JP3358350B2 - Method for producing porous ceramic hollow fiber laminated with multilayer thin film - Google Patents

Method for producing porous ceramic hollow fiber laminated with multilayer thin film

Info

Publication number
JP3358350B2
JP3358350B2 JP30167094A JP30167094A JP3358350B2 JP 3358350 B2 JP3358350 B2 JP 3358350B2 JP 30167094 A JP30167094 A JP 30167094A JP 30167094 A JP30167094 A JP 30167094A JP 3358350 B2 JP3358350 B2 JP 3358350B2
Authority
JP
Japan
Prior art keywords
hollow fiber
thin film
porous ceramic
ceramic hollow
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30167094A
Other languages
Japanese (ja)
Other versions
JPH07313853A (en
Inventor
重雄 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP30167094A priority Critical patent/JP3358350B2/en
Publication of JPH07313853A publication Critical patent/JPH07313853A/en
Application granted granted Critical
Publication of JP3358350B2 publication Critical patent/JP3358350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多層薄膜積層多孔質セ
ラミックス中空糸の製造法に関する。更に詳しくは、外
壁面に多層薄膜を積層させ、気体分離膜、膜型反応器用
分離膜などとして有効に使用される多孔質セラミックス
中空糸の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hollow fiber of a multilayer ceramic laminated porous ceramic. More particularly, the present invention relates to a method for producing a porous ceramic hollow fiber which is effectively used as a gas separation membrane, a separation membrane for a membrane reactor or the like by laminating a multilayer thin film on an outer wall surface.

【0002】[0002]

【従来の技術】多孔質膜を用いてガスの分離を行う場
合、例えばH2とCO、H2とN2などの分離に際しては、クヌ
ーセン拡散支配より微細孔となるように、多孔質膜の細
孔径を数10Å程度以下に調整したものを使用する必要が
ある。
2. Description of the Related Art When a gas is separated using a porous membrane, for example, when separating H 2 and CO, and H 2 and N 2 , the porous membrane is formed so that the pores are controlled by Knudsen diffusion. It is necessary to use one whose pore diameter has been adjusted to about several tens of mm or less.

【0003】そして、具体的なガス分離膜としては、約
40Åの細孔径を有する無機多孔質バイコールガラスが従
来から知られている。このバイコールガラスは、高けい
酸塩であることから、耐熱性および耐食性にすぐれてい
るという特徴を有しているが、強度上その膜厚を約0.5m
m以下にすることが困難であるため、単位面積当りのガ
ス透過速度が小さいという欠点がある。
[0003] As a specific gas separation membrane, about
An inorganic porous Vycor glass having a pore size of 40 ° has been conventionally known. Since this Vycor glass is a high silicate, it has the characteristic of being excellent in heat resistance and corrosion resistance, but its thickness is about 0.5 m in terms of strength.
Since it is difficult to reduce the diameter to less than m, there is a disadvantage that the gas permeation rate per unit area is small.

【0004】従って、ガスの透過速度の大きい分離膜を
製造するには、クヌーセン拡散支配より微細孔となるよ
うに多孔質膜の細孔径を調整し、膜厚を薄くすることが
望ましいが、機械的強度上膜厚を極端には薄くできない
ので、膜厚の薄いガス分離層を膜厚が1mm程度で比較的
細孔径の大きい多孔質支持体上にコーティングして補強
した、いわゆる多層構造のものが採用されている。
Therefore, in order to produce a separation membrane having a high gas permeation rate, it is desirable to adjust the pore diameter of the porous membrane so as to be fine pores by controlling Knudsen diffusion and to reduce the film thickness. The so-called multi-layer structure in which a gas separation layer with a small thickness is coated on a porous support with a relatively large pore diameter of about 1 mm and reinforced because the film thickness cannot be extremely thin due to its mechanical strength Has been adopted.

【0005】ここで用いられる薄膜積層多孔質構造体
は、取扱上あるいは強度上から通常は中空管状で使用さ
れることが多く、それの製造は、一般に使用されている
粉末冶金法、焼結法などにより、まず厚さ1mm程度の多
孔質中空管を製造し、これに種々の方法で微細孔を有す
る薄膜を積層させている。
[0005] The thin-film laminated porous structure used here is usually used in the form of a hollow tube in terms of handling or strength, and its production is generally carried out by powder metallurgy or sintering. First, a porous hollow tube having a thickness of about 1 mm is manufactured, and a thin film having micropores is laminated thereon by various methods.

【0006】かかる薄膜の積層方法としては、厚さ1μm
程度の極薄膜を形成させる真空蒸着法、スパッタリング
法などがあるが、これらの方法では均一な孔径の制御が
困難であり、また装置容積に制限があることから実用的
ではなく、従って通常は微粉末を数10μmの厚さに付着
させる方法が用いられている。
As a method of laminating such a thin film, a thickness of 1 μm
There are vacuum deposition method and sputtering method for forming an extremely thin film to the extent that these methods are not practical because of the difficulty in controlling the uniform pore size and the limitation of the apparatus volume, and therefore, it is usually not practical. A method of attaching powder to a thickness of several tens of μm is used.

【0007】このような微粉末層形成方法には、乾式法
と湿式法とがあるが、乾式法は粉末粒子の流動性が悪
く、均一な厚みの層を形成させることが極めて困難なた
め、湿式法が主流となっている。
[0007] Such a method of forming a fine powder layer includes a dry method and a wet method. However, the dry method has poor fluidity of powder particles and is extremely difficult to form a layer having a uniform thickness. The wet method is the mainstream.

【0008】この湿式法には、多孔質中空管を回転さ
せ、中空管内部に微粉末スラリを供給し、遠心力によっ
て粉末を付着させる遠心法、スラリの表面電位を利用す
る電気泳動により多孔質中空管にスラリを付着させる電
気泳動法、一般によく用いられている塗布法などがあ
り、これらの方法では微粉末に水またはアルコール、ア
セトンなどの有機溶媒を加えてスラリとして用いている
ので、流動性が良く、均一な厚みの層を容易に形成する
ことができるという特徴を有している。
In the wet method, a porous hollow tube is rotated, a fine powder slurry is supplied to the inside of the hollow tube, and the powder is adhered by centrifugal force. Electrophoresis using the surface potential of the slurry is carried out. There are an electrophoresis method of attaching a slurry to a porous hollow tube, and a commonly used coating method. In these methods, water or an organic solvent such as alcohol or acetone is added to a fine powder and used as a slurry. Therefore, it has a feature that it has good fluidity and a layer having a uniform thickness can be easily formed.

【0009】このように、湿式法では均一な薄膜を形成
させることが可能であるが、容易に形成できる細孔径は
数10Å以上であり、数10Å以下の細孔径を得るために、
約100Å以下の超微粉末を用いる場合には、スラリの付
着層を形成後、液体を蒸発させて乾燥する際、クラック
を生じ易いという欠点がみられる。クラックの発生を防
止するために、スラリに粘結剤を加える方法もあるが、
後で粘結剤を除去し、微小細孔を得ることは困難であ
る。
As described above, a uniform thin film can be formed by the wet method, but the pore diameter that can be easily formed is several tens of mm or more.
When an ultrafine powder of about 100 ° or less is used, there is a disadvantage that cracks are easily generated when the liquid is evaporated and dried after the formation of the slurry adhesion layer. There is also a method of adding a binder to the slurry to prevent the occurrence of cracks,
It is difficult to remove the binder later to obtain micropores.

【0010】また、微小細孔を得る方法の一つとして、
粗孔性基質に浸漬法により微粒子を充填して多孔性物質
を製造する方法もあるが、この方法では粗孔性基質全体
に微粒子が充填されてしまうという欠点がある。
[0010] One of the methods for obtaining micropores is as follows.
There is also a method of producing a porous substance by filling fine particles in a coarse porous substrate by an immersion method, but this method has a disadvantage that the fine particles are filled in the entire coarse porous substrate.

【0011】そこで本発明者は先に、従来技術にみられ
るこのような各種の欠点、即ち均一な孔径の制御、微細
孔径化、薄膜化などが困難であり、またクラックの発
生、剥離強度が低いなどといった問題をいずれも克服す
るために、多孔質アルミナ中空糸内にシリカゾルを流入
接触後、乾燥、焼成して薄膜積層多孔質アルミナ中空糸
を製造する方法を提案している(特開平5-132822号公
報)。
Therefore, the present inventor has previously found that it is difficult to control such various drawbacks found in the prior art, namely, to control the uniform pore size, to make the pore size smaller, to make the film thinner, and to reduce the occurrence of cracks and peel strength. In order to overcome any problems such as low temperature, a method has been proposed in which a silica sol is flowed into and contacted with a porous alumina hollow fiber, and then dried and fired to produce a thin-film laminated porous alumina hollow fiber (Japanese Patent Laid-Open No. Hei 5 (1994)). -132822).

【0012】この提案された方法により製造された薄膜
積層多孔質アルミナ中空糸は、所期の目的を達成させる
ものの、例えばH2/N2分離係数に対してH2透過速度が低
下するなどの気体分離膜としての性能の面でのなお一段
の向上が求められた。
Although the thin-film laminated porous alumina hollow fiber produced by the proposed method achieves the intended purpose, for example, the H 2 / N 2 separation coefficient has a lower H 2 permeation rate. Further improvement in performance as a gas separation membrane was required.

【0013】本発明者はまた、多孔質アルミナ中空糸内
でベーマイトゾルの強制ロ過を行い、乾燥、焼成してγ
-アルミナ薄膜を中空糸内壁面に形成させた後、その一
端側からシリカゾルを流入、接触させ、乾燥、焼成して
多層薄膜積層多孔質アルミナ中空糸を製造する方法を提
案している(特開平5-57162号公報)。しかしながら、多
孔質アルミナ中空糸の内壁面側への多層薄膜の積層は、
操作的にみて簡単ではないばかりではなく、H2/N2分離
係数が3程度であって、気体分離性能の点でなお一段の
向上が求められた。
The present inventor has also conducted a forced filtration of the boehmite sol in the porous alumina hollow fiber, and dried and fired the γ.
-After forming an alumina thin film on the inner wall surface of a hollow fiber, a silica sol is introduced from one end side of the hollow fiber, brought into contact, dried and fired to produce a multilayer thin film laminated porous alumina hollow fiber (Japanese Patent Laid-Open Publication No. 5-57162). However, the lamination of the multilayer thin film on the inner wall surface side of the porous alumina hollow fiber,
Not only is it not easy in terms of operation, but the H 2 / N 2 separation coefficient is about 3, and further improvement in gas separation performance was required.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、多孔
質セラミックス中空糸にγ-アルミナ薄膜およびシリカ
薄膜を順次積層させた多層薄膜積層多孔質セラミックス
中空糸において、気体分離性能を一段と向上せしめたも
のの製造法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-layer thin film laminated porous ceramic hollow fiber in which a γ-alumina thin film and a silica thin film are sequentially laminated on a porous ceramic hollow fiber, thereby further improving the gas separation performance. It is to provide a manufacturing method of the product.

【0015】[0015]

【課題を解決するための手段】かかる本発明の目的は、
多孔質セラミックス中空糸をベーマイトゾル中に浸漬
し、乾燥させて焼成した後、その両端部を封止した状態
でシリカゾル中に浸漬し、乾燥させて焼成して多層薄膜
積層多孔質セラミックス中空糸を製造することによって
達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
The porous ceramic hollow fiber is immersed in the boehmite sol, dried and fired, then immersed in silica sol with both ends sealed, dried and fired to obtain a multilayer thin film laminated porous ceramic hollow fiber. Achieved by manufacturing.

【0016】多孔質セラミックス中空糸としては、一般
にAl2O3中空糸が用いられるが、これ以外にもY2O3、SiO
2、Si3N4、ZrO2等の中空糸を用いることができ、これら
は約0.1〜10μm、好ましくは約0.1〜2μmの平均細孔径
を有している。
As the porous ceramic hollow fiber, Al 2 O 3 hollow fiber is generally used, but other than this, Y 2 O 3 , SiO 2
2 , hollow fibers such as Si 3 N 4 and ZrO 2 can be used, and these have an average pore diameter of about 0.1 to 10 μm, preferably about 0.1 to 2 μm.

【0017】これらの多孔質セラミックス中空糸は、ベ
ーマイトゾル中に浸漬し、乾燥させて焼成することによ
り、主として中空糸外壁面上にγ-アルミナ薄膜を積層
させる。ここで用いられるベーマイトゾルは、例えばア
ルミニウムイソプロポキシドを100倍モル量程度の蒸留
水中で75℃以上に加熱して加水分解させた後、アルミニ
ウムに対して約0.07〜0.20倍モル量の塩酸などを添加
し、95℃で解こうさせることにより調製される。また、
市販のものも用いられる。
These porous ceramic hollow fibers are immersed in a boehmite sol, dried and fired, so that a γ-alumina thin film is mainly laminated on the outer wall surface of the hollow fiber. The boehmite sol used here is, for example, after hydrolyzing aluminum isopropoxide in distilled water of about 100 times the molar amount by heating to 75 ° C or more, hydrochloric acid of about 0.07 to 0.20 times the molar amount of aluminum, etc. And pulverized at 95 ° C. Also,
Commercially available ones are also used.

【0018】ベーマイトゾル中への浸漬およびそこから
の引上げは、低速モータを用いて、約6〜600mm/分、好
ましくは約20〜360mm/分の浸漬速度および約6〜600mm/
分、好ましくは約20〜360mm/分の引上げ速度で一般に行
われ、その後室温条件下で12時間程度乾燥させ、次いで
約400〜800℃で約1〜10時間程度焼成が行われる。この
際、焼成温度で乾燥を兼ねさせることもできる。このよ
うな一連の操作は、一般に複数回、好ましくは2〜3回
程度くり返して行われる。
The immersion in the boehmite sol and the withdrawal therefrom are carried out using a low-speed motor at an immersion speed of about 6 to 600 mm / min, preferably about 20 to 360 mm / min and about 6 to 600 mm / min.
Min, preferably about 20 to 360 mm / min, followed by drying at room temperature for about 12 hours, followed by firing at about 400 to 800 ° C. for about 1 to 10 hours. At this time, drying can also be performed at the firing temperature. Such a series of operations is generally repeated a plurality of times, preferably about two to three times.

【0019】このようにしてγ-アルミナ薄膜を積層さ
せた多孔質セラミックス中空糸は、その両端部を封止し
た状態で、シリカゾル中に浸漬し、乾燥させて焼成す
る。中空糸両端部の封止は、一般にはエポキシ樹脂等の
市販接着剤を用いて行われるが、特開平5-221752号公報
に記載されるように、シリカゾル中に浸漬し、200℃で
乾燥させた後、400℃で焼成するといった含浸封止方法
をとることもできる。
The porous hollow fiber thus laminated with the γ-alumina thin film is immersed in silica sol, dried and fired with both ends sealed. Sealing of both ends of the hollow fiber is generally performed using a commercially available adhesive such as an epoxy resin, but as described in JP-A-5-221752, immersed in silica sol and dried at 200 ° C. After that, an impregnation sealing method such as baking at 400 ° C. may be adopted.

【0020】シリカゾルは、テトラエトキシシラン等の
テトラアルコキシシランを塩酸等の無機酸を用いてアル
コール水溶液中で加水分解することにより調製され、そ
こへの両端部を封止したγ-アルミナ薄膜積層多孔質セ
ラミックス中空糸の浸漬は、低速モータを用いて約2mm/
分以上の浸漬速度、好ましくは一気に浸漬することによ
り行われ、約0.1〜2mm/分、好ましくは約0.4〜1.8mm/分
の引上げ速度で引き上げた後、例えば40℃、90%RHの恒
温恒湿条件下において、約10分間〜10時間、好ましくは
約1〜3時間程度乾燥させることが行われる。次いで、必
要に応じて約150〜250℃で約10分間〜5時間の乾燥を更
に行った後、約400〜600℃で約1〜5時間程度焼成する。
この際、焼成温度で乾燥を兼ねさせることもできる。こ
のような一連の操作は、一般に複数回くり返して行われ
る。
The silica sol is prepared by hydrolyzing a tetraalkoxysilane such as tetraethoxysilane in an aqueous alcohol solution using an inorganic acid such as hydrochloric acid, and sealing both ends thereof to a γ-alumina thin film laminated porous material. The porous ceramics hollow fiber is immersed at about 2 mm /
Immersion speed of at least one minute, preferably immersion at a stretch, and after pulling up at a pulling rate of about 0.1 to 2 mm / min, preferably about 0.4 to 1.8 mm / min, for example, constant temperature constant of 40 ° C. and 90% RH Under wet conditions, drying is performed for about 10 minutes to 10 hours, preferably for about 1 to 3 hours. Next, if necessary, further drying is performed at about 150 to 250 ° C. for about 10 minutes to 5 hours, followed by baking at about 400 to 600 ° C. for about 1 to 5 hours.
At this time, drying can also be performed at the firing temperature. Such a series of operations is generally performed a plurality of times.

【0021】多孔質セラミックス中空糸へのベーマイト
ゾルおよびシリカゾルの適用を段階的に行うことによ
り、多孔質セラミックス中空糸の膜外壁面上に約0.1〜5
μmの膜厚でγ-アルミナ薄膜が積層され、更にそのγ-
アルミナ薄膜上および薄膜層内に微細な多孔質シリカ層
が約0.1〜3μmの膜厚で多層積層された多孔質セラミッ
クス中空糸が得られる。
By gradually applying the boehmite sol and the silica sol to the porous ceramic hollow fiber, about 0.1 to 5
A γ-alumina thin film is laminated with a thickness of μm,
A porous ceramic hollow fiber is obtained in which a fine porous silica layer is laminated on the alumina thin film and in the thin film layer in a multilayer thickness of about 0.1 to 3 μm.

【0022】[0022]

【発明の効果】本発明方法では、γ-アルミナ薄膜およ
びシリカ層を多孔質セラミックス中空糸の外壁面側に形
成させているので、それの製造は容易であり、しかも得
られた多層薄膜積層多孔質セラミックス中空糸は、これ
を気体分離膜として用いたとき、大きな透過速度を維持
したまま、分離精度を著しく向上せしめている。
According to the method of the present invention, since the γ-alumina thin film and the silica layer are formed on the outer wall surface of the porous ceramic hollow fiber, the production thereof is easy, and the obtained multilayer thin film laminated porous film is easy to manufacture. When the porous ceramic hollow fiber is used as a gas separation membrane, the separation accuracy is remarkably improved while maintaining a high permeation speed.

【0023】[0023]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described with reference to examples.

【0024】実施例1 日産化学製品Alゾル200を等重量の蒸留水で希釈して調
製したベーマイトゾル中に、多孔質セラミックス中空糸
(平均細孔径0.15μm、気孔率40%、内径1.7mm、外径2.2m
m、長さ300mm)を低速モータを用いて、60mm/分の速度で
浸漬し、24mm/分の速度で引き上げた。その後、室温で1
2時間の乾燥および600℃で2時間焼成を行った。このよ
うな一連の操作を更にもう一度、合わせて2回行い、γ
-アルミナ薄膜積層多孔質セラミックス中空糸を得た。
この積層中空糸について、PEG混合水溶液で分画性能を
評価したところ、分画分子量が1000という結果が得られ
た。
Example 1 A porous ceramic hollow fiber was placed in a boehmite sol prepared by diluting Nissan Chemical's Al sol 200 with an equal weight of distilled water.
(Average pore diameter 0.15μm, porosity 40%, inner diameter 1.7mm, outer diameter 2.2m
m, 300 mm in length) was immersed at a speed of 60 mm / min using a low-speed motor and pulled up at a speed of 24 mm / min. Then 1 at room temperature
Drying for 2 hours and baking at 600 ° C. for 2 hours were performed. Such a series of operations is performed once more, twice in total, and γ
-An alumina thin film laminated porous ceramic hollow fiber was obtained.
When the fractionation performance of this laminated hollow fiber was evaluated using a PEG mixed aqueous solution, the result was that the molecular weight cut off was 1,000.

【0025】テトラエトキシシラン25g、エタノール37.
6g、36%塩酸0.3gおよび蒸留水23.5gを室温条件下で2時
間撹拌し、加水分解させて調製したシリカゾル中に、両
端をエポキシ樹脂で封止した上記積層中空糸を低速モー
タを用いて2.0mm/分の速度で浸漬し、1.6mm/分の速度で
引き上げた。その後、40℃、90%RHの恒温恒湿条件下で
の2時間の乾燥および500℃での5時間の焼成を行った。
このような一連の操作をサンプルA、BまたはCについ
てそれぞれ1回、2回または3回行い、下記の測定はそ
の都度行われた。
25 g of tetraethoxysilane, 37.
6 g, 0.3 g of 36% hydrochloric acid and 23.5 g of distilled water are stirred at room temperature for 2 hours, and the above-mentioned laminated hollow fiber sealed at both ends with an epoxy resin is prepared in a silica sol prepared by hydrolysis using a low-speed motor. It was immersed at a speed of 2.0 mm / min and pulled up at a speed of 1.6 mm / min. Thereafter, drying was performed for 2 hours under a constant temperature and humidity condition of 40 ° C. and 90% RH, and firing was performed at 500 ° C. for 5 hours.
Such a series of operations was performed once, twice or three times for the sample A, B or C, respectively, and the following measurement was performed each time.

【0026】即ち、得られた各サンプル(シリカ-γ-ア
ルミナ多層薄膜積層多孔質セラミックス中空糸)につい
て、H2およびN2のガス透過速度(単位:モル/m2・s・Pa)
を250℃で測定すると共に、それからH2/N2透過速度比を
算出した。得られた結果は、次の表1に示される。 表1 シリカゾル H2ガス N2ガス H2/N2 シリカ層 積層回数 透過速度 透過速度 透過速度比 膜厚(μm) 1回 サンプルA 6.30×10-7 3.47×10-8 15.25 0.5 〃 B 1.21×10-6 3.47×10-7 7.24 0.8 〃 C 1.26×10-6 1.93×10-7 6.53 0.8 2回 サンプルA 4.84×10-7 3.03×10-8 15.98 1.2 〃 B 9.82×10-7 7.33×10-8 13.40 1.1 〃 C 4.49×10-7 4.07×10-8 11.03 1.2 3回 サンプルA 5.76×10-7 1.74×10-8 33.19 1.6 〃 B 4.57×10-7 3.00×10-8 15.20 1.8 〃 C 6.93×10-7 6.68×10-8 10.37 1.5
That is, with respect to each of the obtained samples (silica-γ-alumina multilayer thin film laminated porous ceramic hollow fibers), the gas permeation rates of H 2 and N 2 (unit: mol / m 2 · s · Pa)
Was measured at 250 ° C. and the H 2 / N 2 transmission rate ratio was calculated therefrom. The results obtained are shown in Table 1 below. Table 1 Silica sol H 2 gas N 2 gas H 2 / N 2 Number of times of lamination of silica layer Permeation speed Permeation speed Permeability ratio Thickness (μm) One time Sample A 6.30 × 10 -7 3.47 × 10 -8 15.25 0.5 B B 1.21 × 10 -6 3.47 × 10 -7 7.24 0.8 〃 C 1.26 × 10 -6 1.93 × 10 -7 6.53 0.8 Sample A 4.84 × 10 -7 3.03 × 10 -8 15.98 1.2 B B 9.82 × 10 -7 7.33 × 10 -8 13.40 1.1 〃 C 4.49 × 10 -7 4.07 × 10 -8 11.03 1.2 3 samples A 5.76 × 10 -7 1.74 × 10 -8 33.19 1.6 B B 4.57 × 10 -7 3.00 × 10 -8 15.20 1.8 〃 C 6.93 × 10 -7 6.68 × 10 -8 10.37 1.5

【0027】実施例2 日産化学製品Alゾル500を等重量の蒸留水で希釈して調
製したベーマイトゾル中に、多孔質セラミックス中空糸
(平均細孔径0.15μm、気孔率40%、内径1.7mm、外径2.2m
m、長さ300mm)を低速モータを用いて、60mm/分の速度で
浸漬し、60mm/分の速度で引き上げた。その後、室温で1
2時間の乾燥および600℃で2時間焼成を行った。このよ
うな一連の操作を更にもう一度、合わせて2回行い、γ
-アルミナ薄膜積層多孔質セラミックス中空糸を得た。
この積層中空糸について、PEG混合水溶液で分画性能を
評価したところ、分画分子量が6000という結果が得られ
た。
Example 2 A porous ceramic hollow fiber was placed in a boehmite sol prepared by diluting Nissan Chemical's Al sol 500 with an equal weight of distilled water.
(Average pore diameter 0.15μm, porosity 40%, inner diameter 1.7mm, outer diameter 2.2m
m, 300 mm in length) was immersed at a speed of 60 mm / min using a low-speed motor and pulled up at a speed of 60 mm / min. Then 1 at room temperature
Drying for 2 hours and baking at 600 ° C. for 2 hours were performed. Such a series of operations is performed once more, twice in total, and γ
-An alumina thin film laminated porous ceramic hollow fiber was obtained.
When the fractionation performance of this laminated hollow fiber was evaluated using a PEG mixed aqueous solution, the result was that the fractional molecular weight was 6000.

【0028】テトラエトキシシラン25g、エタノール37.
6g、36%塩酸0.3gおよび蒸留水23.5gを室温条件下で2時
間撹拌し、加水分解させて調製したシリカゾル中に、両
端をエポキシ樹脂で封止した上記積層中空糸を低速モー
タを用いて2.0mm/分の速度で浸漬し、1.6mm/分の速度で
引き上げた。その後、40℃、90%RHの恒温恒湿条件下で
の2時間の乾燥および500℃での5時間の焼成を行った。
このような一連の操作をサンプルDまたはEについてそ
れぞれ4回または5回行い、下記の測定はその都度行わ
れた。
25 g of tetraethoxysilane, 37.
6 g, 0.3 g of 36% hydrochloric acid and 23.5 g of distilled water are stirred at room temperature for 2 hours, and the above-mentioned laminated hollow fiber sealed at both ends with an epoxy resin is prepared in a silica sol prepared by hydrolysis using a low-speed motor. It was immersed at a speed of 2.0 mm / min and pulled up at a speed of 1.6 mm / min. Thereafter, drying was performed for 2 hours under a constant temperature and humidity condition of 40 ° C. and 90% RH, and firing was performed at 500 ° C. for 5 hours.
Such a series of operations was performed four or five times for the sample D or E, respectively, and the following measurement was performed each time.

【0029】即ち、得られた各サンプル(シリカ-γ-ア
ルミナ多層薄膜積層多孔質セラミックス中空糸)につい
て、H2およびN2のガス透過速度(単位:モル/m2・s・Pa)
を250℃で測定すると共に、それからH2/N2透過速度比を
算出した。得られた結果は、次の表2に示される。 表2 シリカゾル H2ガス N2ガス H2/N2 シリカ層 積層回数 透過速度 透過速度 透過速度比 膜厚(μm) 4回 サンプルD 8.23×10-7 1.84×10-8 44.69 1.9 〃 E 8.01×10-7 1.21×10-8 66.04 2.1 5回 サンプルD 1.19×10-7 3.33×10-9 35.79 2.9 〃 E 6.41×10-7 5.53×10-9 115.88 2.5
That is, for each of the obtained samples (silica-γ-alumina multilayer thin film laminated porous ceramic hollow fiber), the gas permeation rate of H 2 and N 2 (unit: mol / m 2 · s · Pa)
Was measured at 250 ° C. and the H 2 / N 2 transmission rate ratio was calculated therefrom. The results obtained are shown in Table 2 below. Table 2 Silica sol H 2 gas N 2 gas H 2 / N 2 silica layer lamination number Permeation speed Permeation speed Permeation speed specific film thickness (μm) 4 times Sample D 8.23 × 10 -7 1.84 × 10 -8 44.69 1.9 〃 E 8.01 × 10 -7 1.21 × 10 -8 66.04 2.1 5 times Sample D 1.19 × 10 -7 3.33 × 10 -9 35.79 2.9 E E 6.41 × 10 -7 5.53 × 10 -9 115.88 2.5

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 67/00 - 71/82 510 B01D 53/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01D 67/00-71/82 510 B01D 53/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質セラミックス中空糸をベーマイト
ゾル中に浸漬し、乾燥させて焼成した後、その両端部を
封止した状態でシリカゾル中に浸漬し、乾燥させて焼成
することを特徴とする多層薄膜積層多孔質セラミックス
中空糸の製造法。
1. A porous ceramic hollow fiber is immersed in a boehmite sol, dried and fired, then immersed in a silica sol with both ends sealed, dried and fired. A method for producing a porous ceramic hollow fiber laminated with a multilayer thin film.
【請求項2】 請求項1の方法で製造された多層薄膜積
層多孔質セラミックス中空糸よりなる気体分離膜。
2. A gas separation membrane comprising a multilayer thin film laminated porous ceramic hollow fiber produced by the method of claim 1.
JP30167094A 1994-03-31 1994-11-11 Method for producing porous ceramic hollow fiber laminated with multilayer thin film Expired - Fee Related JP3358350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30167094A JP3358350B2 (en) 1994-03-31 1994-11-11 Method for producing porous ceramic hollow fiber laminated with multilayer thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8578294 1994-03-31
JP6-85782 1994-03-31
JP30167094A JP3358350B2 (en) 1994-03-31 1994-11-11 Method for producing porous ceramic hollow fiber laminated with multilayer thin film

Publications (2)

Publication Number Publication Date
JPH07313853A JPH07313853A (en) 1995-12-05
JP3358350B2 true JP3358350B2 (en) 2002-12-16

Family

ID=26426786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30167094A Expired - Fee Related JP3358350B2 (en) 1994-03-31 1994-11-11 Method for producing porous ceramic hollow fiber laminated with multilayer thin film

Country Status (1)

Country Link
JP (1) JP3358350B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0106478D0 (en) * 2001-03-16 2001-05-02 Univ Robert Gordon Apparatus and method
KR100454089B1 (en) * 2002-01-11 2004-10-26 한국화학연구원 Gas molecular sieve type porous ceramic membrane and and its preparing method
KR100460450B1 (en) * 2002-10-04 2004-12-08 한국화학연구원 Preparation of the silica composite membranes with thermal stability by Soaking-Rolling method
WO2007037562A1 (en) * 2005-09-28 2007-04-05 Korea Research Institute Of Chemical Technology Water vapor selective composite membrane and its preparing method
CN112999896B (en) * 2021-03-11 2023-12-22 西西埃热能(南京)有限公司 Boehmite modified adsorption film and preparation method and application thereof

Also Published As

Publication number Publication date
JPH07313853A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JP5426367B2 (en) Ceramic porous membrane and ceramic filter
JPWO2005087356A1 (en) Separation membrane
AU2007310057B2 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
EP0320033A1 (en) Composite ceramic micropermeable membrane, process and apparatus for producing such membrane
US5186833A (en) Composite metal-ceramic membranes and their fabrication
EP2258465A1 (en) Ceramic filter
JP2012040549A (en) Silica membrane and method for manufacturing the same
WO2013129625A1 (en) Ceramic separation membrane and dehydration method
WO2013042262A1 (en) Method for producing carbon film
JP3358350B2 (en) Method for producing porous ceramic hollow fiber laminated with multilayer thin film
JP2001276586A (en) Gas separation membrane and its production method
JP2009241054A (en) Method for manufacturing of ceramic filter
JP2946364B2 (en) Manufacturing method of porous alumina hollow fiber laminated with thin film
JP3358282B2 (en) Manufacturing method of thin film laminated porous ceramic hollow fiber
JP5897334B2 (en) Method for producing silica film
JP4960286B2 (en) Method for producing nanofiltration membrane
JPH01281119A (en) Glass-ceramic-type filtration material and its manufacture
JP2946925B2 (en) Manufacturing method of porous ceramic hollow fiber whose end is impregnated and sealed
JP5148044B2 (en) Porous substrate
JP2001212401A (en) Liquid separation filter and liquid separation method using the same
JP5360015B2 (en) Filter material
JPH0647261A (en) Production of ceramic ultrafilter membrane
JPH0557162A (en) Preparation of hollow fiber of thin film laminated porous alumina
JP3431083B2 (en) Thin film lamination method
JPH0857276A (en) Production of inorganic separation membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees