JPH11300182A - Production of hydrogen separation membrane and its producing equipment - Google Patents

Production of hydrogen separation membrane and its producing equipment

Info

Publication number
JPH11300182A
JPH11300182A JP12396498A JP12396498A JPH11300182A JP H11300182 A JPH11300182 A JP H11300182A JP 12396498 A JP12396498 A JP 12396498A JP 12396498 A JP12396498 A JP 12396498A JP H11300182 A JPH11300182 A JP H11300182A
Authority
JP
Japan
Prior art keywords
film
source material
carrier
hydrogen separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12396498A
Other languages
Japanese (ja)
Inventor
Hirokata Mizuta
裕賢 水田
Shigeo Akiyama
重雄 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP12396498A priority Critical patent/JPH11300182A/en
Publication of JPH11300182A publication Critical patent/JPH11300182A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the film forming range to form a Pd film in a reactor in the process of sublimating a Pd film source material and forming the Pd film on a film carrier body through pyrolysis in the film forming range, by using a carrier gas flowing the film forming range and supplying the sublimated Pd film source material to the film forming range. SOLUTION: As the film carrier body, a porous ceramic hollow plate is used. When a hydrogen separation membrane is to be produced, a porous ceramic hollow fiber 2 is fixed in a reactor tube 1 and the inside of the hollow fiber 2 is continuously evacuated by a vacuum pump 3. When the inner pressure of the reaction tube 1 and the hollow fiber 2 reaches a specified vacuum degree, a carrier gas is supplied from a gas supplying device 9 to the reactor tube 1 through a gas inlet 7 and a flow controller 8. After a Pd film source material 12 in the reactor tube 1 is heated to the sublimation temp. in the source part 10 of a heater, the temp. of the film forming part 11 of the heater is increased to the film forming temp. While the Pd film source material 12 is supplied by the carrier gas to the film forming range 4 of the hollow fiber 2 to form a Pd film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、水素分離膜の製造
方法及びその製造装置に関する。さらに詳しくは反応器
内におけるPd膜化またはPd系合金膜化が可能となる
製膜範囲を拡大して大面積な水素分離膜を製造する技術
に関する。
The present invention relates to a method for producing a hydrogen separation membrane and an apparatus for producing the same. More specifically, the present invention relates to a technique for manufacturing a large-area hydrogen separation membrane by expanding a film formation range in which a Pd film or a Pd-based alloy film can be formed in a reactor.

【0002】[0002]

【従来の技術】水素の高純度精製用膜として、Pd−A
g合金膜が知られており(Sep.Sci.Techn
ol.第22巻873〜887頁,1987年)、既に
実用化もされている。
2. Description of the Related Art Pd-A is used as a membrane for purifying hydrogen with high purity.
g alloy films are known (Sep. Sci. Techn.
ol. Vol. 22, pages 873-887, 1987).

【0003】このような水素分離用Pd系合金膜は、従
来合金単独で中空状に作られており、従ってその加工性
や強度上の制約から外径が1.6mmのもので膜厚が約
80μm程度が限界であり、水素透過速度は膜厚に逆比
例するため、水素透過速度が遅いという問題がみられ
た。
[0003] Such a Pd-based alloy membrane for hydrogen separation is conventionally made of a single alloy in a hollow shape, and therefore has an outer diameter of 1.6 mm and a thickness of about 1.6 mm due to limitations in workability and strength. The limit is about 80 μm, and the hydrogen permeation rate is inversely proportional to the film thickness.

【0004】その対策として、多孔質アルミナチューブ
表面に化学メッキ法でPd系合金膜を形成させる方法が
提案されているが(J.Memb.Sci.第56巻3
03〜315頁,1991年)、膜厚については4.5
〜6.4μmと改善されているものの未だ厚く、しかも
膜形成プロセスが複雑で工程が多いという難点が見られ
る。
As a countermeasure, a method of forming a Pd-based alloy film on the surface of a porous alumina tube by a chemical plating method has been proposed (J. Memb. Sci. Vol. 56, No. 3).
03-315, 1991), and the film thickness is 4.5.
Although it is improved to about 6.4 μm, it is still thick, and the film forming process is complicated and has many drawbacks.

【0005】そこで、同じ出願人による特願平5−25
5004号(特開平7−136477号公報)において
は、Pd系薄膜を多孔体の細孔内に形成するために、低
温金属有機物化学的気相成長法(MOCVD法)が使用
されている。
[0005] Accordingly, Japanese Patent Application No. Hei.
In Japanese Patent Application Laid-Open No. 5004 (JP-A-7-136577), a low-temperature metal organic chemical vapor deposition (MOCVD) method is used to form a Pd-based thin film in the pores of a porous body.

【0006】このMOCVD法は、多孔質セラミックス
膜の両側に圧力差を設け、昇華・拡散させたPd膜源ま
たはPd系合金膜源を多孔質セラミックス膜の細孔内に
吸引しながら細孔内でPd膜化またはPd系合金膜化さ
せることにより、水素分離膜を形成するものである。
In this MOCVD method, a pressure difference is provided on both sides of a porous ceramic film, and a sublimated / diffused Pd film source or a Pd-based alloy film source is sucked into the pores of the porous ceramic film while being drawn into the pores. The hydrogen separation film is formed by forming a Pd film or a Pd-based alloy film in the above.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記した
従来のMOCVD法による、Pd膜またはPd系合金膜
は、製膜プロセスを、主にPd膜源またはPd系合金膜
源の拡散により製膜位置へと移動した膜源の熱分解によ
り行なうので、反応器内においてPd膜源の製膜位置へ
の移送が不十分な場合がある。
However, the Pd film or Pd-based alloy film formed by the conventional MOCVD method described above is subjected to a film-forming process mainly at a film-forming position by diffusion of a Pd film source or a Pd-based alloy film source. Therefore, the transfer of the Pd film source to the film forming position in the reactor may be insufficient.

【0008】また、Pd膜源またはPd系合金膜源の昇
華・拡散と、製膜位置における熱分解を同じ熱源で行な
うため、それぞれの温度制御の最適化が困難であり、製
膜位置における効果的な熱分解がなされない場合があ
る。
Further, since sublimation / diffusion of the Pd film source or Pd-based alloy film source and thermal decomposition at the film forming position are performed by the same heat source, it is difficult to optimize the respective temperature control, and the effect at the film forming position is difficult. Thermal decomposition may not be performed.

【0009】従って、上記のような現象により、結果的
に反応器内の非常に狭い領域でのみしか良好な製膜プロ
セスが得られず、製膜範囲が10mm程度と小さいとい
う問題がある。
Therefore, due to the above-mentioned phenomena, as a result, a satisfactory film forming process can be obtained only in a very narrow region in the reactor, and there is a problem that the film forming range is as small as about 10 mm.

【0010】本発明は上記従来技術の問題を解決するた
めになされたもので、その目的とするところは、反応器
内におけるPd膜化が可能となる製膜範囲を拡大し、大
面積化を可能とする水素分離膜の製造方法及びその装置
を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to expand a film forming range in which a Pd film can be formed in a reactor and to increase the area. It is an object of the present invention to provide a method for producing a hydrogen separation membrane and an apparatus therefor.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の水素分離膜の製造方法にあっては、反応器
の内部にPd膜源物質と膜担持体とを配置し、前記Pd
膜源物質を昇華させると共に製膜範囲における熱分解に
より、前記膜担持体にPd膜を製膜する水素分離膜の製
造方法において、前記Pd膜源物質の配置位置から膜担
持体の配置された製膜範囲へ向かって流れるキャリヤー
ガスによって、前記昇華したPd膜源物質を製膜範囲へ
供給することを特徴とする。
Means for Solving the Problems In order to achieve the above object, in a method for producing a hydrogen separation membrane according to the present invention, a Pd membrane source material and a membrane carrier are arranged inside a reactor, Pd
In the method for producing a hydrogen separation membrane in which a Pd film is formed on the film carrier by sublimating the film source material and thermally decomposing in the film forming range, the film carrier is disposed from the position where the Pd film source material is disposed. The sublimated Pd film source material is supplied to the film formation region by a carrier gas flowing toward the film formation region.

【0012】従って、昇華したPd膜源物質を製膜範囲
へ強制的に供給することができ、製膜範囲を拡大するこ
とができる。
Therefore, the sublimated Pd film source material can be forcibly supplied to the film forming range, and the film forming range can be expanded.

【0013】また、反応器の内部にPd膜源物質と膜担
持体とを配置し、前記Pd膜源物質を昇華させると共に
製膜範囲における熱分解により、前記膜担持体にPd膜
を製膜する水素分離膜の製造方法において、前記Pd膜
源物質を配置した位置の温度と、前記製膜範囲の温度を
それぞれ独立的に制御することによって、Pd膜源物質
の配置位置における昇華と製膜範囲における熱分解とを
同時に行なうことを特徴とする。
Further, a Pd film source material and a film carrier are disposed inside the reactor, and the Pd film source material is sublimated and a Pd film is formed on the film carrier by thermal decomposition in a film forming range. In the method for producing a hydrogen separation membrane, the temperature of the position where the Pd film source material is arranged and the temperature of the film formation range are independently controlled, so that sublimation and film formation at the position where the Pd film source material is arranged are performed. And simultaneously performing pyrolysis in the range.

【0014】従って、Pd膜源物質の昇華・拡散と、製
膜位置における熱分解の温度制御をより最適に行なうこ
とができ、製膜位置における効果的な熱分解が行なわ
れ、製膜範囲を拡大することができる。
Therefore, the sublimation / diffusion of the Pd film source material and the temperature control of the thermal decomposition at the film forming position can be more optimally performed, and the effective thermal decomposition at the film forming position is performed, and the film forming range is reduced. Can be expanded.

【0015】また、反応器の内部にPd膜源物質と膜担
持体とを配置し、前記Pd膜源物質を昇華させると共に
製膜範囲における熱分解により、前記膜担持体にPd膜
を製膜する水素分離膜の製造方法において、前記Pd膜
源物質の配置位置から膜担持体の配置された製膜範囲へ
向かって流れるキャリヤーガスによって、前記昇華した
Pd膜源物質を製膜範囲へ供給すると共に、前記Pd膜
源物質を配置した位置の温度と、前記製膜範囲の温度を
それぞれ独立的に制御することによって、Pd膜源物質
の配置位置における昇華と製膜範囲における熱分解とを
同時に行なうことを特徴とする。
Further, a Pd film source material and a film carrier are disposed inside the reactor, and the Pd film source material is sublimated and a Pd film is formed on the film carrier by thermal decomposition in a film forming range. In the method for producing a hydrogen separation membrane, the sublimated Pd film source material is supplied to the film formation region by a carrier gas flowing from the position of the Pd film source material toward the film formation region where the membrane support is disposed. At the same time, by independently controlling the temperature at the position where the Pd film source material is arranged and the temperature of the film formation range, sublimation at the position where the Pd film source material is arranged and thermal decomposition in the film formation range are simultaneously performed. It is characterized by performing.

【0016】前記膜担持体は膜状の多孔体であり、膜の
両側に圧力差を設け、昇華させた前記Pd膜源を多孔体
の細孔内に吸引しながら該細孔内でPd膜化させること
も好適である。
The film carrier is a film-like porous material, and a pressure difference is provided on both sides of the film, and the sublimated Pd film source is sucked into the pores of the porous material while the Pd film is formed in the pores. It is also preferable to make it.

【0017】水素分離膜の製造装置にあっては、Pd膜
源物質と膜担持体とを内部に配置可能とし、真空排気装
置を接続した反応器と、それぞれ独立に温度制御可能で
あり、前記Pd膜源物質を昇華させるためにPd膜源物
質の配置位置を加熱する第1の加熱手段と、昇華したP
d膜源物質を熱分解させるために膜担持体の配置された
製膜範囲を加熱する第2の加熱手段と、前記昇華したP
d膜源物質を製膜範囲へ供給するために前記反応器のP
d膜源物質の配置位置から膜担持体の配置された製膜範
囲へ向かって流れるキャリヤーガスを供給するガス供給
手段と、を備えたことを特徴とする。
In the apparatus for producing a hydrogen separation membrane, the Pd membrane source material and the membrane support can be arranged inside, and the temperature can be controlled independently from the reactor connected to the vacuum exhaust device. First heating means for heating the arrangement position of the Pd film source material to sublimate the Pd film source material;
d. a second heating means for heating a film forming area in which the film carrier is disposed in order to thermally decompose the film source material;
d to feed the membrane source material to the deposition zone
d. gas supply means for supplying a carrier gas flowing from the position where the film source material is disposed to the film forming area where the film carrier is disposed.

【0018】Pd膜源としては、熱分解によりPdを生
成するものが用いられ、例えば酢酸パラジウム,塩化パ
ラジウム,硝酸パラジウムなどの金属塩や、金属塩以外
のパラジウムアセトナート等の有機金属等も用いること
ができる。
As the Pd film source, one that generates Pd by thermal decomposition is used. For example, metal salts such as palladium acetate, palladium chloride and palladium nitrate, and organic metals such as palladium acetonate other than metal salts are also used. be able to.

【0019】さらに、Ag,Au,Pt,Rh,Ru,
Ir,Ta,Nb,V,Zr,Ni等と合金化してもよ
く、その場合にはそれらの金属源として、金属塩等のう
ち熱分解でそれぞれの金属を生成するものが使用され
る。その際、Pd源と熱分解温度の近いものを用いるこ
とが好ましい。
Further, Ag, Au, Pt, Rh, Ru,
It may be alloyed with Ir, Ta, Nb, V, Zr, Ni, or the like. In such a case, a metal salt or the like that generates each metal by thermal decomposition is used as a metal source. At that time, it is preferable to use a material having a thermal decomposition temperature close to that of the Pd source.

【0020】また、製膜に用いる膜担持体の形態につい
ての限定はないが、膜状の多孔体であることが好まし
く、アルミナ,シリカ,ジルコニア等の多孔質セラミッ
クスあるいはこれらの複合物または混合物から形成され
た多孔体、多孔質ガラス、金属多孔体を例示できる。
Although there is no limitation on the form of the film carrier used for the film formation, it is preferably a film-like porous body, and is preferably made of a porous ceramic such as alumina, silica, zirconia, or a composite or mixture thereof. Examples of the formed porous body, porous glass, and metal porous body can be given.

【0021】多孔体の平均細孔径は、5〜5000nm
好ましくは50〜500nmのものが用いられる。
The average pore diameter of the porous body is 5 to 5000 nm.
Preferably, those having a thickness of 50 to 500 nm are used.

【0022】膜担持体の形状は、中空状の他にフィルム
状及びシート状のものなども用いることが可能である。
The shape of the film carrier may be a film, a sheet or the like in addition to a hollow shape.

【0023】水素分離膜の製造装置としては、少なくと
も真空排気装置を接続したガス気密性を有する反応器、
独立して制御可能な第1及び第2の加熱手段、キャリヤ
ーガスを供給するガス供給手段とを備えている。
As a hydrogen separation membrane manufacturing apparatus, a gas-tight reactor connected to at least an evacuation unit,
Independently controllable first and second heating means and gas supply means for supplying a carrier gas are provided.

【0024】反応器の形状としては、特に限定されるも
のではなく、例えば管形状、球形状や角形状およびこれ
らを組み合わせたものを用いることができる。反応器の
内部は、Pd膜源物質を配置する領域と、膜担持体の配
置された製膜範囲との2領域を備えている。この2領域
は隣接させて配置している方が好ましい。
The shape of the reactor is not particularly limited, and for example, a tubular shape, a spherical shape, a square shape, and a combination thereof can be used. The inside of the reactor is provided with two regions, a region where a Pd film source material is arranged, and a film formation range where a film carrier is arranged. These two regions are preferably arranged adjacent to each other.

【0025】第1及び第2の加熱手段は、それぞれPd
膜源物質を配置する領域と、膜担持体の配置された製膜
範囲との2領域を独立して温度制御を伴う加熱を可能と
する構成となっているものであれば良く、形状も任意で
ありまた形態は分離型あるいは一体型のどちらでも良
い。
The first and second heating means are each composed of Pd
It is sufficient that the two regions, that is, the region where the film source material is arranged and the film forming region where the film carrier is arranged, are configured to enable heating with temperature control independently. The form may be either a separated type or an integrated type.

【0026】加熱手段としては、電気的な抵抗加熱の
他、ランプ加熱、誘導加熱、あるいはこれらを組み合わ
せて使用することができる。
As the heating means, besides electric resistance heating, lamp heating, induction heating, or a combination thereof can be used.

【0027】ガス供給手段としては、一定させた所定の
流量で反応器内部に供給可能とするものであれば良く、
通常ガスボンベに流量制御器を備えたものが用いられ
る。
The gas supply means may be any as long as it can supply gas into the reactor at a fixed, predetermined flow rate.
Usually, a gas cylinder equipped with a flow controller is used.

【0028】真空排気装置としては、ガスを流さない状
態で反応器内部が1000Pa、好ましくは100Pa
以下となるようなものであれば良く、2台以上接続され
るものでも構わない。また、通常は圧力調整弁等により
反応器内部は一定圧力に制御される。
As for the vacuum evacuation device, the inside of the reactor is 1000 Pa, preferably 100 Pa
What is necessary is as follows, and two or more units may be connected. Usually, the inside of the reactor is controlled to a constant pressure by a pressure regulating valve or the like.

【0029】[0029]

【発明の実施の形態】以下に、本発明による水素分離膜
の製造方法及び製造装置を図示された実施の形態により
説明する。図1は、膜担持体として多孔質セラミックス
中空糸を用いた場合の、水素分離膜の製造を行なう製造
装置の概略構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method and an apparatus for producing a hydrogen separation membrane according to the present invention will be described with reference to the illustrated embodiments. FIG. 1 is a schematic configuration diagram of a manufacturing apparatus for manufacturing a hydrogen separation membrane when a porous ceramic hollow fiber is used as a membrane support.

【0030】反応器としての反応管1の内部に、多孔質
セラミックス中空糸2をOリング等で気密固定し、この
多孔質セラミックス中空糸2の内部を真空ポンプ3で連
続的に排気する。
The porous ceramic hollow fiber 2 is hermetically fixed inside the reaction tube 1 as an reactor with an O-ring or the like, and the inside of the porous ceramic hollow fiber 2 is continuously evacuated by the vacuum pump 3.

【0031】ここで、多孔質セラミックス中空糸2の製
膜範囲4以外の部分は、ガラス(例えば、Na2 O−B
23 −SiO2 系ガラス)で気密封止される。また、
反応管1の内部も真空ポンプ3でで排気され、これら反
応管1及び多孔質セラミックス中空糸2の内部圧力は、
真空計5によってそれぞれ測定され、圧力調整弁6によ
り制御される。
Here, the portion of the porous ceramic hollow fiber 2 other than the film forming range 4 is made of glass (for example, Na 2 O—B
It is hermetically sealed with 2 O 3 -SiO 2 based glass). Also,
The inside of the reaction tube 1 is also evacuated by the vacuum pump 3, and the internal pressure of the reaction tube 1 and the porous ceramic hollow fiber 2 becomes
Each is measured by a vacuum gauge 5 and controlled by a pressure regulating valve 6.

【0032】反応管1内部には、ガス導入口7から流量
制御器8を通してガス供給器9からキャリヤーガスを供
給する。反応管1及び多孔質セラミックス中空糸2の内
部圧力は、キャリヤーガスの流量や真空ポンプ3の排気
量等によって異なるため、一概に特定することができな
いが、一般的には反応管1の内部圧力は20〜2000
Pa、多孔質セラミックス中空糸2の内部圧力は1〜5
00Paに保たれる。キャリヤーガスは、図1において
Pd膜源物質12から多孔質セラミックス中空糸2の製
膜範囲4へと向かう流れを形成している。
Into the reaction tube 1, a carrier gas is supplied from a gas supply 9 through a gas inlet 7 through a flow controller 8. The internal pressure of the reaction tube 1 and the porous ceramic hollow fiber 2 cannot be specified unconditionally because it varies depending on the flow rate of the carrier gas, the displacement of the vacuum pump 3, and the like. Is 20-2000
Pa, the internal pressure of the porous ceramic hollow fiber 2 is 1 to 5
00Pa is maintained. The carrier gas forms a flow from the Pd film source material 12 toward the film forming area 4 of the porous ceramic hollow fiber 2 in FIG.

【0033】反応管1は、原料部10及び製膜部11の
少なくとも2つ以上に分割された加熱器により、それぞ
れ独立に温度制御される。
The temperature of the reaction tube 1 is independently controlled by a heater divided into at least two or more of a raw material section 10 and a film forming section 11.

【0034】多孔質セラミックス中空糸2の製膜範囲4
は、加熱器の製膜部11に配置され、Pd膜源物質12
(またはPd合金膜源物質)の熱分解温度以下に保たれ
た反応管1内に置かれたPd膜源物質12は、加熱器の
原料部10によって昇華温度まで加熱される。
The range 4 for forming the porous ceramic hollow fiber 2
Is disposed in the film forming unit 11 of the heater, and the Pd film source material 12
The Pd film source material 12 placed in the reaction tube 1 kept at or below the thermal decomposition temperature of the (or Pd alloy film source material) is heated to the sublimation temperature by the raw material section 10 of the heater.

【0035】Pd膜源物質12の昇華に伴って、反応管
1内の圧力増加が観測されたら、加熱器の製膜部11を
200〜500℃の製膜温度まで急速に昇温させ、反応
管1内部を製膜温度とする。
When an increase in the pressure inside the reaction tube 1 is observed with the sublimation of the Pd film source material 12, the film forming part 11 of the heater is rapidly heated to a film forming temperature of 200 to 500 ° C. The inside of the tube 1 is set to a film forming temperature.

【0036】昇華したPd膜源物質12はキャリヤーガ
スの流れにより製膜範囲4へと強制的に供給され、この
製膜温度で1〜3時間保持すると、熱分解で生じたPd
またはPd合金は、多孔質セラミックス中空糸2の外表
面および外表面の細孔内に担持され、Pd膜またはPd
合金膜が形成される。
The sublimated Pd film source material 12 is forcibly supplied to the film forming area 4 by the flow of the carrier gas, and when the film forming temperature is maintained for 1 to 3 hours, Pd generated by the thermal decomposition
Alternatively, the Pd alloy is supported on the outer surface of the porous ceramic hollow fiber 2 and in the pores on the outer surface, and a Pd film or Pd film is formed.
An alloy film is formed.

【0037】[0037]

【実施例】上記実施の形態の製造装置を以下に詳述され
るように設定して水素分離膜の製造を行なった。
EXAMPLES The production apparatus of the above embodiment was set as described below in detail to produce a hydrogen separation membrane.

【0038】多孔質セラミックス中空糸2としては、長
さ100mm,外径2.0mm,内径1.7mm,平均
細孔径150nm,気孔率38%の多孔質アルミナ中空
糸を使用し、Pd膜源物質12としては酢酸パラジウム
を使用した。
As the porous ceramic hollow fiber 2, a porous alumina hollow fiber having a length of 100 mm, an outer diameter of 2.0 mm, an inner diameter of 1.7 mm, an average pore diameter of 150 nm, and a porosity of 38% is used. As palladium acetate 12, was used.

【0039】反応管1は、長さ400mm,内径85m
mのステンレス管を使用し、加熱器は、長さ350mm
の抵抗加熱方式の電気炉を原料部10と製膜部11の2
つに分割し、それぞれ独立に温度制御を行なった。
The reaction tube 1 has a length of 400 mm and an inner diameter of 85 m.
m stainless steel tube, heater is 350mm long
The electric furnace of the resistance heating method is used for the raw material part 10 and the film forming part 11
The temperature was controlled independently.

【0040】まず、反応管を排気しながらキャリヤーガ
スとしてアルゴンガスを18cm/sで流し、多孔質ア
ルミナ中空糸内も同時に排気することにより、反応管内
を約200〜700Paの圧力に、また多孔質アルミナ
中空糸内を約100〜200Paの圧力にそれぞれ制御
した。
First, an argon gas was flowed at 18 cm / s as a carrier gas while the reaction tube was evacuated, and the inside of the porous alumina hollow fiber was simultaneously evacuated. The pressure in the alumina hollow fiber was controlled to about 100 to 200 Pa, respectively.

【0041】原料部10を200℃、膜担持体となる多
孔質アルミナ中空糸を205℃までゆっくり昇温して保
持しておき、反応管内の圧力増加が観測され始めたら製
膜部11を製膜温度300℃まで10℃/min以上で
急速に昇温し、そのまま製膜温度で2時間保持した。
The raw material section 10 is kept at 200 ° C. and the porous alumina hollow fiber serving as a membrane support is slowly heated to 205 ° C. and held, and when an increase in the pressure inside the reaction tube starts to be observed, the film forming section 11 is formed. The temperature was rapidly raised to a film temperature of 300 ° C. at a rate of 10 ° C./min or more, and kept at the film forming temperature for 2 hours.

【0042】膜の性能は、水素の透過速度、及び窒素に
対する水素の透過速度の比である水素選択性で評価し、
透過速度の定量にはガスクロマトグラフを用いた。得ら
れたPd膜の300℃での透過性能は、表1に示される
ような結果であった。
The performance of the membrane was evaluated by hydrogen permeation rate and hydrogen selectivity, which is the ratio of hydrogen permeation rate to nitrogen.
A gas chromatograph was used to determine the permeation rate. The permeation performance at 300 ° C. of the obtained Pd film was as shown in Table 1.

【0043】(比較例1)比較例1として、アルゴンガ
スを供給せずに、その他は実施例と同じ方法で製膜して
得られたPd膜の300℃での透過性能を表2に示し
た。
Comparative Example 1 As Comparative Example 1, Table 2 shows the permeation performance at 300 ° C. of a Pd film obtained by forming a film in the same manner as in the example except that argon gas was not supplied. Was.

【0044】(比較例2)比較例2として、加熱器を1
つにして原料部と製膜部の温度制御を一緒に行ない、そ
の他は実施例と同じ方法で製膜して得られたPd膜の3
00℃での透過性能を表3に示した。
Comparative Example 2 As Comparative Example 2, the heater was 1
Then, the temperature of the raw material part and the film forming part are controlled together, and other than that, the Pd film obtained by forming a film in the same manner as in the example is used.
Table 3 shows the transmission performance at 00 ° C.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 表1〜3の結果より、本発明を適用した製膜方法では、
膜の性能(水素選択性が高い)を維持したまま膜の大面
積化を達成することが可能となる。
[Table 3] From the results of Tables 1 to 3, in the film forming method to which the present invention is applied,
It is possible to increase the area of the membrane while maintaining the performance of the membrane (high hydrogen selectivity).

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
反応器内におけるPd膜化またはPd系合金膜化が可能
となる製膜範囲を拡大し、大面積化を可能とする水素分
離膜の製造方法及びその装置が得られる。
As described above, according to the present invention,
A method for producing a hydrogen separation membrane and a device for producing a hydrogen separation membrane capable of enlarging a film formation range capable of forming a Pd film or a Pd-based alloy film in a reactor and increasing the area can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施の形態に係る製造装置の概
略構成を説明する図。
FIG. 1 is a diagram illustrating a schematic configuration of a manufacturing apparatus according to an embodiment of the present invention.

【符号の説明】 1 反応管 2 多孔質アルミナ中空糸(膜担持体) 3 真空ポンプ 4 製膜範囲 5 真空計 6 圧力調整弁 7 ガス導入孔 8 流量制御器 9 ガス供給器 10 加熱器の原料部 11 加熱器の製膜部 12 Pd膜源物質[Description of Signs] 1 Reaction tube 2 Porous alumina hollow fiber (membrane carrier) 3 Vacuum pump 4 Film forming range 5 Vacuum gauge 6 Pressure control valve 7 Gas introduction hole 8 Flow controller 9 Gas supply device 10 Raw material for heater Part 11 Film forming part of heater 12 Pd film source material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 反応器の内部にPd膜源物質と膜担持体
とを配置し、前記Pd膜源物質を昇華させると共に製膜
範囲における熱分解により、前記膜担持体にPd膜を製
膜する水素分離膜の製造方法において、 前記Pd膜源物質の配置位置から膜担持体の配置された
製膜範囲へ向かって流れるキャリヤーガスによって、前
記昇華したPd膜源物質を製膜範囲へ供給することを特
徴とする水素分離膜の製造方法。
1. A Pd film source material and a film carrier are disposed inside a reactor, and a Pd film is formed on the film carrier by sublimation of the Pd film source material and thermal decomposition in a film forming range. In the method for producing a hydrogen separation membrane, the sublimated Pd film source material is supplied to the film formation region by a carrier gas flowing from the position where the Pd film source material is arranged to the film formation region where the membrane support is arranged. A method for producing a hydrogen separation membrane, comprising:
【請求項2】 反応器の内部にPd膜源物質と膜担持体
とを配置し、前記Pd膜源物質を昇華させると共に製膜
範囲における熱分解により、前記膜担持体にPd膜を製
膜する水素分離膜の製造方法において、 前記Pd膜源物質を配置した位置の温度と、前記製膜範
囲の温度をそれぞれ独立的に制御することによって、P
d膜源物質の配置位置における昇華と製膜範囲における
熱分解とを同時に行なうことを特徴とする水素分離膜の
製造方法。
2. A Pd film source material and a film carrier are disposed inside a reactor, and a Pd film is formed on the film carrier by sublimation of the Pd film source material and thermal decomposition in a film forming range. In the method for producing a hydrogen separation membrane, the temperature of the position where the Pd film source material is disposed and the temperature of the film formation range are controlled independently of each other.
d. A method for producing a hydrogen separation membrane, comprising simultaneously performing sublimation at an arrangement position of a membrane source material and thermal decomposition in a film formation range.
【請求項3】 反応器の内部にPd膜源物質と膜担持体
とを配置し、前記Pd膜源物質を昇華させると共に製膜
範囲における熱分解により、前記膜担持体にPd膜を製
膜する水素分離膜の製造方法において、 前記Pd膜源物質の配置位置から膜担持体の配置された
製膜範囲へ向かって流れるキャリヤーガスによって、前
記昇華したPd膜源物質を製膜範囲へ供給すると共に、 前記Pd膜源物質を配置した位置の温度と、前記製膜範
囲の温度をそれぞれ独立的に制御することによって、P
d膜源物質の配置位置における昇華と製膜範囲における
熱分解とを同時に行なうことを特徴とする水素分離膜の
製造方法。
3. A Pd film source material and a film carrier are disposed inside a reactor, and a Pd film is formed on the film carrier by sublimation of the Pd film source material and thermal decomposition in a film forming range. In the method for producing a hydrogen separation membrane, the sublimated Pd film source material is supplied to the film formation region by a carrier gas flowing from the position where the Pd film source material is arranged to the film formation region where the membrane support is disposed. In addition, by independently controlling the temperature at the position where the Pd film source material is disposed and the temperature within the film formation range,
d. A method for producing a hydrogen separation membrane, comprising simultaneously performing sublimation at an arrangement position of a membrane source material and thermal decomposition in a film formation range.
【請求項4】 前記膜担持体は膜状の多孔体であり、膜
の両側に圧力差を設け、昇華させた前記Pd膜源を多孔
体の細孔内に吸引しながら該細孔内でPd膜化させるこ
とを特徴とする請求項1乃至3のいずれか1項に記載の
水素分離膜の製造方法。
4. The membrane support is a membrane-like porous body, and a pressure difference is provided on both sides of the membrane to suck the sublimated Pd film source into the pores of the porous body. The method for producing a hydrogen separation membrane according to any one of claims 1 to 3, wherein the method is formed into a Pd film.
【請求項5】 Pd膜源物質と膜担持体とを内部に配置
可能とし、真空排気装置を接続した反応器と、 それぞれ独立に温度制御可能であり、前記Pd膜源物質
を昇華させるためにPd膜源物質の配置位置を加熱する
第1の加熱手段と、昇華したPd膜源物質を熱分解させ
るために膜担持体の配置された製膜範囲を加熱する第2
の加熱手段と、前記昇華したPd膜源物質を製膜範囲へ
供給するために前記反応器のPd膜源物質の配置位置か
ら膜担持体の配置された製膜範囲へ向かって流れるキャ
リヤーガスを供給するガス供給手段と、 を備えたことを特徴とする水素分離膜の製造装置。
5. A reactor in which a Pd film source material and a film carrier can be arranged inside, and a temperature of each of the reactors connected to a vacuum exhaust device can be controlled independently, so that the Pd film source material can be sublimated. A first heating means for heating the arrangement position of the Pd film source material, and a second heating means for heating the film formation area where the film carrier is arranged to thermally decompose the sublimated Pd film source material.
Heating means, and a carrier gas flowing from the position where the Pd film source material is disposed in the reactor toward the film forming region where the film carrier is disposed in order to supply the sublimated Pd film source material to the film forming region. An apparatus for producing a hydrogen separation membrane, comprising: gas supply means for supplying gas.
JP12396498A 1998-04-17 1998-04-17 Production of hydrogen separation membrane and its producing equipment Pending JPH11300182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12396498A JPH11300182A (en) 1998-04-17 1998-04-17 Production of hydrogen separation membrane and its producing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12396498A JPH11300182A (en) 1998-04-17 1998-04-17 Production of hydrogen separation membrane and its producing equipment

Publications (1)

Publication Number Publication Date
JPH11300182A true JPH11300182A (en) 1999-11-02

Family

ID=14873693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12396498A Pending JPH11300182A (en) 1998-04-17 1998-04-17 Production of hydrogen separation membrane and its producing equipment

Country Status (1)

Country Link
JP (1) JPH11300182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201010A (en) * 2000-12-28 2002-07-16 Nok Corp Production apparatus of hydrogen peroxide
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201010A (en) * 2000-12-28 2002-07-16 Nok Corp Production apparatus of hydrogen peroxide
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor
US6911563B2 (en) 2001-01-05 2005-06-28 National Institute Of Advanced Industrial Science Reaction method utilizing diaphram type catalyst and apparatus therefor

Similar Documents

Publication Publication Date Title
Nam et al. Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier
Xomeritakis et al. CVD synthesis and gas permeation properties of thin palladium/alumina membranes
Wang et al. Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide
Li et al. Characterisation and permeation of palladium/stainless steel composite membranes
Li et al. Fabrication of dense palladium composite membranes for hydrogen separation
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
US5782959A (en) Process for preparing a composite inorganic membrane for hydrogen separation
EP0195549B1 (en) A separation membrane and process for manufacturing the same
Zhao et al. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
Choi et al. Obtention of ZrO2–SiO2 hydrogen permselective membrane by chemical vapor deposition method
JP2009106912A (en) Hydrogen separation membrane and method for controlling pore diameter of hydrogen separation membrane
Li et al. Repair of a Pd/α-Al2O3 composite membrane containing defects
JP2631244B2 (en) Method and apparatus for producing hydrogen for fuel cells
JPH11300182A (en) Production of hydrogen separation membrane and its producing equipment
JP3861645B2 (en) Production method of hydrogen separation membrane
JP3117276B2 (en) Hydrogen separation membrane
JP2001219042A (en) Producing method of hydrogen separation membrane and hydrogen separation membrane
JP4112856B2 (en) Method for producing gas separator
JP3567253B2 (en) Method for producing porous body coated with palladium or palladium alloy
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
JPH03217227A (en) Membrane reactor for dehydrogenation reaction
JP3620279B2 (en) Hydrogen separation membrane and method for producing the same
KR20010018853A (en) Silica stabilized palladium composite membranes and their preparation methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124