JP2008246295A - Manufacturing method of hydrogen separation membrane - Google Patents

Manufacturing method of hydrogen separation membrane Download PDF

Info

Publication number
JP2008246295A
JP2008246295A JP2007087812A JP2007087812A JP2008246295A JP 2008246295 A JP2008246295 A JP 2008246295A JP 2007087812 A JP2007087812 A JP 2007087812A JP 2007087812 A JP2007087812 A JP 2007087812A JP 2008246295 A JP2008246295 A JP 2008246295A
Authority
JP
Japan
Prior art keywords
silica
mixed gas
supply
separation membrane
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007087812A
Other languages
Japanese (ja)
Other versions
JP4872752B2 (en
JP2008246295A5 (en
Inventor
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2007087812A priority Critical patent/JP4872752B2/en
Publication of JP2008246295A publication Critical patent/JP2008246295A/en
Publication of JP2008246295A5 publication Critical patent/JP2008246295A5/ja
Application granted granted Critical
Publication of JP4872752B2 publication Critical patent/JP4872752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of hydrogen separation membrane capable of forming a silica separation membrane having high hydrogen selective permeability by a CVD (chemical vapor deposition) method. <P>SOLUTION: The manufacturing method of hydrogen separation membrane includes steps of: supplying a silica source mixed gas of a silica forming substance evaporated on one surface side of a porous substrate and an inert gas; supplying the inert gas being reactive species to the other surface side of the porous substrate to perform opposite diffusion for a prescribed time; thereafter performing one-side supply of the silica source mixed gas; performing such opposite diffusion and one-side supply at several times to deposit silica in pores in the vicinity of the surface of the porous substrate by chemical vapor deposition; and forming a silica membrane to manufacture the hydrogen separation membrane. The one-side supply of the silica source mixed gas is performed by vacuuming and sucking the inert gas-supplied surface side for a prescribed time in a state of continuously supplying the mixed gas or in a state of remaining the mixed gas in a reactor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素分離膜の製造法に関する。さらに詳しくは、より高い水素選択透過性を有する水素分離膜の製造法に関する。   The present invention relates to a method for producing a hydrogen separation membrane. More specifically, the present invention relates to a method for producing a hydrogen separation membrane having higher hydrogen permselectivity.

昨今、クリーンエネルギーとしての水素が注目されている。ただし、水素が燃料電池を始めとする広範囲な分野で実際に用いられるためには、大量にかつ高効率で水素を得る方法の開発が必要とされる。代表的な水素の製造法としては、メタンの水蒸気改質方法が挙げられる。しかしながら、その改質反応は、一般に800℃以上という高温条件下で行われ、しかも水素の生成と精製という2工程にわたっているため、さらなる熱効率の向上や工程の簡素化が求められている。   Recently, hydrogen as a clean energy is attracting attention. However, in order for hydrogen to be actually used in a wide range of fields including fuel cells, it is necessary to develop a method for obtaining hydrogen in a large amount and with high efficiency. A typical method for producing hydrogen is a steam reforming method of methane. However, since the reforming reaction is generally performed under a high temperature condition of 800 ° C. or more and is in two steps of hydrogen generation and purification, further improvement in thermal efficiency and simplification of the steps are required.

これに対し、水素の生成工程と分離工程とを一本化した水素製造用メンブレンリフォーマーをメタンの水蒸気改質反応に適用できれば、反応温度が500℃程度という低温化や工程の簡素化による高効率化が期待できる。ただし、その実現のためには、高温で使用可能な水素分離膜が不可欠のものとなる。多孔質セラミックスは、化学的および熱的安定性が高いため、有機質分離膜が適用できないような工程への分離膜あるいはその支持体としての利用が期待されている。   On the other hand, if a membrane reformer for hydrogen production that integrates the hydrogen production process and the separation process can be applied to the steam reforming reaction of methane, the reaction temperature will be as low as 500 ° C and the efficiency will be improved by simplifying the process. Can be expected. However, in order to realize this, a hydrogen separation membrane that can be used at high temperatures is indispensable. Since porous ceramics have high chemical and thermal stability, they are expected to be used as separation membranes or supports for processes where organic separation membranes cannot be applied.

中でも、水素分離膜としての多孔質アモルファスシリカ膜は、原材料費が廉価であり、しかも水素の選択性および透過性の点で共にすぐれた性能を示すことから、近年とみに注目されている。特にCVD法による高い水素透過性を示すシリカ膜が注目されている。
膜 30巻5号275〜281頁(2005)
Among them, a porous amorphous silica membrane as a hydrogen separation membrane has attracted attention in recent years because it has low raw material costs and exhibits excellent performance in terms of hydrogen selectivity and permeability. In particular, a silica film showing high hydrogen permeability by the CVD method is attracting attention.
Membrane 30 vol.5 275-281 (2005)

CVD法は、アルコキシシラン化合物等のシリカ原料を気相で供給し、多孔質基材表面付近の細孔内に化学蒸着させる製膜法であるが、その供給方法の違いにより、一方供給方法と対向拡散法の2つに大別される。
膜 31巻5号263〜266頁(2006)
The CVD method is a film forming method in which a silica raw material such as an alkoxysilane compound is supplied in a gas phase, and chemical vapor deposition is performed in pores near the surface of the porous substrate. There are two types of counter diffusion methods.
Membrane, Vol. 31, No. 5, pp. 263-266 (2006)

一方供給方法は、シリカ原料を多孔質基材の片側から供給し、場合によっては膜の反対側を吸引して基材細孔中に蒸着させる方法である。これに対し、対向拡散法では、シリカ源原料を基材の片側から供給し、O2、O3等の反応種を基材の反対側から供給する方法であり、反応種の拡散により反応を制御できる点に特徴がある。これらいずれの方法においても、多孔質基材表面付近の細孔内にシリカを化学蒸着させて高い水素選択性を有するシリカ膜を得るには、水素分離に適した孔径の孔のみが存在し、クラックやピンホール等の欠陥が存在しないように製膜することが重要である。しかしながら、製膜条件と水素選択性との関係は依然不明な点が多く、より一層高い水素選択透過性を有する膜を得るための製膜条件が求められている。 On the other hand, the supply method is a method in which the silica raw material is supplied from one side of the porous substrate, and in some cases, the opposite side of the membrane is sucked and vapor-deposited in the substrate pores. In contrast, the counter diffusion method is a method in which the silica source material is supplied from one side of the substrate, and reactive species such as O 2 and O 3 are supplied from the opposite side of the substrate. It has the feature that it can be controlled. In any of these methods, in order to obtain a silica membrane having high hydrogen selectivity by chemically vapor-depositing silica in the pores near the surface of the porous substrate, there are only pores having a pore size suitable for hydrogen separation, It is important to form a film so that there are no defects such as cracks and pinholes. However, the relationship between the film forming conditions and the hydrogen selectivity still remains unclear, and there is a need for film forming conditions for obtaining a film having even higher hydrogen selective permeability.

実際に、前記非特許文献2には、各種製膜法で得られたシリカ分離膜形成多孔質アルミナよりなる水素分離膜について、水素透過率が10-8〜10-6モル/m2・秒・Pa条件下での分離係数(H2/N2)の値が図示されているが、その値は102〜103のオーダーにとどまっている。 Actually, the non-patent document 2 discloses that a hydrogen permeation rate of 10 −8 to 10 −6 mol / m 2 · sec for a hydrogen separation membrane made of silica separation membrane-forming porous alumina obtained by various membrane forming methods. Although the value of the separation factor (H 2 / N 2 ) under the Pa condition is shown in the figure, the value is only in the order of 10 2 to 10 3 .

本発明の目的は、CVD法により高い水素選択透過性を有するシリカ分離膜を形成せしめる水素分離膜の製造法を提供することにある。   An object of the present invention is to provide a method for producing a hydrogen separation membrane in which a silica separation membrane having high hydrogen selective permeability is formed by a CVD method.

かかる本発明の目的は、多孔質基材の一方の面側に気化させたシリカ形成物質と不活性ガスとのシリカ源混合ガスを供給し、多孔質基材の他方の面側に反応種となる活性ガスを供給し、一定時間対向拡散させた後、シリカ源混合ガスの一方供給を行い、このような対向拡散および一方供給を複数回行うことにより、多孔質基材表面付近の細孔内にシリカを化学蒸着させ、シリカ膜を形成させて水素分離膜を製造する方法によって達成される。シリカ源混合ガスの一方供給は、混合ガスの供給を継続した状態で、あるいは混合ガスを反応器内に残存させた状態で、活性ガスを供給した面側を一定時間減圧吸引することにより行われる。   An object of the present invention is to supply a silica source mixed gas of a silica-forming substance and an inert gas vaporized on one surface side of a porous substrate, and a reactive species on the other surface side of the porous substrate. After supplying the active gas to be diffused counter-facing for a certain period of time, one supply of the silica source mixed gas is performed, and by performing such counter-diffusion and one-supply multiple times, the pores in the vicinity of the porous substrate surface This is achieved by a method in which silica is chemically vapor-deposited to form a silica membrane to produce a hydrogen separation membrane. One-side supply of the silica source mixed gas is performed by sucking the active gas-supplied surface side under reduced pressure for a certain period of time in a state where the supply of the mixed gas is continued or in a state where the mixed gas remains in the reactor. .

本発明方法によって得られる水素分離膜は、同等の水素透過率を示すシリカ膜を形成させた場合にあっても、分離係数(H2/N2)によって示される水素選択透過性を1桁乃至2桁高めることができる。 The hydrogen separation membrane obtained by the method of the present invention has a hydrogen selective permeability represented by a separation factor (H 2 / N 2 ) of one digit or more even when a silica membrane having an equivalent hydrogen permeability is formed. It can be increased by two orders of magnitude.

多孔質基材は、通常孔径が約0.05〜5μmの多孔質支持基材とその表面に形成された孔径約1〜10nmの多孔質中間体との2層からなる。支持基材の材質は、無機材料ならば特に限定されず、例えばアルミナ、ジルコニア、ムライト、コーディライト、スピネル、炭化けい素、窒化けい素、シリカあるいはこれらの混合物等の焼結体が挙げられ、特にアルミナ、ジルコニアが好んで用いられる。支持基材の形状は、中空糸膜状、チューブ状、モノリス状、ハニカム状、平板状等が挙げられ、好ましくは中空糸膜状やチューブ状などの中空管状のものが用いられる。その厚さは、支持部材には高いガス透過性と実用に耐え得る強度が必要とされることから、約0.1〜10mm程度とされる。   The porous substrate is usually composed of two layers: a porous support substrate having a pore size of about 0.05 to 5 μm and a porous intermediate having a pore size of about 1 to 10 nm formed on the surface thereof. The material of the supporting substrate is not particularly limited as long as it is an inorganic material, and examples thereof include sintered bodies such as alumina, zirconia, mullite, cordierite, spinel, silicon carbide, silicon nitride, silica, or a mixture thereof. In particular, alumina and zirconia are preferably used. Examples of the shape of the support substrate include a hollow fiber membrane shape, a tube shape, a monolith shape, a honeycomb shape, a flat plate shape, and the like. Preferably, a hollow tubular shape such as a hollow fiber membrane shape or a tube shape is used. The thickness of the support member is about 0.1 to 10 mm because high gas permeability and practical strength are required for the support member.

中間体は、ゾルゲル法で得られた原料溶液を支持基材表面上に浸せき法などにより塗布し、乾燥、焼成することにより、ナノオーダーの細孔を有する多孔質層として形成される。中間体構成材料としては、アルミナ、ジルコニア、チタニア、シリカあるいはこれらの混合物等が挙げられるが、好ましくはγ型の結晶からなるアルミナが好ましい。γ-アルミナを用いる場合には、通常α-アルミナ多孔質体にγ-アルミナ層がコーティングされる。その厚さは、中間体には高いガス透過性とピンホール、クラック等の欠陥のないことが求められることから、約1〜10μm程度とされる。   The intermediate is formed as a porous layer having nano-order pores by applying a raw material solution obtained by a sol-gel method on the surface of a supporting substrate by a dipping method, drying, and firing. Examples of the material constituting the intermediate include alumina, zirconia, titania, silica, and a mixture thereof. Alumina composed of γ-type crystals is preferable. When γ-alumina is used, the α-alumina porous body is usually coated with a γ-alumina layer. The thickness is about 1 to 10 μm because the intermediate is required to have high gas permeability and no defects such as pinholes and cracks.

このようにして構成される多孔質基材は、金属製筒状反応器内に入れ、Oリング等で気密固定される。この際、多孔質基材の製膜範囲以外の表面は、ガラス等で気密封止されている。反応器には、ヒータが設置されており、製膜中の温度を制御することができ、化学蒸着する際の反応器内の温度は約500〜800℃、好ましくは約550〜650℃に設定される。   The porous base material constituted in this way is put in a metal cylindrical reactor and hermetically fixed with an O-ring or the like. At this time, the surface outside the film forming range of the porous substrate is hermetically sealed with glass or the like. The reactor is equipped with a heater, the temperature during film formation can be controlled, and the temperature in the reactor during chemical vapor deposition is set to about 500-800 ° C, preferably about 550-650 ° C Is done.

反応器内の多孔質基材の中間体層側には、気化、好ましくは気化し易い温度に加熱して気化させたシリカ形成物質と不活性ガスとのシリカ源混合ガスが供給される。シリカ源混合ガスは、一定温度にある液化シリカ形成物質に一定流量の不活性ガスをバブリングすることによって形成される。不活性ガスとしては、任意のものを使用することができるが、一般には窒素が用いられる。また、シリカ形成物質としては、各種アルコキシシラン化合物が挙げられ、好ましくはテトラエトキシシラン、テトラメトキシシラン等のテトラ低級アルコキシシランが用いられる。多孔質基材の支持基材側には、活性ガスが供給される。活性ガスとしては、O2、O3等が用いられ、好ましくはO2が用いられる。 To the intermediate layer side of the porous substrate in the reactor, a silica source mixed gas of a silica-forming substance and an inert gas which is vaporized by heating to a temperature which is preferably vaporized, preferably vaporized, is supplied. The silica source gas mixture is formed by bubbling a constant flow of inert gas through a liquefied silica forming material at a constant temperature. As the inert gas, any gas can be used, but generally nitrogen is used. Examples of the silica-forming substance include various alkoxysilane compounds. Tetra lower alkoxysilanes such as tetraethoxysilane and tetramethoxysilane are preferably used. An active gas is supplied to the support substrate side of the porous substrate. As the active gas, O 2 , O 3 or the like is used, and preferably O 2 is used.

対向拡散で供給されるシリカ源混合ガスおよび活性ガスの流量は、製膜する面積によって異なるため一概に特定することはできないが、一般的には大気圧換算でそれぞれ約0.1〜2L/分である。また、供給時間も、製膜する面積によって異なるため一概に特定することはできないが、1サイクル当り約5〜60分間、好ましくは約10〜20分間である。   The flow rates of the silica source mixed gas and the active gas supplied by counter diffusion cannot be specified because they differ depending on the area of film formation, but are generally about 0.1 to 2 L / min in terms of atmospheric pressure. . Also, the supply time varies depending on the area to be formed and cannot be specified in general, but is about 5 to 60 minutes, preferably about 10 to 20 minutes per cycle.

対向拡散に次いで行われる一方供給では、多孔質基材の支持基材側の活性ガスの供給が中断され、真空ポンプ等による減圧吸引が行われ、排気される。シリカ源混合ガスの一方供給は、混合ガスの供給を継続した状態で、活性ガスを供給した面側を一定時間減圧吸引することによって行われる。あるいは、活性ガスの供給は中止されるが、活性ガスの供給の中止と共に、混合ガスを構成する不活性ガスの供給も中止し、すなわち混合ガスの新たな供給を中止し、反応器内に残存する混合ガスが存在する状態で、活性ガスを供給した面側を一定時間減圧吸引することによっても、シリカ源混合ガスの一方供給は行われる。   In the one supply performed after the counter diffusion, the supply of the active gas on the support substrate side of the porous substrate is interrupted, the vacuum suction or the like is performed by a vacuum pump or the like, and the exhaust is exhausted. The one-side supply of the silica source mixed gas is performed by sucking the surface side to which the active gas is supplied under reduced pressure for a certain time while the supply of the mixed gas is continued. Alternatively, the supply of the active gas is stopped, but with the stop of the supply of the active gas, the supply of the inert gas constituting the mixed gas is also stopped, that is, the new supply of the mixed gas is stopped and remains in the reactor. One supply of the silica source mixed gas is also performed by suctioning the surface side to which the active gas is supplied for a certain period of time in a state where the mixed gas exists.

排気時の内部圧力は、真空ポンプ等の排気量、製膜面積、多孔質基材表面付近の細孔内に化学蒸着したシリカ膜の形成状態などによって異なるため一概には特定することができないが、一般的には約1〜3000Pa程度であり、真空排気する時間は1サイクル当り約1〜60分間、好ましくは約2〜10分間程度である。   The internal pressure at the time of evacuation cannot be generally specified because it varies depending on the displacement of the vacuum pump or the like, the film forming area, the formation state of the silica film chemically deposited in the pores near the surface of the porous substrate, etc. In general, the pressure is about 1 to 3000 Pa, and the evacuation time is about 1 to 60 minutes, preferably about 2 to 10 minutes per cycle.

このような対向拡散と一方供給とを交互に行う回数(サイクル数)は、特に規定されないが、600℃における水素透過速度(水素透過率)が1×10-7モル/m2・秒・Paでかつ水素と窒素との透過速度の比である分離係数(H2/N2)が104以上に達する迄行われ、一般にはそれは約10サイクル以上で達成される。 The number of cycles (number of cycles) in which such counter-diffusion and one-side supply are alternately performed is not particularly specified, but the hydrogen permeation rate (hydrogen permeation rate) at 600 ° C. is 1 × 10 −7 mol / m 2 · sec · Pa. And until the separation factor (H 2 / N 2 ), which is the ratio of the permeation rate of hydrogen and nitrogen, reaches 10 4 or more, which is generally achieved in about 10 cycles or more.

次に、図面について本発明方法を説明する。図1は、本発明方法に用いられる装置の概要図であり、符号1は多孔質基材、1aはその支持基材側、1bはその中間体層側、2は製膜部、3は反応器、4はヒータ、5は窒素ボンベ、6は酸素ボンベ、7は調圧器、8は開閉バルブ、9はマスフローコントローラ、10はバブラ、11は冷却トラップ、12は圧力計、13は真空ポンプをそれぞれ指示しており、かかる装置を用いて、前述の如き対向拡散および一方供給が交互に行われる。   Next, the method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus used in the method of the present invention. Reference numeral 1 is a porous substrate, 1a is a supporting substrate side, 1b is an intermediate layer side, 2 is a film forming part, and 3 is a reaction. 4 is a heater, 5 is a nitrogen cylinder, 6 is an oxygen cylinder, 7 is a pressure regulator, 8 is an open / close valve, 9 is a mass flow controller, 10 is a bubbler, 11 is a cooling trap, 12 is a pressure gauge, and 13 is a vacuum pump. The counter diffusion and the one-side supply as described above are alternately performed by using such an apparatus.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
(1)多孔質α-アルミナキャピラリー(長さ350mm、直径2.9mm、膜厚0.3mm、平均細孔径約0.1μm)を支持基材とし、その両端部側それぞれ60mmの長さの部分にガラスペーストを塗布、乾燥、焼成して、製膜部以外の部分を気密封止した。次いで、この中央230mmの製膜部にディッピング法によりγ-アルミナゾル層を形成し、これを乾燥させた後、600℃で焼成した。このようなディッピング−焼成という一連の工程を2回行った。このγ-アルミナ中間体層は、厚さが約3mmであり、またその孔径分布をナノパームポロシメーター(西華産業製)により測定したところ、平均孔径は4nmであった。
(2)このγ-アルミナ中間体層を製膜部分に形成させた多孔質α-アルミナキャピラリー支持基材を金属製円筒状反応器内に入れ、基材両末端にOリングを嵌め、金属製フランジにより気密固定した後、反応器をヒータにより加熱し、その温度を600℃に制御した。次いで、45℃のテトラメトキシシラン中をバブリングさせた窒素を200ml/分の流量で流し、シリカ源混合ガスを形成させ、これを反応器内の中間体層側に供給する一方、支持基材管内部に酸素を200ml/分の流量で供給し、これらのガスによる対向拡散を15分間継続した後、窒素および酸素の供給を止め、支持基材管内部を5分間真空吸引した(内部圧力2000Pa以下)。このような対向拡散供給と一方供給(減圧吸引)とを1サイクルとし、計12サイクル行って、多孔質基材表面付近の細孔内にシリカを化学蒸着させ、シリカ膜を形成させた。
Example 1
(1) A porous α-alumina capillary (length 350 mm, diameter 2.9 mm, film thickness 0.3 mm, average pore diameter about 0.1 μm) is used as a supporting base material, and glass paste is applied to both ends of each 60 mm length. Was applied, dried, and fired to hermetically seal the portions other than the film forming portion. Next, a γ-alumina sol layer was formed on the film forming part having a center of 230 mm by a dipping method, dried, and then fired at 600 ° C. Such a series of steps of dipping-firing was performed twice. This γ-alumina intermediate layer had a thickness of about 3 mm, and its pore size distribution was measured with a nanopalm porosimeter (manufactured by Seika Sangyo Co., Ltd.). The average pore size was 4 nm.
(2) A porous α-alumina capillary support base material in which this γ-alumina intermediate layer is formed in the film forming part is placed in a metal cylindrical reactor, O-rings are fitted to both ends of the base material, After hermetically fixing with a flange, the reactor was heated with a heater, and the temperature was controlled at 600 ° C. Next, nitrogen bubbling in tetramethoxysilane at 45 ° C. was flowed at a flow rate of 200 ml / min to form a silica source mixed gas, which was supplied to the intermediate layer side in the reactor, while supporting substrate tube Oxygen was supplied to the inside at a flow rate of 200 ml / min. Counter diffusion with these gases was continued for 15 minutes, then the supply of nitrogen and oxygen was stopped, and the inside of the supporting base tube was vacuumed for 5 minutes (internal pressure 2000 Pa or less) ). Such counter-diffusion supply and one-side supply (vacuum suction) were made into one cycle, and a total of 12 cycles were performed, and silica was chemically vapor-deposited in the pores near the surface of the porous substrate to form a silica film.

実施例2
実施例1の(2)において、対向拡散後酸素のみの供給を止め、対向拡散供給と一方供給とを1サイクルとし、計8サイクルが行われ、シリカ膜を形成させた。
Example 2
In Example 1 (2), the supply of only oxygen after counter-diffusion was stopped, the counter-diffusion supply and the one supply were made one cycle, and a total of eight cycles were performed to form a silica film.

比較例1
実施例1の(2)において、対向拡散供給のみが120分間行われ、シリカ膜を形成させた。
Comparative Example 1
In Example 1 (2), only the opposing diffusion supply was performed for 120 minutes to form a silica film.

比較例2
実施例1の(2)において、シリカ源混合ガスの中間体層側への供給および支持基材管内部の減圧吸引のみが120分間行われ、シリカ膜を形成させた。
Comparative Example 2
In Example 1 (2), only the supply of the silica source mixed gas to the intermediate layer side and the suction under reduced pressure inside the support base material tube were performed for 120 minutes to form a silica film.

以上の各実施例および比較例で得られたシリカ膜形成多孔質α-アルミナキャピラリーについて、水素選択透過性の測定が行われた。測定は、600℃において形成されたシリカ膜側に常圧の水素を流し、支持基材管内部を減圧吸引し、管内部の減圧度が一定となった時点で真空ライン間のバルブを閉じて吸引を停止し、支持基材の外表面側と管内部側、すなわちシリカ膜を介した両側の圧力差の経時的変化を測定することにより行われ、水素透過率を算出した。また、支持基材外表面側に窒素を流し、同様の方法により窒素透過率を算出し、水素透過率との比(H2/N2)を分離係数とした。 The hydrogen selective permeability of the silica film-forming porous α-alumina capillary obtained in each of the above Examples and Comparative Examples was measured. Measurement is performed by flowing normal-pressure hydrogen to the silica membrane formed at 600 ° C, sucking the inside of the supporting base tube under reduced pressure, and closing the valve between the vacuum lines when the degree of pressure reduction inside the tube becomes constant. The suction was stopped, and the hydrogen permeation rate was calculated by measuring the change over time in the pressure difference between the outer surface side of the supporting substrate and the inner side of the tube, that is, both sides through the silica membrane. Further, nitrogen was allowed to flow on the outer surface side of the supporting substrate, and the nitrogen permeability was calculated by the same method, and the ratio (H 2 / N 2 ) with the hydrogen permeability was taken as the separation factor.

得られた結果は、次の表に示される。

水素透過率(モル/m 2 ・秒・Pa) 分離係数(H 2 /N 2 )
実施例1 1.1×10-7 23000
実施例2 1.3×10-7 16200
比較例1 1.8×10-7 2100
比較例2 0.9×10-8 160
The results obtained are shown in the following table.
table
Example Hydrogen permeability (mol / m 2 ・ sec ・ Pa) Separation factor (H 2 / N 2 )
Example 1 1.1 × 10 −7 23000
Example 2 1.3 × 10 −7 16200
Comparative Example 1 1.8 × 10 −7 2100
Comparative Example 2 0.9 × 10 −8 160

本発明方法に用いられる装置の概要図である。It is a schematic diagram of the apparatus used for the method of the present invention.

符号の説明Explanation of symbols

1 多孔質基材
1a 支持基材側
1b 中間体層側
2 製膜部
3 反応器
4 ヒータ
5 窒素ボンベ
6 酸素ボンベ
13 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Porous base material 1a Support base material side 1b Intermediate body layer side 2 Film-forming part 3 Reactor 4 Heater 5 Nitrogen cylinder 6 Oxygen cylinder 13 Vacuum pump

Claims (5)

多孔質基材の一方の面側に気化させたシリカ形成物質と不活性ガスとのシリカ源混合ガスを供給し、多孔質基材の他方の面側に反応種となる活性ガスを供給し、一定時間対向拡散させた後、シリカ源混合ガスの一方供給を行い、このような対向拡散および一方供給を複数回行うことにより、多孔質基材表面付近の細孔内にシリカを化学蒸着させ、シリカ膜を形成させることを特徴とする水素分離膜の製造法。   Supplying a silica source mixed gas of a silica-forming substance and an inert gas vaporized to one surface side of the porous substrate, supplying an active gas as a reactive species to the other surface side of the porous substrate, After the counter diffusion for a certain time, one supply of the silica source mixed gas is performed, and by performing such counter diffusion and one supply multiple times, the silica is chemically vapor-deposited in the pores near the porous substrate surface, A method for producing a hydrogen separation membrane, comprising forming a silica membrane. シリカ源混合ガスの一方供給が、混合ガスの供給を継続した状態で、活性ガスを供給した面側を一定時間減圧吸引することにより行われる請求項1記載の水素分離膜の製造法。   The method for producing a hydrogen separation membrane according to claim 1, wherein the one-side supply of the silica source mixed gas is performed by sucking the surface side to which the active gas is supplied for a predetermined time under reduced pressure while the supply of the mixed gas is continued. シリカ源混合ガスの一方供給が、混合ガスの新たな供給を中止し、反応器内に残存する混合ガスが存在する状態で、活性ガスを供給した面側を一定時間減圧吸引することによって行われる請求項1記載の水素分離膜の製造法。   One-side supply of the silica source mixed gas is performed by stopping the new supply of the mixed gas and suctioning the surface side to which the active gas is supplied under reduced pressure for a certain time in a state where the mixed gas remaining in the reactor exists. The method for producing a hydrogen separation membrane according to claim 1. シリカ源混合ガスの供給が多孔質基材の中間体層側について行われる請求項2または3記載の水素分離膜の製造法。   The method for producing a hydrogen separation membrane according to claim 2 or 3, wherein the silica source mixed gas is supplied to the intermediate layer side of the porous substrate. 活性ガスの供給が多孔質基材の支持基材側について行われる請求項1記載の水素分離膜の製造法。   2. The method for producing a hydrogen separation membrane according to claim 1, wherein the supply of the active gas is performed on the support substrate side of the porous substrate.
JP2007087812A 2007-03-29 2007-03-29 Production method of hydrogen separation membrane Expired - Fee Related JP4872752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087812A JP4872752B2 (en) 2007-03-29 2007-03-29 Production method of hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087812A JP4872752B2 (en) 2007-03-29 2007-03-29 Production method of hydrogen separation membrane

Publications (3)

Publication Number Publication Date
JP2008246295A true JP2008246295A (en) 2008-10-16
JP2008246295A5 JP2008246295A5 (en) 2011-04-07
JP4872752B2 JP4872752B2 (en) 2012-02-08

Family

ID=39971887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087812A Expired - Fee Related JP4872752B2 (en) 2007-03-29 2007-03-29 Production method of hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP4872752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062446A (en) * 2014-11-25 2016-06-02 고려대학교 산학협력단 control method for pore size of silica chabazite zeolite membranes and silica chabazite zeolite membranes with controlled the pore size using the same
JP2020124656A (en) * 2019-02-01 2020-08-20 一般財団法人ファインセラミックスセンター Gas separation material and manufacturing method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838864A (en) * 1994-07-29 1996-02-13 Nok Corp Hydrogen separation membrane and production thereof
JP2005528198A (en) * 2002-06-04 2005-09-22 コノコフィリップス・カンパニー Hydrogen selective silica membrane
JP2005254161A (en) * 2004-03-12 2005-09-22 Shinichi Nakao Hydrogen separation membrane and its preparation method
JP2006239663A (en) * 2005-03-07 2006-09-14 Noritake Co Ltd Production method of hydrogen gas separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838864A (en) * 1994-07-29 1996-02-13 Nok Corp Hydrogen separation membrane and production thereof
JP2005528198A (en) * 2002-06-04 2005-09-22 コノコフィリップス・カンパニー Hydrogen selective silica membrane
JP2005254161A (en) * 2004-03-12 2005-09-22 Shinichi Nakao Hydrogen separation membrane and its preparation method
JP2006239663A (en) * 2005-03-07 2006-09-14 Noritake Co Ltd Production method of hydrogen gas separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062446A (en) * 2014-11-25 2016-06-02 고려대학교 산학협력단 control method for pore size of silica chabazite zeolite membranes and silica chabazite zeolite membranes with controlled the pore size using the same
WO2016085177A1 (en) * 2014-11-25 2016-06-02 고려대학교산학협력단 Chabazite zeolite separator having pore size controlled using chemical vapor deposition, and method for manufacturing same
KR101638338B1 (en) 2014-11-25 2016-07-12 고려대학교 산학협력단 control method for pore size of silica chabazite zeolite membranes and silica chabazite zeolite membranes with controlled the pore size using the same
US10717054B2 (en) 2014-11-25 2020-07-21 Korea University Research And Business Foundation Chabazite zeolite membrane having pore size controlled by using chemical vapor deposition and method of preparing the same
JP2020124656A (en) * 2019-02-01 2020-08-20 一般財団法人ファインセラミックスセンター Gas separation material and manufacturing method for the same
JP7420473B2 (en) 2019-02-01 2024-01-23 一般財団法人ファインセラミックスセンター Gas separation material and its manufacturing method

Also Published As

Publication number Publication date
JP4872752B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP3373057B2 (en) Manufacturing method of hydrogen separation membrane
US6854602B2 (en) Hydrogen-selective silica-based membrane
US5789024A (en) Subnanoscale composite, N2-permselective membrane for the separation of volatile organic compounds
US7396382B2 (en) Functionalized inorganic membranes for gas separation
CN101274225A (en) Method for producing hydrogen gas separation material
JP2006239663A (en) Production method of hydrogen gas separation membrane
JP4728308B2 (en) Hydrogen separation membrane and method for producing hydrogen separation membrane
JP4872752B2 (en) Production method of hydrogen separation membrane
JP4871312B2 (en) Method for producing hydrogen gas separator
Yamaguchi et al. Reaction control of tetraethyl orthosilicate (TEOS)/O 3 and tetramethyl orthosilicate (TMOS)/O 3 counter diffusion chemical vapour deposition for preparation of molecular-sieve membranes
JP5049498B2 (en) Method for producing ceramic membrane for gas separation
JP6683365B2 (en) Method for manufacturing gas separation filter
JP2007152230A (en) Compact silica-based hydrogen separation membrane and hydrogen manufacturing method
JP4605920B2 (en) Gas separation filter
JP3861645B2 (en) Production method of hydrogen separation membrane
KR100648520B1 (en) Preparation of ceramic membrane by ultrasonic spray pyrolysis
JP2005254161A (en) Hydrogen separation membrane and its preparation method
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
KR101490098B1 (en) Inorganic Separation Membrane For Separating Gases In Which Size And Distribution Of Nanopores Are Controlled, And Preparation And Apparatus Thereof
JP6702884B2 (en) Gas separation method
KR101123271B1 (en) Method of producing large area gas separation membrane for high temperature
JP4384540B2 (en) Hydrogen separation material and method for producing the same
JP5425839B2 (en) Method for producing gas separation material
Ikeda et al. High hydrogen permeance silica membranes prepared by a chemical vapor deposition method
KR101525001B1 (en) Apparatus Of Preparing Inorganic Separation Membrane For Separating Gases In Which Size And Distribution Of Nanopores Are Controlled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees