜を使用するクヌーセン拡散による分
離法が知られている。例えば、かかる分離法は比較的分
子比の大きい水素(H2 )、窒素(N2 )、一酸化炭素
(CO)などの混合ガス中のH2 ガス分離に有効であ
り、一般にはガス分離膜として有機高分子膜が採用され
ている。しかしながら、かかる有機高分子膜は耐熱性、
耐薬品性など耐久性に劣るという欠陥があるため、セラ
ミックス多孔体など無機資材料からなる多孔質のガス分
離膜の使用が試みられており、また特開昭59−592
23号公報にはかかる無機質材料からなる多孔質のガス
分離膜が提案され、かつ従来例として示される。
As one means for separating a specific gas from a mixed gas by a gas diffusion method, Knudsen which uses a porous gas separation membrane having a pore size smaller than the mean free path of gas molecules, for example, several tens of Å to several hundred Å. A separation method by diffusion is known. For example, such a separation method is effective for separating H 2 gas in a mixed gas such as hydrogen (H 2 ), nitrogen (N 2 ), and carbon monoxide (CO) having a relatively large molecular ratio, and is generally a gas separation membrane. An organic polymer film has been adopted as. However, such an organic polymer film has heat resistance,
Due to the defect of poor durability such as chemical resistance, it has been attempted to use a porous gas separation membrane made of an inorganic material such as a ceramic porous body, and JP-A-59-592.
No. 23, proposes a porous gas separation membrane made of such an inorganic material and is shown as a conventional example.

【0004】また、上記問題点を解決する方法として、
無機質材料からなる多孔質支持体にPdを含有する薄膜
を形成させた水素分離膜を使用する方法が特開昭62−
121616号公報に示されている。
As a method for solving the above problems,
A method of using a hydrogen separation membrane in which a thin film containing Pd is formed on a porous support made of an inorganic material is disclosed in Japanese Patent Laid-Open No. 62-
No. 121616.

【0005】さらに、また、本発明者は先に、金属多孔
体にバナジウム及びパラジウムを含有する薄膜を形成さ
せた水素分離膜を提案した。(特願平4−83669
号)
Furthermore, the present inventor has previously proposed a hydrogen separation membrane in which a thin film containing vanadium and palladium is formed on a porous metal body. (Japanese Patent Application No. 4-83669)
issue)

【0006】[0006]

【発明が解決しようとする課題】前述した従来の方法に
ついては各々次のような問題点がある。 (1)クヌーセン拡散による分離法における混合ガスの
透過係数の比は理論的には各ガスにおける分子量の逆数
の平方根に等しいため、かなり小さく高濃度の水素ガス
を得るのは困難である。 (2)Pd膜法は60〜150μm程度の比較的厚いも
のを使用せざるを得ず、高価なPdの使用量が増大し、
また水素の透過速度が小さい。 (3)特開昭62−121616号公報に示されている
無機質材料からなる多孔質支持体にPdを含有する薄膜
を形成させた水素分離膜は強度が弱いため破損しやす
く、また分離膜と管板とのシールが難しい。 (4)特願平4−083669号で提案した金属多孔体
にバナジウム及びパラジウムを含有する薄膜を形成させ
た水素分離膜は600℃以上の高温で使用すると、金属
多孔体の金属成分とバナジウム、パラジウムとの熱拡散
反応を起こし、水素透過性能が低下するという問題があ
る。
The above-mentioned conventional methods have the following problems, respectively. (1) Since the ratio of the permeation coefficient of the mixed gas in the separation method by Knudsen diffusion is theoretically equal to the square root of the reciprocal of the molecular weight of each gas, it is difficult to obtain a hydrogen gas with a considerably small concentration. (2) In the Pd film method, a relatively thick film of about 60 to 150 μm has to be used, and the amount of expensive Pd used increases,
Further, the permeation rate of hydrogen is low. (3) A hydrogen separation membrane formed by forming a thin film containing Pd on a porous support made of an inorganic material, which is disclosed in JP-A-62-121616, is liable to be damaged due to its low strength. Difficult to seal with the tube sheet. (4) A hydrogen separation membrane, in which a thin film containing vanadium and palladium is formed on a porous metal body proposed in Japanese Patent Application No. 4-083669, is used at a high temperature of 600 ° C. or higher, the metal component of the porous metal body and vanadium, There is a problem that a hydrogen diffusion performance is deteriorated by causing a thermal diffusion reaction with palladium.

【0007】本発明は従来技術が有する上記の問題点を
解決することを目的としたものであるり、バナジウム及
びパラジウムのH2 に対する吸収性及び透過性に着目
し、バナジウム及びパラジウムのこれらの特性を金属多
孔体に有効に利用することにより、水素を含有する混合
ガスから高濃度の水素を分離する膜を提供しようとする
ものである。
The present invention is intended to solve the above-mentioned problems of the prior art, and paying attention to the absorbability and permeability of vanadium and palladium for H 2 , the characteristics of vanadium and palladium. The present invention intends to provide a membrane for separating a high concentration of hydrogen from a mixed gas containing hydrogen by effectively utilizing the above as a metal porous body.

【0008】[0008]

【課題を解決するための手段】本発明は0.1〜20μ
mの細孔を有する金属多孔体の少なくとも一方の表面
に、耐熱性酸化物の薄膜及び膜厚が50μm以下のバナ
ジウム及びパラジウムを含有する薄膜を形成させてなる
水素分離膜である。
The present invention has a range of 0.1 to 20 μm.
A hydrogen separation membrane, which is formed by forming a thin film of a heat-resistant oxide and a thin film containing vanadium and palladium having a thickness of 50 μm or less on at least one surface of a metal porous body having m pores.

【0009】本発明において、細孔を有する金属多孔体
としては300℃以上の温度に耐える耐熱性を有し、処
理すべき気体と反応性を有せず、かつ0.1〜20μm
の範囲の中で、できるだけ均一な細孔を有する金属多孔
体を使用するのが適している。細孔径を0.1μm以上
としたのはガス拡散の妨害にならないようにするためで
あり、20μm以下としたのはバナジウム及びパラジウ
ムを含有する薄膜を膜厚50μm以下にコーティングし
た場合、ピンホールが生じやすくなるからである。な
お、金属多孔体としては円筒状または板状のものを使用
するのが適当であり、支持体としての強度及び加工性な
どから0.1〜2mmの厚みのものが好ましい。
In the present invention, the metal porous body having pores has heat resistance to withstand temperatures of 300 ° C. or higher, has no reactivity with the gas to be treated, and has a thickness of 0.1 to 20 μm.
It is suitable to use a metal porous body having pores which are as uniform as possible within the range. The pore diameter is set to 0.1 μm or more so as not to interfere with gas diffusion, and 20 μm or less is used when a thin film containing vanadium and palladium is coated to a film thickness of 50 μm or less. This is because it tends to occur. It is appropriate to use a cylindrical or plate-shaped metal porous body, and a metal porous body having a thickness of 0.1 to 2 mm is preferable from the viewpoint of strength and workability as a support.

【0010】本発明において金属多孔体の一例として以
下のものがあげられる。 (1)発泡(多孔質)金属をプレス成型し細孔径を制御
したもの、さらにこれに溶射またはめっきなどにより細
孔を小さくしたもの。 (2)粒径の小さい金属微粒粉末(50μm以下)を成
型したもの。 (3)化学反応により除去可能な粉末(例えば、燃焼除
去が可能なグラファイト)を金属粉末に混合または溶融
した金属に添加した後、粉末を化学反応により除去し細
孔を生成させたもの。 (4)繊維径1〜20μmの金属繊維の不織布を圧延・
焼結させたもの。
In the present invention, examples of the metal porous body are as follows. (1) A foamed (porous) metal that is press-molded to control the pore size, and that has a smaller pore size obtained by thermal spraying or plating. (2) Molded metal fine powder (50 μm or less) having a small particle size. (3) Powders that can be removed by a chemical reaction (for example, graphite that can be removed by combustion) are added to a metal mixed or melted with a metal powder, and then the powder is removed by a chemical reaction to generate pores. (4) Rolled metal fiber nonwoven fabric with a fiber diameter of 1 to 20 μm
Sintered.

【0011】本発明において、バナジウム及びパラジウ
ムを含有する薄膜とはバナジウム及びパラジウムをそれ
ぞれ1重量%以上含有し、かつバナジウムとパラジウム
の合計が50重量%以上含有するものをさす。薄膜の厚
さは50μm以下、特に2〜20μmのものが適当であ
る。バナジウム及びパラジウムを含有する薄膜とはバナ
ジウム、パラジウム以外にもPt、Rh、Ru、Ir、
Fe、Ni、CoなどのVIII族元素、Cu、Ag、Au
などのIb族元素、MoなどのVIa族元素を含有するも
のをさし、これらの合金または合金と合金、単一金属と
の組み合わせのものがある。
In the present invention, the thin film containing vanadium and palladium means one containing vanadium and palladium in an amount of 1% by weight or more and the total amount of vanadium and palladium in an amount of 50% by weight or more. The thickness of the thin film is preferably 50 μm or less, particularly 2 to 20 μm. The thin film containing vanadium and palladium means Pt, Rh, Ru, Ir, in addition to vanadium and palladium.
Group VIII elements such as Fe, Ni, Co, Cu, Ag, Au
And the like, and those containing alloys of these alloys or alloys and single metals.

【0012】例としては、バナジウムとパラジウムの合
金、バナジウムとパラジウムにその他の金属を含有する
合金、あるいはバナジウムの合金にパラジウムまたはパ
ラジウムの合金を複合させたものがある。
Examples include vanadium-palladium alloys, vanadium-palladium alloys containing other metals, or vanadium alloys compounded with palladium or palladium alloys.

【0013】本発明において、耐熱性酸化物の薄膜とは
SiO2 、Al2 3 、ZrO2 、TiO2 、La2
3 などの融点が1000℃以上の周期律表 IIIa、 III
b、IVa、IVb族の酸化物を含有したもので膜厚が50
μm以下のものをさす。
In the present invention, the heat-resistant oxide thin film means SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , La 2 O.
Periodic Table IIIa melting point of more than 1000 ° C., such as 3, III
b, IVa and IVb oxides are contained and the film thickness is 50
Refers to those of less than μm.

【0014】金属多孔体の少なくとも一方の表面に耐熱
性酸化物の薄膜及び膜厚が50μm以下のバナジウム及
びパラジウムを含有する薄膜を形成させる方法の一例と
しては下記の方法が用いられる。
The following method is used as an example of a method for forming a thin film of a heat-resistant oxide and a thin film containing vanadium and palladium having a thickness of 50 μm or less on at least one surface of the porous metal body.

【0015】(1)金属多孔体の表面に耐熱性酸化物の
薄膜を形成させる方法 耐熱性酸化物、水酸化物のゾル、ゲルまたはこれら
を含有するスラリーを金属多孔体に塗布または浸漬し焼
成したもの。 耐熱性酸化物または水酸化物を金属多孔体に溶射し
たもの。 真空蒸着法、イオンプレーティング、気相化学反応
(CVD)法などの気相法。
(1) Method for forming a thin film of a heat-resistant oxide on the surface of a porous metal body A sol or gel of a heat-resistant oxide, a hydroxide or a slurry containing these is applied or dipped in the porous metal body and baked. What I did. Thermally resistant oxide or hydroxide sprayed on a porous metal. Vapor phase methods such as vacuum deposition, ion plating, and vapor phase chemical reaction (CVD).

【0016】(2)バナジウム及びパラジウムを含有す
る薄膜を形成させる方法 めっきなどの液相法 表面活性化処理(塩化スズの水溶液と塩化パラジウムの
各液に交互に浸漬)後、無電解めっき(パラジウムの化
合物と還元剤及びバナジウム粉末を含有する液に浸漬) さらには、無電解めっき後に電気めっきしたもの、ある
いは電気めっき後に無電解めっきしたもの。 真空蒸着法、イオンプレーティング、気相化学反応
(CVD)法などの気相法。
(2) Method for forming thin film containing vanadium and palladium Liquid phase method such as plating Surface activation treatment (alternately dipping in tin chloride solution and palladium chloride solution), electroless plating (palladium) (Dipped in a liquid containing the compound of (1), a reducing agent, and vanadium powder) Further, electroless plating followed by electroplating, or electroplating followed by electroless plating. Vapor phase methods such as vacuum deposition, ion plating, and vapor phase chemical reaction (CVD).

【0017】以上のようにしてバナジウム及びパラジウ
ムを含有する薄膜を形成させた金属多孔体は水素のみを
選択的に透過する水素分離膜として使用できる。
The metal porous body on which the thin film containing vanadium and palladium is formed as described above can be used as a hydrogen separation membrane which selectively permeates only hydrogen.

【0018】上記水素分離膜の一方の側に水素を含有す
る混合ガスを供給すると、水素分離膜は水素のみを選択
的に透過させ、水素分離膜の他方の側から純粋な水素が
流出する。水素の透過速度は温度が高いほど大きく、ま
た水素分離膜の両側の水素の圧力差が大きいほど大きく
なる。本発明の水素分離膜の好ましい使用温度範囲は8
00℃以下であり、水素分離膜の両側の水素圧力差の好
ましい範囲は0.5〜10kg/cm2 である。
When a mixed gas containing hydrogen is supplied to one side of the hydrogen separation membrane, the hydrogen separation membrane selectively permeates only hydrogen, and pure hydrogen flows out from the other side of the hydrogen separation membrane. The hydrogen permeation rate increases as the temperature increases, and the hydrogen pressure difference on both sides of the hydrogen separation membrane increases. The preferred operating temperature range of the hydrogen separation membrane of the present invention is 8
The temperature is not higher than 00 ° C., and the preferable range of the hydrogen pressure difference between the both sides of the hydrogen separation membrane is 0.5 to 10 kg / cm 2 .

【0019】水素の透過速度は極めて大きく、400
℃、圧力差2kg/cm2 の場合15〜60cm3 /c
2 ・min程度であり、この値は従来のPd膜法の3
〜15倍に達する。
The permeation rate of hydrogen is extremely high, 400
15 to 60 cm 3 / c at a pressure difference of 2 kg / cm 2
m 2 · min, which is 3 times that of the conventional Pd film method.
It reaches ~ 15 times.

【0020】ブリードガスは水素分圧が内側の水素の圧
力と等しい状態で取出される。従って取り出すべき内側
の水素圧力を制御することによりブリードガスの組成、
水素の分取率を制御することが可能となる。
The bleed gas is taken out in a state where the hydrogen partial pressure is equal to the pressure of hydrogen inside. Therefore, by controlling the internal hydrogen pressure to be taken out, the composition of the bleed gas,
It becomes possible to control the fractionation rate of hydrogen.

【0021】[0021]

【作用】本発明の水素分離膜においては、バナジウム及
びパラジウムを含有する薄膜を金属多孔体で支持してい
るため、高い強度を有するとともに加工性に富み、モジ
ュール化が容易で、かつ高価なパラジウムの使用量が少
なくてすむという利点がある。さらに、金属多孔体とバ
ナジウム及びパラジウムを含有する薄膜との間に、耐熱
性酸化物の薄膜が存在するため、高温下における金属多
孔体の金属成分とバナジウムとパラジウムの熱拡散反応
が阻止され、水素透過性能の低下が防止できる。
In the hydrogen separation membrane of the present invention, since the thin film containing vanadium and palladium is supported by the metal porous body, it has high strength and is excellent in workability, is easily modularized, and is expensive. There is an advantage that the usage amount of is small. Furthermore, between the metal porous body and the thin film containing vanadium and palladium, since a thin film of a heat-resistant oxide is present, the metal diffusion of the metal component of the metal porous body under high temperature and vanadium and palladium is prevented, It is possible to prevent deterioration of hydrogen permeation performance.

【0022】[0022]

【実施例】【Example】

(実施例1)繊維径8μmのSUS316製金属繊維不
織布と200メッシュ、100メッシュ及び40メッシ
ュの金網(SUS316)を重ねたものを1100℃で
3時間加熱し、積層焼結した金属多孔体を巻き加工し、
溶接して径20×長さ300mmのパイプを製作した。
このパイプの全厚みは約0.6mmであり、細孔径が約
10μmの多孔質金属薄膜の厚みは0.05mmであっ
た。
(Example 1) A metal fiber non-woven fabric made of SUS316 having a fiber diameter of 8 μm and a wire mesh (SUS316) of 200 mesh, 100 mesh and 40 mesh stacked on each other was heated at 1100 ° C. for 3 hours to wind a laminated porous metal body. Processed,
A pipe having a diameter of 20 and a length of 300 mm was manufactured by welding.
The total thickness of this pipe was about 0.6 mm, and the thickness of the porous metal thin film having a pore size of about 10 μm was 0.05 mm.

【0023】このパイプの外側の面に、ジルコニアを蒸
着したサンプル(ジルコニア膜厚10μm)及びアルミ
ナを蒸着したサンプル(アルミナ膜厚20μm)を調製
した。ジルコニアを蒸着したサンプルの表面に表1に示
すように、バナジウム及びパラジウムを比率を変えて蒸
着したサンプル1〜3を調製した。また、アルミナを蒸
着したサンプルの表面に表1に示すように、バナジウ
ム、パラジウム以外にニッケル、コバルトまたはモリブ
デンを同時に蒸着したサンプル4〜6を調製した。
On the outer surface of this pipe, a sample in which zirconia was deposited (zirconia film thickness 10 μm) and a sample in which alumina was deposited (alumina film thickness 20 μm) were prepared. As shown in Table 1, samples 1 to 3 were prepared by depositing vanadium and palladium at different ratios on the surface of the sample on which zirconia was deposited. Further, as shown in Table 1, Samples 4 to 6 were prepared by simultaneously vapor-depositing nickel, cobalt or molybdenum in addition to vanadium and palladium on the surface of the alumina vapor-deposited sample.

【0024】バナジウム及びパラジウムをコーティング
した金属多孔体パイプ(サンプル1〜6)を水素分離膜
として使用し、図1に示す試験装置で水素透過試験を行
った。水素分離膜1をOリング2でステンレス鋼製外管
3に固定し、その外側を電気炉で加熱する。温度はサー
モカップル8を使用し、内管の中心部で測定した。
A hydrogen permeation test was carried out using a test apparatus shown in FIG. 1 using a porous metal pipe (Samples 1 to 6) coated with vanadium and palladium as a hydrogen separation membrane. The hydrogen separation membrane 1 is fixed to the stainless steel outer tube 3 with an O-ring 2, and the outside is heated in an electric furnace. The temperature was measured at the center of the inner tube using Thermocouple 8.

【0025】供給孔4からH2 /N2 =1(モル)の混
合ガスを連続的に供給し、排出孔5からブリードガスを
排出し、下部の取出孔6から99.99%以上の純粋な
水素(圧力:1kg/cm2 abs.)を得ることがで
きた。なお、図1中、7はスイープガス供給口を示す。
A mixed gas of H 2 / N 2 = 1 (mol) is continuously supplied from the supply hole 4, bleed gas is discharged from the discharge hole 5, and 99.99% or more of pure gas is discharged from the lower discharge hole 6. Hydrogen (pressure: 1 kg / cm 2 abs.) Could be obtained. In FIG. 1, 7 indicates a sweep gas supply port.

【0026】[0026]

【表1】 上記サンプル1〜6について、500℃で1000時間
エージング試験を行った結果、水素透過性能は一定であ
った。
[Table 1] The samples 1 to 6 were subjected to an aging test at 500 ° C. for 1000 hours, and as a result, the hydrogen permeation performance was constant.

【0027】サンプル4について、混合ガスの圧力及び
温度を変えて試験した結果を表2に示す。
Table 2 shows the results of testing the sample 4 by changing the pressure and temperature of the mixed gas.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例2)繊維径2μmのSUS316
製金属繊維不織布と200メッシュ、100メッシュ及
び40メッシュの金網(SUS316)を重ねたものを
1200℃で3時間加熱し、積層焼結した金属多孔体を
巻き加工し、溶接して径20×長さ300mmの金属多
孔体を製作した。このパイプの全厚みは約0.6mmで
あり、細孔径が5〜7μmの多孔質金属薄膜の厚みは
0.05mmである。
(Example 2) SUS316 having a fiber diameter of 2 μm
A metal fiber non-woven fabric and a layer of 200 mesh, 100 mesh and 40 mesh wire mesh (SUS316) are heated at 1200 ° C. for 3 hours, and the laminated and sintered metal porous body is wound and welded to a diameter of 20 × length. A metal porous body having a thickness of 300 mm was produced. The total thickness of this pipe is about 0.6 mm, and the thickness of the porous metal thin film having a pore size of 5 to 7 μm is 0.05 mm.

【0030】濃硝酸2gに水100gを添加して調製し
た硝酸水溶液にテトラエトキシシラン100gを添加
し、急速攪拌しながら80℃に加熱しシリカゾルを調製
した。このシリカゾルを上記金属多孔体の表面に塗布
し、500℃で焼成する操作を繰り返し、金属多孔体の
表面にシリカの薄膜を10μm形成させた。
To a nitric acid aqueous solution prepared by adding 100 g of water to 2 g of concentrated nitric acid, 100 g of tetraethoxysilane was added and heated to 80 ° C. with rapid stirring to prepare a silica sol. The operation of applying the silica sol to the surface of the metal porous body and firing it at 500 ° C. was repeated to form a silica thin film of 10 μm on the surface of the metal porous body.

【0031】10μm以下のV−Ni合金(85:15
重量%)粉末を懸濁させた無電解パラジウム用液(Pd
化合物及びヒドラジン、アンモニア水を含有)に上記金
属多孔体パイプを浸漬し、V:Pd:Ni=60:3
4:6(重量%)の組成を有する薄膜20μmを金属多
孔体にコーティングした。実施例1と同様の試験(混合
ガス圧力3kg/cm2 G、流量を20Nl/min、
400℃)を行った結果、99.99%以上の水素が
9.6Nl/min得られた。なお、上記パイプについ
て、500℃で1000時間エージング試験を行った結
果、水素透過性能は一定であった。
V-Ni alloy (85:15) of 10 μm or less
(% By weight) Powder for suspension of electroless palladium (Pd
The compound, hydrazine, and ammonia water) are immersed in the metal porous pipe, and V: Pd: Ni = 60: 3.
A thin film of 20 μm having a composition of 4: 6 (% by weight) was coated on the metal porous body. The same test as in Example 1 (mixed gas pressure 3 kg / cm 2 G, flow rate 20 Nl / min,
As a result of carrying out 400 ° C.), 99.99% or more of hydrogen was obtained at 9.6 Nl / min. As a result of conducting an aging test on the above pipe at 500 ° C. for 1000 hours, the hydrogen permeation performance was constant.

【0032】(実施例3)実施例2と同じシリカの薄膜
を10μm形成させた金属多孔体パイプを用い、このパ
イプの外側に蒸着法により、まずバナジウムにニッケル
を90:10(重量%)の組成で膜厚15μmになるよ
うに蒸着し、さらにパラジウムを2μ蒸着したサンプル
8と、パラジウムと銀が77:23(重量%)の組成の
ものを5μ蒸着したサンプル9を調製した。
(Example 3) Using a metal porous pipe on which the same thin silica film as in Example 2 was formed to a thickness of 10 µm, the outside of this pipe was vapor-deposited to first make 90:10 (wt%) nickel on vanadium. Sample 8 was prepared by vapor deposition so as to have a film thickness of 15 μm, and further 2 μ of palladium was vapor deposited, and sample 9 was prepared by vapor deposition of 5 μ having a composition of palladium and silver of 77:23 (wt%).

【0033】実施例1と同様の試験(混合ガス圧力3k
g/cm2 G、流量を20Nl/min、400℃)を
行った結果、99.99%以上の水素が、サンプル8で
は10.8Nl/min、またサンプル9では10.5
Nl/min得られた。
Test similar to Example 1 (mixed gas pressure 3 k
g / cm 2 G, flow rate 20 Nl / min, 400 ° C.), and as a result, 99.99% or more of hydrogen was 10.8 Nl / min in sample 8 and 10.5 in sample 9.
Nl / min was obtained.

【0034】(比較例)ジルコニアの薄膜を形成させな
いこと以外は実施例1と同様の方法で、実施例1の金属
多孔体パイプに直接バナジウムとパラジウムを10:9
0重量%の比率で蒸着し、水素透過試験を行った結果、
99.99%以上の水素が実施例1と同様2.6Nl/
min得られた。なお、上記サンプルについて、500
℃で1000時間エージング試験を行った結果、水素流
量は1.2Nl/minに低下した。
(Comparative Example) Vanadium and palladium were directly added to the porous metal pipe of Example 1 at a ratio of 10: 9 in the same manner as in Example 1 except that a thin film of zirconia was not formed.
As a result of vapor deposition at a ratio of 0 wt% and a hydrogen permeation test,
Similar to Example 1, 99.99% or more of hydrogen was 2.6 Nl /
got min. For the above sample, 500
As a result of performing an aging test at 1000 ° C. for 1000 hours, the hydrogen flow rate was reduced to 1.2 Nl / min.

【0035】[0035]

【発明の効果】以上、実施例から明らかなように、本発
明の水素分離膜は高温下でも長時間水素のみを選択的に
透過する水素分離膜として使用できる。
As is apparent from the above examples, the hydrogen separation membrane of the present invention can be used as a hydrogen separation membrane that selectively permeates only hydrogen for a long time even at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明水素分離膜の水素分離効果を実証するた
めに使用した試験装置の概略図。
FIG. 1 is a schematic view of a test apparatus used for demonstrating the hydrogen separation effect of the hydrogen separation membrane of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 0.1〜20μmの細孔を有する金属多
孔体の少なくとも一方の表面に、耐熱性酸化物の薄膜及
び膜厚が50μm以下のバナジウム及びパラジウムを含
有する薄膜を形成させてなることを特徴とする水素分離
膜。
1. A heat-resistant oxide thin film and a thin film containing vanadium and palladium having a thickness of 50 μm or less are formed on at least one surface of a metal porous body having pores of 0.1 to 20 μm. A hydrogen separation membrane characterized by the above.
JP9397293A 1993-04-21 1993-04-21 Hydrogen separating membrane Withdrawn JPH06304457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9397293A JPH06304457A (en) 1993-04-21 1993-04-21 Hydrogen separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9397293A JPH06304457A (en) 1993-04-21 1993-04-21 Hydrogen separating membrane

Publications (1)

Publication Number Publication Date
JPH06304457A true JPH06304457A (en) 1994-11-01

Family

ID=14097323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9397293A Withdrawn JPH06304457A (en) 1993-04-21 1993-04-21 Hydrogen separating membrane

Country Status (1)

Country Link
JP (1) JPH06304457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP5803928B2 (en) * 2010-09-24 2015-11-04 東京瓦斯株式会社 Hydrogen separation membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP5803928B2 (en) * 2010-09-24 2015-11-04 東京瓦斯株式会社 Hydrogen separation membrane

Similar Documents

Publication Publication Date Title
Nam et al. Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier
US8119205B2 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
KR100247557B1 (en) Preparation of composite membranes for separation of hydrogen
Pan et al. Thin dense Pd membranes supported on α-Al 2 O 3 hollow fibers
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
JP4572385B2 (en) Hydrogen purification separation method
JP3117276B2 (en) Hydrogen separation membrane
US9149762B2 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
JPH04346824A (en) Hydrogen separating membrane
JPH06304457A (en) Hydrogen separating membrane
KR100312069B1 (en) A palladium alloy composite membrane for permeances of hydrogen, and preparation thereof
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP4911916B2 (en) Hydrogen separator
JP2006314876A (en) Hydrogen separator
JP3174668B2 (en) Hydrogen separation membrane
Xue et al. Amorphous Ni–B alloy/ceramic composite membrane prepared by an improved electroless plating technique
Chi et al. Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling
EP0474634A1 (en) Gas-permeable, inorganic membranes
JPH05285355A (en) Membrane for separation of hydrogen

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704