JPH0582B2 - - Google Patents

Info

Publication number
JPH0582B2
JPH0582B2 JP11071688A JP11071688A JPH0582B2 JP H0582 B2 JPH0582 B2 JP H0582B2 JP 11071688 A JP11071688 A JP 11071688A JP 11071688 A JP11071688 A JP 11071688A JP H0582 B2 JPH0582 B2 JP H0582B2
Authority
JP
Japan
Prior art keywords
glass
porous
zirconia
tube
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11071688A
Other languages
Japanese (ja)
Other versions
JPH01281119A (en
Inventor
Tetsuo Yazawa
Hiroshi Nakamichi
Kyohisa Eguchi
Hiroshi Tanaka
Osamu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11071688A priority Critical patent/JPH01281119A/en
Publication of JPH01281119A publication Critical patent/JPH01281119A/en
Publication of JPH0582B2 publication Critical patent/JPH0582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラス・セラミツクス系濾過材及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a glass/ceramic filter medium and a method for manufacturing the same.

従来技術とその問題点 アルミニウムアルコキシドの溶液を多孔質セラ
ミツクス上に付与し、乾燥により加水分解し、焼
結して、多孔質のアルミナ膜を形成させて、複層
セラミツクス系濾過材を製造する方法は、公知で
ある。しかしながら、この方法により得られる濾
過材においては、乾燥−焼結工程でアルミナ膜に
ひび割れが生じるので、アルミニウムアルコキシ
ドの溶液塗布を10回以上繰返し行う必要があり、
工程が煩瑣となるばがりではなく、濾過材として
の透過速度も、低下する欠点がある。
Prior art and its problems A method of producing a multilayer ceramic filter material by applying a solution of aluminum alkoxide onto porous ceramics, drying it to hydrolyze it, and sintering it to form a porous alumina membrane. is publicly known. However, in the filter media obtained by this method, cracks occur in the alumina membrane during the drying and sintering process, so it is necessary to repeat the application of aluminum alkoxide solution 10 times or more.
Not only is the process complicated, but the permeation rate as a filter medium is also reduced.

問題点を解消するための手段 本発明者は、上記の如きセラミツクス系濾過材
の問題点に鑑みて種々研究を重ねた結果、多孔質
シリカージルコニア系ガラス膜を多孔質セラミツ
クス基材上に形成させる場合には、これらの問題
点が大巾に軽減されることを見出した。
Means for Solving the Problems The present inventor has conducted various studies in view of the above-mentioned problems of ceramic filter materials, and as a result, formed a porous silica-zirconia glass membrane on a porous ceramic substrate. It has been found that these problems can be greatly alleviated if the

すなわち、本発明は、下記のガラス・セラミツ
クス系濾過材及びその製造方法を提供するもので
ある: 多孔質セラミツクス基材上にシリカージルコ
ニア系多孔質ガラス膜を備えたガラス・セラミ
ツク系濾過材。
That is, the present invention provides the following glass/ceramic filter material and method for producing the same: A glass/ceramic filter material comprising a silica-zirconia porous glass membrane on a porous ceramic base material.

多孔質セラミツクス基材上にシリカ源及びジ
ルコニア源となるアルコキシドの混合溶液を付
与し、乾燥し、焼成することを特徴とするガラ
ス・セラミツクス系濾過材の製造方法。
A method for manufacturing a glass-ceramic filter material, which comprises applying a mixed solution of alkoxides serving as a silica source and a zirconia source onto a porous ceramic substrate, drying and firing.

本発明において使用する多孔質セラミツクス基
材は、アルミナ、ジルコニア、炭化ケイ素、炭
素、チツ化ケイ素などである。該基材の厚さ、細
孔径、細孔容積などは、特に限定されず、被濾過
物、液の種類などに応じて、適宜選択すれば良
いが、通常厚さ1〜2mm程度、細孔径0.1〜0.5μ
m程度、細孔容積0.3〜0.5c.c./g程度である。
Porous ceramic substrates used in the present invention include alumina, zirconia, silicon carbide, carbon, silicon titanide, and the like. The thickness, pore diameter, pore volume, etc. of the base material are not particularly limited and may be selected appropriately depending on the substance to be filtered, the type of liquid, etc., but usually the thickness is about 1 to 2 mm and the pore diameter 0.1~0.5μ
The pore volume is approximately 0.3 to 0.5 cc/g.

多孔質セラミツクス基材上に形成されるシリカ
ージルコニア系多孔質ガラス膜は、シリカ20〜70
重量%とジルコニア80〜30重量%の割合とするこ
とが好ましい。該ガラス膜の厚さ、細孔径、細孔
容積なども、特に限定されず、やはり被濾過物、
液の種類などに応じて、適宜選択すれば良い
が、通常厚さ0.5〜15μm程度、細孔径2〜100nm
程度、細孔容積0.03〜0.3c.c./g程度である。こ
のようなガラス膜は、必要に応じて、複数層形成
しても良い。
The silica-zirconia porous glass membrane formed on the porous ceramic base material has a silica content of 20 to 70%.
It is preferable to set the ratio to be 80 to 30% by weight of zirconia. The thickness, pore diameter, pore volume, etc. of the glass membrane are not particularly limited;
It can be selected as appropriate depending on the type of liquid, etc., but it usually has a thickness of about 0.5 to 15 μm and a pore diameter of 2 to 100 nm.
The pore volume is about 0.03 to 0.3 cc/g. A plurality of such glass films may be formed as necessary.

本発明の複層ガラス・セラミツクス系濾過材
は、以下のようにして、製造される。まず、シリ
カ源及びジルコニア源となるアルコキシドの混合
溶液を調製する。シリカ源となるアルコキシドと
しては、Si(OCH)4、Si(OC2H54、Si(OC3H74
などが例示され、ジルコニア源となるアルコキシ
ドとしては、Zr(OC3H74、Zr(OC4H94、Zr
(OC5H114などが例示される。これらのアルコキ
シドを含有する溶液は、常法に従つて、メタノー
ル、エタノール、プロパノール、ブタノールなど
のアルコールと水との混合溶媒にアルコキシドを
加えることにより、調製される。溶液の調製に際
しては、必要ならば、塩酸、硫酸、硝酸などを添
加しても良い。次いで、該溶液を多孔質セラミツ
クス基材上に塗布するか、該溶液に多孔質セラミ
ツクス基材上を浸漬するなどの任意の手段によ
り、基材上にアルコキシド溶液を付与した後、室
温〜150℃程度で乾燥し、300〜800℃程度で焼成
する。必要ならば、乾燥速度を制御するために、
乾燥工程中に湿度調整を行なつても良い。シリカ
ージルコニアガラス膜の厚さ及び強度が不足する
場合には、溶液の付与、乾燥及び焼成を複数回繰
り返せば良い。通常この繰返し操作は、5〜6回
程度で十分である。
The double-glazed ceramic filter medium of the present invention is manufactured as follows. First, a mixed solution of alkoxides serving as a silica source and a zirconia source is prepared. Alkoxides that serve as silica sources include Si(OCH) 4 , Si(OC 2 H 5 ) 4 , and Si(OC 3 H 7 ) 4
Examples of alkoxides serving as zirconia sources include Zr(OC 3 H 7 ) 4 , Zr(OC 4 H 9 ) 4 , Zr
(OC 5 H 11 ) 4 etc. are exemplified. Solutions containing these alkoxides are prepared by adding the alkoxides to a mixed solvent of water and an alcohol such as methanol, ethanol, propanol, butanol, etc., according to a conventional method. When preparing the solution, hydrochloric acid, sulfuric acid, nitric acid, etc. may be added if necessary. Next, the alkoxide solution is applied onto the substrate by any means such as applying the solution onto the porous ceramic substrate or dipping the porous ceramic substrate in the solution, and then heating the solution at room temperature to 150°C. Dry at a temperature of about 300 to 800 degrees Celsius. If necessary, to control the drying rate,
Humidity may be adjusted during the drying process. If the thickness and strength of the silica-zirconia glass film are insufficient, applying the solution, drying, and firing may be repeated multiple times. Usually, it is sufficient to repeat this operation about 5 to 6 times.

発明の効果 本発明による複層ガラス・セラミツクス系濾過
材は、機械的強度の大きな多孔質セラミツクス基
材上に分離性に優れたシリカージルコニアガラス
膜を備えており、透過速度が大きいので、各種気
体及び液体の濾過用、分離用の濾過材として有用
である。また、化学的耐久性にも、極めて優れて
いる。更に、その製造方法も、従来法に比して、
簡便なものである。
Effects of the Invention The double-layered glass/ceramics filter medium of the present invention has a silica zirconia glass membrane with excellent separation properties on a porous ceramic base material with high mechanical strength, and has a high permeation rate, so it can be used in various types of filter media. It is useful as a filter material for gas and liquid filtration and separation. It also has extremely excellent chemical durability. Furthermore, the manufacturing method is also more efficient than conventional methods.
It is simple.

実施例 以下実施例を示し、本発明の特徴とするところ
をより一層明確にする。
Examples Examples will be shown below to further clarify the features of the present invention.

実施例 1 シリカ源としてのSi(OC2H54130g、ジルコニ
ア源としてのZr(OC3H7487g、0.15モル/の
塩酸水溶液11g及びC2H5OH 526gからなる混合
溶液を調製した後、表面層の平均細孔径が0.2μm
である多孔質アルミナ管を該混合溶液に浸漬し
た。次いで、これを温度98℃、相対湿度95%の恒
温恒湿器に入れ、60分間保持した後、電気炉中
300℃で10分間焼成した。この様な溶液の付与、
乾燥及び焼成をさらに4回繰返した。ただし、最
終回の焼成は、500℃で20分間行つた。
Example 1 A mixed solution consisting of 130 g of Si (OC 2 H 5 ) 4 as a silica source, 87 g of Zr (OC 3 H 7 ) 4 as a zirconia source, 11 g of a 0.15 mol/aqueous hydrochloric acid solution, and 526 g of C 2 H 5 OH was prepared. After preparation, the average pore size of the surface layer is 0.2μm
A porous alumina tube was immersed in the mixed solution. Next, this was placed in a constant temperature and humidity chamber at a temperature of 98℃ and a relative humidity of 95%, and after being kept for 60 minutes, it was placed in an electric furnace.
It was baked at 300°C for 10 minutes. Applying such a solution,
Drying and firing were repeated four more times. However, the final firing was performed at 500°C for 20 minutes.

かくして、多孔質アルミナ管の表面にZrO230
モル%−SiO270モル%のガラス膜を備えた複合
多孔質ガラス・セラミツクス管が得られた。ガラ
ス膜の付着量は、0.20g/dm2であつた。
Thus, ZrO 2 30 on the surface of the porous alumina tube
A composite porous glass-ceramic tube with a glass membrane of 70 mole % - SiO2 was obtained. The amount of glass film deposited was 0.20 g/dm 2 .

実施例 2 シリカ源としてのSi(OC2H5480g、ジルコニ
ア源としてのZr(OC3H74125g、0.15モル/の
塩酸水溶液7g及びC2H5OH 448gからなる混合
溶液を調製した後、表面層の平均細孔径が0.2μm
である多孔質アルミナ管を該混合溶液に浸漬し
た。次いで、これを温度100℃、相対湿度100%の
恒温恒湿器に入れ、120分間保持した後、電気炉
中300℃で10分間焼成した。この様な溶液の付与、
乾燥及び焼成をさらに4回繰返した。ただし、最
終回の焼成は、500℃で20分間行つた。
Example 2 A mixed solution consisting of 80 g of Si (OC 2 H 5 ) 4 as a silica source, 125 g of Zr (OC 3 H 7 ) 4 as a zirconia source, 7 g of a 0.15 mol/aqueous hydrochloric acid solution, and 448 g of C 2 H 5 OH was prepared. After preparation, the average pore size of the surface layer is 0.2μm
A porous alumina tube was immersed in the mixed solution. Next, this was placed in a constant temperature and humidity chamber at a temperature of 100°C and a relative humidity of 100%, held for 120 minutes, and then baked at 300°C for 10 minutes in an electric furnace. Applying such a solution,
Drying and firing were repeated four more times. However, the final firing was performed at 500°C for 20 minutes.

かくして、多孔質アルミナ管の表面にZrO250
モル%−SiO250モル%のガラス膜を備えた複合
多孔質ガラス・セラミツクス管が得られた。ガラ
ス膜の付着量は、0.25g/dm2であつた。
Thus, ZrO 2 50 on the surface of the porous alumina tube
A composite porous glass-ceramic tube with a glass membrane of 50 mole % - SiO2 was obtained. The amount of glass film deposited was 0.25 g/dm 2 .

実施例 3 シリカ源としてのSi(OC2H54161g、ジルコニ
ア源としてのZr(OC3H7463g、0.15モル/の
塩酸水溶液14g及びC2H5OH 574gからなる混合
溶液を調製した後、表面層の平均細孔径が0.2μm
である多孔質アルミナ管を該混合溶液に浸漬し
た。次いで、これを温度120℃の恒温器に入れ、
10分間保持した後、電気炉中300℃で10分間焼成
した。この様な溶液の付与、乾燥及び焼成をさら
に4回繰返した。ただし、最終回の焼成は、500
℃で20分間行つた。
Example 3 A mixed solution consisting of 161 g of Si (OC 2 H 5 ) 4 as a silica source, 63 g of Zr (OC 3 H 7 ) 4 as a zirconia source, 14 g of a 0.15 mol/aqueous hydrochloric acid solution, and 574 g of C 2 H 5 OH was prepared. After preparation, the average pore size of the surface layer is 0.2μm
A porous alumina tube was immersed in the mixed solution. Next, put this in a thermostat at a temperature of 120℃,
After holding for 10 minutes, it was fired in an electric furnace at 300°C for 10 minutes. Application of the solution, drying, and baking were repeated four more times. However, the final firing will cost 500
℃ for 20 minutes.

かくして、多孔質アルミナ管の表面にZrO220
モル%−SiO280モル%のガラス膜を備えた複合
多孔質ガラス・セラミツクス管が得られた。ガラ
ス膜の付着量は、0.18g/dm2であつた。
Thus, ZrO 2 20 on the surface of the porous alumina tube
A composite porous glass-ceramic tube with a glass membrane of 80 mole % - SiO2 was obtained. The amount of glass film deposited was 0.18 g/dm 2 .

実施例 4 シリカ源としてのSi(OC2H5442g、ジルコニ
ア源としてのZr(OC3H74154g、0.15モル/の
塩酸水溶液4g及びC2H5OH 390gからなる混合
溶液を調製した後、表面層の平均細孔径が0.2μm
である多孔質アルミナ管を該混合溶液に浸漬し
た。
Example 4 A mixed solution consisting of 42 g of Si (OC 2 H 5 ) 4 as a silica source, 154 g of Zr (OC 3 H 7 ) 4 as a zirconia source, 4 g of a 0.15 mol/aqueous hydrochloric acid solution, and 390 g of C 2 H 5 OH was prepared. After preparation, the average pore size of the surface layer is 0.2μm
A porous alumina tube was immersed in the mixed solution.

次いで、これを温度98℃、相対湿度95%の恒温
恒湿器に入れ、120分間保持した後、電気炉中300
℃で10分間焼成した。この様な溶液の付与、乾燥
及び焼成をさらに4回繰返した。ただし、最終回
の焼成は、500℃で20分間行つた。
Next, this was placed in a constant temperature and humidity chamber at a temperature of 98°C and a relative humidity of 95%, held for 120 minutes, and then heated at 300°C in an electric furnace.
Baked at ℃ for 10 minutes. Application of the solution, drying, and baking were repeated four more times. However, the final firing was performed at 500°C for 20 minutes.

かくして、多孔質アルミナ管の表面にZrO270
モル%−SiO230モル%のガラス膜を備えた複合
多孔質ガラス・セラミツクス管が得られた。ガラ
ス膜の付着量は、0.30g/dm2であつた。
Thus, ZrO 2 70 on the surface of the porous alumina tube
A composite porous glass-ceramic tube with a glass membrane of 30 mole % - SiO2 was obtained. The amount of glass film deposited was 0.30 g/dm 2 .

実験例 1 実施例3の方法で得たZrO220モル%−SiO280
モル%のガラス膜を備えた複合多孔質セラミツク
ス管を使用して、H250モル%−N250モル%の混
合ガスの分離を行つた。
Experimental Example 1 ZrO 2 20 mol% - SiO 2 80 obtained by the method of Example 3
A composite porous ceramic tube with a mol % glass membrane was used to perform the separation of a 50 mol % H 2 -50 mol % N 2 gas mixture.

第1図に得られた結果を曲線Aとして示す。 The results obtained are shown as curve A in FIG.

なお、第1図には、分相法により作成された多
孔質ガラス管(厚み0.5mm)を使用して同様の混
合ガスの分離を行つた場合の結果を曲線Bとして
併せて示す。
In addition, FIG. 1 also shows, as curve B, the results when a similar mixed gas was separated using a porous glass tube (thickness: 0.5 mm) prepared by the phase separation method.

第1図に示す結果から明らかな様に、本発明の
複合多孔質ガラス・セラミツクス管の分離比は、
分相法により作成された多孔質ガラス管のそれと
実質的に変わらない。
As is clear from the results shown in FIG. 1, the separation ratio of the composite porous glass/ceramics tube of the present invention is
It is not substantially different from that of porous glass tubes made by the phase separation method.

しかるに、H2の透過係数は、本発明の複合多
孔質ガラス・セラミツクス管の場合には、360×
10-9(m3/m2・Pa・sec)であつたのに対し、分相
法により作成された多孔質ガラス管の場合には、
僅か18×10-9(m3/m2・Pa・sec)に過ぎなかつ
た。
However, the permeability coefficient of H 2 is 360 × in the case of the composite porous glass-ceramics tube of the present invention.
10 -9 (m 3 /m 2・P a・sec), whereas in the case of a porous glass tube made by the phase separation method,
It was only 18×10 -9 (m 3 /m 2・P a・sec).

実験例 2 実施例1の方法に準じて、下記第1表に示す割
合(モル%)のジルコニアとシリカとからなるガ
ラス膜を多孔質セラミツクス管上に形成した。次
いで、該ガラス膜を100℃の蒸留水1000mlに浸漬
し、48時間還流して、液中のZrとSiの濃度を測定
したところ、Zrは、検出されず、Siの溶出量は、
第1表に示す通りであつた。
Experimental Example 2 According to the method of Example 1, a glass film consisting of zirconia and silica in the proportions (mol %) shown in Table 1 below was formed on a porous ceramic tube. Next, the glass membrane was immersed in 1000 ml of distilled water at 100°C, refluxed for 48 hours, and the concentrations of Zr and Si in the liquid were measured. Zr was not detected, and the amount of Si eluted was:
The results were as shown in Table 1.

第1表 ZrO2:SiO2 Si (モル比) (ppm) 10:90 67.05 30:70 27.05 50:50 7.65 70:30 2.93 実験例 3 実施例2の方法に準じて得たZrO250モル%−
SiO250モル%のガラス膜を備えた複合多孔質セ
ラミツクス管の耐熱性を調べるために、各種の条
件で熱処理した後、実験例1と同様にして、
H250モル%−N250モル%の混合ガスの分離を行
つた。
Table 1 ZrO 2 :SiO 2 Si (molar ratio) (ppm) 10:90 67.05 30:70 27.05 50:50 7.65 70:30 2.93 Experimental example 3 ZrO 2 50 mol% obtained according to the method of Example 2 −
In order to investigate the heat resistance of a composite porous ceramic tube equipped with a glass membrane containing 50 mol% of SiO 2 , after heat treatment under various conditions, the same procedure as in Experimental Example 1 was carried out.
A mixed gas of 50 mol% H2-50 mol% N2 was separated.

第2図に得られた結果を曲線C〜Eとして示
す。
The results obtained in FIG. 2 are shown as curves C to E.

第2図には、同様の複合多孔質ガラス・セラミ
ツクス管を熱処理することなく使用して同様の混
合ガスの分離を行つた場合の結果を曲線Fとして
併せて示す。
FIG. 2 also shows, as curve F, the results when a similar composite porous glass-ceramics tube was used without heat treatment to separate a similar mixed gas.

なお、各曲線と熱処理条件との関係及びそれぞ
れの処理後のH2の透過係数は、以下の通りであ
る。
The relationship between each curve and the heat treatment conditions and the H 2 transmission coefficient after each treatment are as follows.

曲線C…500℃×1時間、透過係数=420×10-9
(m3/m2・Pa・sec) 曲線D…500℃×5時間、透過係数=489×10-9
(m3/m2・Pa・sec) 曲線E…500℃×21時間、透過係数=492×10-9
(m3/m2・Pa・sec) 曲線F…熱処理なし。透過係数=282×10-9(m3
m2・Pa・sec) 第2図に示す結果から明らかな様に、本発明の
複合多化質ガラス・セラミツクス管の分離比は、
熱処理しても、実質的に変わらない。
Curve C...500℃×1 hour, permeability coefficient=420×10 -9
(m 3 /m 2・P a・sec) Curve D…500℃×5 hours, transmission coefficient=489×10 -9
(m 3 /m 2・P a・sec) Curve E…500℃×21 hours, transmission coefficient=492×10 -9
(m 3 /m 2・P a・sec) Curve F…No heat treatment. Transmission coefficient = 282×10 -9 (m 3 /
m 2・P a・sec) As is clear from the results shown in Figure 2, the separation ratio of the composite multi-porous glass/ceramics tube of the present invention is:
Even after heat treatment, there is no substantial change.

しかるに、H2の透過速度は、むしろ向上して
いる。
However, the permeation rate of H 2 is rather improved.

このような事実から、本発明による複層セラミ
ツクス計過材は、500℃で十分な耐熱性を備え
ていることが明らかである。
From these facts, it is clear that the multilayer ceramic diaphragm material according to the present invention has sufficient heat resistance at 500°C.

実験例 4 実施例1と同様にして得たZrO230モル%−
SiO270モル%のガラス膜を備えた複合多孔質ガ
ラス・セラミツクス管を使用して、0.5%食塩水
の脱塩処理を圧力50Kg/cm2の条件下に行つた。
Experimental Example 4 30 mol% of ZrO 2 obtained in the same manner as in Example 1
A composite porous glass-ceramic tube equipped with a glass membrane containing 70 mol% SiO 2 was used to desalinate 0.5% saline water under a pressure of 50 Kg/cm 2 .

第3図に脱塩率[曲線()]及び透過流量
[曲線()]を示す。
Figure 3 shows the desalination rate [curve ()] and the permeation flow rate [curve ()].

第3図に示す結果から明らかなように、本発明
による複合多孔質ガラス・セラミツクス管は、逆
浸透及び限外過膜としての機能をも有してい
る。
As is clear from the results shown in FIG. 3, the composite porous glass/ceramic tube according to the present invention also has functions as a reverse osmosis and ultrafiltration membrane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による複合多孔質ガラス・セ
ラミツクス管のH2−N2混合ガスのH2分離比を多
孔質ガラス管のそれと対比して示すグラフであ
る。 第2図は、本発明による複合多孔質ガラス・セ
ラミツクス管のH2−N2混合ガスのH2分離比に及
ぼす熱処理の影響を示すグラフである。 第3図は、本発明による複合多孔質ガラス・セ
ラミツクス管の逆浸透膜及び限外過膜としての
性能を示すグラフである。
FIG. 1 is a graph showing the H 2 separation ratio of the H 2 -N 2 gas mixture of a composite porous glass-ceramic tube according to the present invention in comparison with that of a porous glass tube. FIG. 2 is a graph showing the influence of heat treatment on the H 2 separation ratio of the H 2 -N 2 mixed gas of the composite porous glass-ceramics tube according to the present invention. FIG. 3 is a graph showing the performance of the composite porous glass-ceramic tube according to the present invention as a reverse osmosis membrane and an ultrafiltration membrane.

Claims (1)

【特許請求の範囲】 1 多孔質セラミツクス基材上にシリカージルコ
ニア系多孔質ガラス膜を備えたガラス・セラミツ
ク系濾過材。 2 多孔質セラミツクス基材上にシリカ源及びジ
ルコニア源となるアルコキシドの混合溶液を付与
し、乾燥し、焼成することを特徴とするガラス・
セラミツクス系濾過材の製造方法。
[Scope of Claims] 1. A glass/ceramic filter material comprising a silica-zirconia porous glass membrane on a porous ceramic base material. 2. A glass product characterized by applying a mixed solution of alkoxides serving as a silica source and a zirconia source onto a porous ceramic substrate, drying and firing.
Method for manufacturing ceramic filter media.
JP11071688A 1988-05-06 1988-05-06 Glass-ceramic-type filtration material and its manufacture Granted JPH01281119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11071688A JPH01281119A (en) 1988-05-06 1988-05-06 Glass-ceramic-type filtration material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11071688A JPH01281119A (en) 1988-05-06 1988-05-06 Glass-ceramic-type filtration material and its manufacture

Publications (2)

Publication Number Publication Date
JPH01281119A JPH01281119A (en) 1989-11-13
JPH0582B2 true JPH0582B2 (en) 1993-01-05

Family

ID=14542669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11071688A Granted JPH01281119A (en) 1988-05-06 1988-05-06 Glass-ceramic-type filtration material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01281119A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183482A (en) * 1991-06-19 1993-02-02 Texaco Inc. Separation by membrane techniques
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
CN1058908C (en) * 1997-06-20 2000-11-29 清华大学 Method for prepn. of ultra filtering silica membrane used for seawater desalination
US6372020B2 (en) * 1999-08-26 2002-04-16 Jae-Jin Hong Oxygen enriching membrane
JP4693267B2 (en) * 2001-03-30 2011-06-01 京セラ株式会社 Inorganic porous material for gas separation filter, gas separation filter and method for producing the same
JP5230906B2 (en) * 2006-03-27 2013-07-10 スリーエム イノベイティブ プロパティズ カンパニー Glass ceramic independent film and method for producing the same
JP6415200B2 (en) * 2014-09-11 2018-10-31 株式会社ノリタケカンパニーリミテド Single-end sealed cylindrical ceramics and method for producing the same

Also Published As

Publication number Publication date
JPH01281119A (en) 1989-11-13

Similar Documents

Publication Publication Date Title
US5059366A (en) Method of making a membrane filter
US5827569A (en) Hydrogen separation membrane and process for producing the same
EP0515936B1 (en) Procedure for the preparation of microporous ceramic membranes for the separation of gas and liquid mixtures
US5770275A (en) Molecular sieving silica membrane fabrication process
US20030222015A1 (en) Hydrogen-selective silica-based membrane
JPH05192545A (en) Supported porous ceramic membrane
EP1123898B1 (en) Zeolite composite film and process for producing the same
US20060237361A1 (en) Ceramic nanofiltration membrane for use in organic solvents and method for the production thereof
US4814202A (en) Processes for manufacturing thin membranes composed of an organic lattice of titanium and silicon oxides and powder composed of submicronic grains of mixed titanium and silicon oxides
JPH0582B2 (en)
Chu et al. Microporous silica membranes deposited on porous supports by filtration
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JP2955062B2 (en) Hydrogen gas separation membrane
JP2001276586A (en) Gas separation membrane and its production method
JPH10249175A (en) Porous separation membrane and production thereof
JP2000157853A (en) Gas separating filter and its manufacture
JP4693267B2 (en) Inorganic porous material for gas separation filter, gas separation filter and method for producing the same
JP2003047831A (en) Fluid separation filter and method for manufacturing the same
JP4605920B2 (en) Gas separation filter
JPH038813B2 (en)
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane
JP3358350B2 (en) Method for producing porous ceramic hollow fiber laminated with multilayer thin film
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
JP4384540B2 (en) Hydrogen separation material and method for producing the same
JPH06198148A (en) Production of inorganic porous membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term