JP7420473B2 - Gas separation material and its manufacturing method - Google Patents

Gas separation material and its manufacturing method Download PDF

Info

Publication number
JP7420473B2
JP7420473B2 JP2019017475A JP2019017475A JP7420473B2 JP 7420473 B2 JP7420473 B2 JP 7420473B2 JP 2019017475 A JP2019017475 A JP 2019017475A JP 2019017475 A JP2019017475 A JP 2019017475A JP 7420473 B2 JP7420473 B2 JP 7420473B2
Authority
JP
Japan
Prior art keywords
gas
raw material
counter
gas separation
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017475A
Other languages
Japanese (ja)
Other versions
JP2020124656A (en
Inventor
孝幸 永野
功二 佐藤
浩一 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Original Assignee
Japan Fine Ceramics Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center filed Critical Japan Fine Ceramics Center
Priority to JP2019017475A priority Critical patent/JP7420473B2/en
Publication of JP2020124656A publication Critical patent/JP2020124656A/en
Application granted granted Critical
Publication of JP7420473B2 publication Critical patent/JP7420473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、混合ガスから特定のガス成分を分離精製するガス分離材およびその製造方法に関する。 The present invention relates to a gas separation material for separating and purifying specific gas components from a mixed gas, and a method for producing the same.

蒸発した物質を被処理材の表面に付着させて薄膜などを形成する技術として、化学蒸着(CVD)が知られている。化学蒸着は、混合ガスから水素ガスなどの特定のガス成分を分離精製するために用いられるセラミックス系のガス分離材の製造に多用されている。セラミックス系のガス分離材は、材料自体が有するサブナノサイズの細孔によるガス分離が可能であって、なかでも酸化珪素や炭素、炭化珪素などを主成分とする膜が分離活性層として利用されている。ガス透過速度は膜厚に反比例することから、極薄い分離活性層を用いると、ガス分離の際の透過速度が増大して分離処理能力が高まるため有効である。また、ガス分離特性を向上させるためには、欠陥の少ない分離活性層が望まれる。 Chemical vapor deposition (CVD) is known as a technique for forming a thin film by depositing evaporated substances on the surface of a material to be treated. Chemical vapor deposition is often used to manufacture ceramic gas separation materials used to separate and purify specific gas components such as hydrogen gas from mixed gases. Ceramic gas separation materials are capable of gas separation through the sub-nano-sized pores that the material itself has, and in particular, membranes containing silicon oxide, carbon, silicon carbide, etc. as the main components are used as the separation active layer. There is. Since the gas permeation rate is inversely proportional to the membrane thickness, it is effective to use an extremely thin separation active layer because it increases the permeation rate during gas separation and increases the separation throughput. Furthermore, in order to improve gas separation characteristics, a separation active layer with fewer defects is desired.

分離活性層として用いられる炭化珪素膜(SiC膜)の製造方法として、非特許文献1には、Si源としてSiHCl、C源としてCを用いた化学気相含浸法(Chemical Vapor Infiltration:CVI)が開示されている。図9(A)は、CVIの概念を説明する概略図である。CVIでは、原料ガスと、原料ガスと反応する反応ガスと、が同じ方向から細孔へ供給されるため、多孔質基材の細孔の開口部を塞ぐようにして、多孔質基材の表面近傍に反応生成物が成膜される。非特許文献1では、CVIにより、ポリカルボシランを前駆体として用いて成膜されたSiC膜の未封止の細孔にさらにSiCを蒸着することで、全体として、多孔質基材の表面を覆う130nm程度の膜厚のSiC膜が形成される。このSiC膜は、水素分離膜として水蒸気改質(メタンを水蒸気と共に触媒上で反応させて水素と二酸化炭素に変換する)に利用することができる。このような膜のガス分離特性の指標として用いられるのが、ガス分離係数である。特に、純ガスの透過率の比で表されるガス分離係数は理想分離係数とよばれ、非特許文献1によれば、二酸化炭素ガスの透過率(PCO2)に対する水素ガスの透過率(PH2)の比で表される理想分離係数(PH2/PCO2)は、600℃において15程度である。SiC膜を水素分離膜として用いるためには、実用上、分離されるガスの透過量増大の観点から膜厚が薄く、ガス分離特性向上の観点から低欠陥のSiC膜の製造が望まれている。 As a method for manufacturing a silicon carbide film (SiC film) used as a separation active layer, Non-Patent Document 1 describes a chemical vapor phase impregnation method using SiH 2 Cl 2 as a Si source and C 2 H 2 as a C source. Vapor Infiltration (CVI) is disclosed. FIG. 9(A) is a schematic diagram explaining the concept of CVI. In CVI, since the raw material gas and the reaction gas that reacts with the raw material gas are supplied to the pores from the same direction, the surface of the porous base material is A reaction product is formed nearby. In Non-Patent Document 1, by further depositing SiC into the unsealed pores of a SiC film formed using polycarbosilane as a precursor by CVI, the surface of the porous base material as a whole is improved. A covering SiC film with a thickness of about 130 nm is formed. This SiC membrane can be used as a hydrogen separation membrane for steam reforming (methane is reacted with steam on a catalyst to be converted into hydrogen and carbon dioxide). The gas separation coefficient is used as an index of the gas separation characteristics of such a membrane. In particular, the gas separation coefficient expressed as the ratio of the permeability of pure gas is called the ideal separation coefficient, and according to Non- Patent Document 1, the permeability of hydrogen gas (P The ideal separation coefficient (P H2 /P CO2 ) expressed as the ratio of P H2 ) is about 15 at 600°C. In order to use a SiC membrane as a hydrogen separation membrane, it is practically desirable to manufacture a SiC membrane with a thin film thickness in order to increase the amount of permeation of the gas to be separated, and with low defects in order to improve gas separation characteristics. .

ところで、SiC膜は、通常、多孔質材料からなる多孔質支持基材に成膜されるが、支持基材として多用されるα-アルミナの熱膨張係数は7.2×10-6/℃(40~400℃)であり、SiCの熱膨張係数は3.7×10-6/℃である。そのため、支持基材に成膜されるSiC膜が厚くなるほど熱膨張係数差に起因する残留応力が増大し、SiC膜の剥離が発生しやすい。SiC膜の膜厚を極薄くすることで残留応力を低減して、SiC膜の剥離を抑制することは可能である。しかしながら、極薄膜は、欠陥が生じやすく、高いガス分離特性を得ることができない。 Incidentally, a SiC film is usually formed on a porous support base material made of a porous material, and α-alumina, which is often used as a support base material, has a thermal expansion coefficient of 7.2×10 -6 /°C ( 40 to 400°C), and the thermal expansion coefficient of SiC is 3.7×10 −6 /°C. Therefore, as the SiC film formed on the support base material becomes thicker, the residual stress due to the difference in thermal expansion coefficient increases, and peeling of the SiC film is more likely to occur. It is possible to reduce residual stress and suppress peeling of the SiC film by making the thickness of the SiC film extremely thin. However, ultra-thin membranes are prone to defects and cannot provide high gas separation properties.

一方、対向拡散CVDは、多孔質支持基材の細孔内部を封止するように蒸着することができるため、熱膨張差の影響を受け難く、有利である。特許文献1には、対向拡散CVDを用いた酸化珪素膜(シリカ膜)の製造方法が開示されている。図9(B)は、対向拡散CVDの概念を説明する概略図である。対向拡散CVDは、原料ガス(たとえば有機珪素化合物ガス)と、原料ガスと反応する対向ガス(たとえば酸素ガス)と、を多孔質基材の細孔の両端よりそれぞれ対向拡散させ、細孔内で反応させてシリカ膜を形成する。反応生成物は、細孔の内壁に蒸着され、反応が進行すると細孔は反応生成物で閉塞されるので、両ガスの接触が妨げられることで反応が終了する。その結果、細孔内に形成された閉塞部Fは、極薄い低欠陥の膜となる。 On the other hand, counter-diffusion CVD is advantageous because it can perform vapor deposition so as to seal the inside of the pores of the porous support base material, and is therefore less susceptible to differences in thermal expansion. Patent Document 1 discloses a method for manufacturing a silicon oxide film (silica film) using counter-diffusion CVD. FIG. 9(B) is a schematic diagram illustrating the concept of counter-diffusion CVD. In counter diffusion CVD, a source gas (for example, an organic silicon compound gas) and a counter gas (for example, oxygen gas) that reacts with the source gas are diffused in opposite directions from both ends of the pores of a porous base material. A silica film is formed by reaction. The reaction products are deposited on the inner walls of the pores, and as the reaction progresses, the pores are blocked by the reaction products, so that the reaction is terminated by preventing contact between the two gases. As a result, the closed portion F formed within the pore becomes an extremely thin film with few defects.

特開2008-246295号公報Japanese Patent Application Publication No. 2008-246295

Helium-Permselective Amorphous SiC Membrane Modified by Chemical Vapor Infiltration, Soft Materials Volume 4, 2007, Issue 2-4, 109-122Helium-Permselective Amorphous SiC Membrane Modified by Chemical Vapor Infiltration, Soft Materials Volume 4, 2007, Issue 2-4, 109-122

対向拡散CVDによりシリカ膜を製膜する場合には、細孔の内壁に付着した珪素が酸化して体積膨張するため細孔が埋まりやすく、原料ガスと対向ガスとの接触が早期に妨げられて閉塞部F(図9(B))が薄く形成され易い。一方、SiC膜の成膜に対向拡散CVDを用いることは、これまで試みられていなかった。SiCの生成過程では、原料ガスの熱分解物が細孔の内壁に堆積しても体積膨張を伴わないので、対向拡散CVDの反応過程において細孔が埋まりにくい。そのため、反応が終了せずに継続して、CVIで蒸着されるような膜が細孔の開口部やその周辺に形成されると推測される。したがって、低欠陥かつ極薄いSiC膜を対向拡散CVDで形成することは、そもそも困難であると考えられる。 When forming a silica film by counter-diffusion CVD, the silicon adhering to the inner walls of the pores oxidizes and expands in volume, which tends to fill the pores and prevents contact between the raw material gas and the counter gas at an early stage. The closed portion F (FIG. 9(B)) is likely to be formed thin. On the other hand, no attempt has been made to use counter-diffusion CVD to form a SiC film. In the process of producing SiC, even if the thermal decomposition products of the raw material gas are deposited on the inner walls of the pores, no volumetric expansion occurs, so the pores are difficult to fill in the reaction process of counter-diffusion CVD. Therefore, it is presumed that the reaction does not end and continues, and a film similar to that deposited by CVI is formed at and around the openings of the pores. Therefore, it is considered difficult to form a low-defect and extremely thin SiC film by counter-diffusion CVD.

また、特許文献1には、原料ガスと対向ガスとを一定時間供給して対向供給させて反応させた後、少なくとも対向ガスの供給を停止して一方向供給に変更して、対向供給と一方向供給とを複数回行う成膜方法が開示されている。一方向供給の方法を変更することで、ガス透過率およびガス分離係数が変化するが、このような現象に関して詳しいメカニズムは分かっていない。 Furthermore, Patent Document 1 discloses that after supplying a raw material gas and a counter gas for a certain period of time and causing them to react in a counter supply manner, at least the supply of the counter gas is stopped and the supply is changed to unidirectional supply. A film forming method is disclosed in which directional supply is performed multiple times. By changing the unidirectional supply method, the gas permeability and gas separation coefficient change, but the detailed mechanism behind this phenomenon is not known.

本発明は、上記の問題点に鑑み、従来よりもガス分離特性が向上した炭化珪素系のガス分離材およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a silicon carbide-based gas separation material with improved gas separation characteristics compared to the conventional one, and a method for manufacturing the same.

本発明者等は、この課題を解決すべく鋭意研究の結果、ガス分離材として実用可能な炭化珪素系のガス分離材を、対向拡散CVDを用いて製造可能とし、ガス分離特性の高い新規のガス分離材を製造するに至った。 As a result of intensive research to solve this problem, the present inventors have succeeded in manufacturing a silicon carbide-based gas separation material that can be practically used as a gas separation material using counter-diffusion CVD, and have developed a new material with high gas separation properties. This led to the production of gas separation materials.

すなわち本発明のガス分離材の製造方法は、複数の細孔を有する無機多孔質部の該細孔の両端側よりそれぞれ対向拡散させた原料ガスと対向ガスとを反応させる化学蒸着によりガス分離層を形成するガス分離材の製造方法において、
前記原料ガスは炭素(C)および珪素(Si)を含む化合物を含み、前記細孔の一端側に該原料ガスを供給する原料ガス供給工程を実施しながら、反応工程を繰り返し実施し、該反応工程は、
前記細孔の他端側に前記化合物と反応して炭化珪素を生成する対向ガスを供給する対向ガス供給工程と、
前記対向ガス供給工程の後に行う、前記対向ガスの供給を停止する対向ガス停止工程と、
前記対向ガス停止工程と同時にまたは該対向ガス停止工程の後に行う、前記原料ガスを前記細孔の一端側から他端側へと引き込む原料ガス導入工程と、
を含む。
That is, the method for producing a gas separation material of the present invention is to form a gas separation layer by chemical vapor deposition in which a raw material gas and a counter gas are reacted, which are diffused in opposite directions from both ends of the pores of an inorganic porous part having a plurality of pores. In a method for producing a gas separation material forming a
The raw material gas contains a compound containing carbon (C) and silicon (Si), and the reaction step is repeatedly carried out while carrying out the raw material gas supply step of supplying the raw material gas to one end side of the pore. The process is
a counter gas supply step of supplying a counter gas that reacts with the compound to produce silicon carbide to the other end side of the pore;
a counter gas stop step of stopping the supply of the counter gas, which is performed after the counter gas supply step;
A raw material gas introducing step of drawing the raw material gas from one end side of the pore to the other end side, which is performed simultaneously with the opposing gas stopping step or after the opposing gas stopping step;
including.

前述の通り、対向拡散CVDにおける炭化珪素の反応過程において、炭化珪素系の生成物では細孔が埋まり難い。そのため、対向ガスは、原料ガスと接触して反応し続ける。特に、対向ガスとして分子動力学的直径の小さい水素ガスを用いる場合には、水素ガスは生成物をも透過し易く、透過した水素ガスは、細孔が開口する一端側に高濃度で存在する原料ガスと接触しやすい。こうした炭化珪素の反応過程における現象が、無機多孔質部の表面を覆うような厚膜の形成、ひいては欠陥の発生を助長していることに、本発明者等は着目した。本発明のガス分離材の製造方法によれば、反応工程において、対向ガスの供給後、対向ガスの供給を一旦停止して原料ガスを細孔の一端側から他端側へと引き込む。この反応工程を繰り返し実施することで、反応自体を一時停止させた状態で、細孔の一端側に高濃度で存在する原料ガスを細孔の他端側へと移動させることができる。その結果、炭化珪素系の生成物は、無機多孔質部の細孔の内壁に形成され、細孔の内部を閉塞する極薄い低欠陥の膜になると推測される。このようなガス分離層を有するガス分離材は、ガス分離特性に優れる。 As described above, in the reaction process of silicon carbide in counter-diffusion CVD, pores are difficult to fill with silicon carbide-based products. Therefore, the counter gas continues to contact and react with the source gas. In particular, when hydrogen gas with a small molecular dynamic diameter is used as the counter gas, the hydrogen gas easily permeates the product, and the permeated hydrogen gas exists in high concentration at one end where the pore opens. Easy to come into contact with raw material gas. The present inventors have noticed that such a phenomenon in the reaction process of silicon carbide promotes the formation of a thick film that covers the surface of the inorganic porous portion and, in turn, the generation of defects. According to the method for producing a gas separation material of the present invention, in the reaction step, after the counter gas is supplied, the supply of the counter gas is temporarily stopped and the raw material gas is drawn from one end of the pore to the other end. By repeating this reaction step, the raw material gas present in high concentration at one end of the pore can be moved to the other end of the pore while the reaction itself is temporarily stopped. As a result, it is presumed that silicon carbide-based products are formed on the inner walls of the pores of the inorganic porous portion, resulting in an extremely thin, low-defect film that blocks the insides of the pores. A gas separation material having such a gas separation layer has excellent gas separation properties.

また、本発明のガス分離材は、複数の細孔を有する無機多孔質部と、炭化珪素を含み前記無機多孔質部の少なくとも前記細孔の内部を閉塞するガス分離層と、を備え、前記ガス分離層は、前記無機多孔質部の前記細孔から外にはみ出る外出部を有し、該無機多孔質部の表面から該外出部の表面までの該外出部における膜厚が100nm以下である。 Further, the gas separation material of the present invention includes an inorganic porous part having a plurality of pores, and a gas separation layer containing silicon carbide and closing at least the inside of the pores of the inorganic porous part, The gas separation layer has an external part protruding from the pores of the inorganic porous part, and the film thickness in the external part from the surface of the inorganic porous part to the surface of the external part is 100 nm or less. .

あるいは、本発明のガス分離材は、複数の細孔を有する無機多孔質部と、炭化珪素を含み前記無機多孔質部の少なくとも前記細孔の内部を閉塞するガス分離層と、を備え、二酸化炭素の透過率に対する水素の透過率の比であらわされる理想分離係数が400℃において1000以上であると捉えることもできる。 Alternatively, the gas separation material of the present invention includes an inorganic porous part having a plurality of pores, and a gas separation layer containing silicon carbide and closing at least the inside of the pores of the inorganic porous part, and It can also be considered that the ideal separation coefficient, expressed as the ratio of hydrogen permeability to carbon permeability, is 1000 or more at 400°C.

本発明のガス分離材は、従来よりもガス分離特性が高い。また、本発明のガス分離材の製造方法によれば、従来よりもガス分離特性が向上した炭化珪素系のガス分離材を対向拡散CVDにより製造することが可能となる。 The gas separation material of the present invention has higher gas separation properties than conventional ones. Further, according to the method for producing a gas separation material of the present invention, it is possible to produce a silicon carbide-based gas separation material with improved gas separation characteristics than before by counter-diffusion CVD.

本発明のガス分離材の製造方法の一実施形態であって、反応工程において対向ガス供給工程および原料ガス導入工程を同時に行う実施形態を説明するための模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating an embodiment of the method for producing a gas separation material of the present invention, in which a counter gas supply step and a raw material gas introduction step are performed simultaneously in a reaction step. 本発明のガス分離材の製造方法の一実施形態であって、反応工程において対向ガス供給工程の後に原料ガス導入工程を行う実施形態を説明するための模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating an embodiment of the method for producing a gas separation material of the present invention, in which a source gas introduction step is performed after a counter gas supply step in a reaction step. 実施例のガス分離材およびその製造方法に用いる蒸着処理装置の模式図である。It is a schematic diagram of the gas separation material of an Example, and the vapor deposition processing apparatus used for its manufacturing method. 実施例のガス分離材およびその製造方法で用いられる無機多孔質部を示す模式図である。FIG. 2 is a schematic diagram showing an inorganic porous part used in a gas separation material and a method for producing the same according to an example. 定容積圧力変化法を用いたガス透過試験装置の概略図である。1 is a schematic diagram of a gas permeation test device using a constant volume pressure change method. 実施例1のガス分離材の製造方法により得られたガス分離材のガス透過特性を示すグラフである。1 is a graph showing gas permeation characteristics of a gas separation material obtained by the method for manufacturing a gas separation material of Example 1. 実施例1のガス分離材の断面の走査型電子顕微鏡像(SEM像)およびエネルギー分散型X線分析(EDS)結果である。1 is a scanning electron microscope image (SEM image) and energy dispersive X-ray analysis (EDS) results of a cross section of the gas separation material of Example 1. 実施例1のガス分離材の断面のエネルギー分散型X線分析(EDS)結果である。1 is an energy dispersive X-ray analysis (EDS) result of a cross section of the gas separation material of Example 1. (A)CVIおよび(B)対向拡散CVDの概念を説明する概略図である。FIG. 2 is a schematic diagram illustrating the concepts of (A) CVI and (B) counter-diffusion CVD.

以下に、本発明のガス分離材およびその製造方法を実施するための形態を説明する。なお、本明細書に記載された数値範囲の上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。 EMBODIMENT OF THE INVENTION Below, the form for implementing the gas separation material of this invention and its manufacturing method is demonstrated. Note that a numerical range can be constructed by arbitrarily combining the upper and lower limits of the numerical ranges described in this specification, as well as the numerical values listed in the examples.

<ガス分離材の製造方法>
本発明のガス分離材の製造方法では、複数の細孔を有する無機多孔質部の該細孔の両端側よりそれぞれ対向拡散させた原料ガスと対向ガスとを反応させる化学蒸着によりガス分離層を形成する。したがって、本発明のガス分離材の製造方法は、基本的には、従来から種々の無機膜の製造に用いられている対向拡散CVD用の製膜装置を用いて実施することが可能である。なお、無機多孔質部については、後に説明する。
<Method for producing gas separation material>
In the method for producing a gas separation material of the present invention, a gas separation layer is formed by chemical vapor deposition in which a counter gas reacts with a raw material gas which is diffused in opposite directions from both ends of the pores of an inorganic porous part having a plurality of pores. Form. Therefore, the method for producing a gas separation material of the present invention can basically be carried out using a membrane forming apparatus for opposed diffusion CVD that has been conventionally used for producing various inorganic membranes. Note that the inorganic porous portion will be explained later.

本発明のガス分離材の製造方法では、無機多孔質部の細孔の一端側に原料ガスを供給する原料ガス供給工程を実施しながら、反応工程を繰り返し実施する。原料ガスは、炭素(C)および珪素(Si)を含む化合物、好ましくはCおよびSiに加えて水素(H)を含む化合物を含む。換言すれば、原料ガスは、炭化珪素系の生成物のSi源としてもC源としても使用可能な化合物を含む。このような化合物として、望ましくはSi-C結合を有する化合物、さらに望ましくはSi-C結合に加えてC-C結合を含む化合物、が挙げられる。また、環状構造を含む化合物が望ましい。具体的には、t-ブチルシラン(tert-CSiH)、シラシクロブタン(HSi-(CHCHCH)-)、1,4-ジシラブタン(HSiCSiH)、トリス(メチルアミノ)エチルシラン(CSi[NH(CH))、トリス(ジメチルアミノ)シラン(Si[N(CHH)などのオルガノシランが挙げられる。これらのうちの一種以上を気体状態で使用するのが望ましい。上記の化合物は常温で液体のものが多いため、恒温状態に維持されたバブラーに液体を収容し、キャリアガスを作用させることで液体を気化させるバブリング方式を用いてガス化するとよい。すなわち原料ガスは、キャリアガスとして、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガスなどの不活性ガスから選ばれる一種以上をさらに含んでもよい。バブラーの温度に特に限定はないが、望ましくは15~30℃、さらに望ましくは20~25℃である。さらに原料ガスは、希釈ガスとして、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガスなどの不活性ガスから選ばれる一種以上を含んでもよい。キャリアガスおよび希釈ガスは、原料ガスを100体積%としたとき、85~99.5体積%さらには90~99体積%含まれるのが実用的である。また、ガス混合器を用いて複数種類のガスを混合したり、添加元素を含むガスを混合したりしてもよい。たとえば、C源としてCH、C、C10、Cなどの炭化水素ガス、COガス、Si源としてSiH、SiHClなどのシラン化合物ガス、が挙げられる。 In the method for producing a gas separation material of the present invention, the reaction step is repeatedly carried out while carrying out the raw material gas supply step of supplying the raw material gas to one end side of the pores of the inorganic porous part. The raw material gas contains a compound containing carbon (C) and silicon (Si), preferably a compound containing hydrogen (H) in addition to C and Si. In other words, the raw material gas contains a compound that can be used as both a Si source and a C source for silicon carbide-based products. Such a compound includes preferably a compound having a Si--C bond, and more preferably a compound containing a C--C bond in addition to the Si--C bond. Further, a compound containing a cyclic structure is desirable. Specifically, t-butylsilane (tert-C 4 H 9 SiH 3 ), silacyclobutane (H 2 Si-(CH 2 CH 2 CH 2 )-), 1,4-disilabutane (H 3 SiC 2 H 4 SiH 3 ), tris(methylamino)ethylsilane ( C2H5Si [NH(CH) 3 ] 3 ), and tris(dimethylamino)silane (Si[N( CH3 ) 2 ] 3H ) . It will be done. It is desirable to use one or more of these in a gaseous state. Since many of the above compounds are liquid at room temperature, it is preferable to gasify them using a bubbling method in which the liquid is stored in a bubbler maintained at a constant temperature and the liquid is vaporized by the action of a carrier gas. That is, the raw material gas may further contain one or more types of inert gases such as nitrogen gas, helium gas, argon gas, and krypton gas as a carrier gas. The temperature of the bubbler is not particularly limited, but is preferably 15 to 30°C, more preferably 20 to 25°C. Furthermore, the raw material gas may contain one or more types of inert gases such as nitrogen gas, helium gas, argon gas, and krypton gas as a diluent gas. It is practical that the carrier gas and the diluent gas are contained in an amount of 85 to 99.5% by volume, more preferably 90 to 99% by volume, when the raw material gas is 100% by volume. Furthermore, a gas mixer may be used to mix multiple types of gases or to mix gases containing additive elements. For example, C sources include hydrocarbon gases such as CH 4 , C 3 H 8 , C 4 H 10 and C 2 H 2 , CO gas, and Si sources include silane compound gases such as SiH 4 and SiH 2 Cl 2 . .

原料ガスに含まれる化合物として特に望ましいのは、Si-C結合および環状構造を有する化合物であって、具体的には、シラシクロブタンである。シラシクロブタンが有するSiおよびCからなるネットワーク構造が分離活性層としての炭化珪素構造中に存在することで、ガス分離材のガス分離係数の向上に寄与すると推測される。 A particularly desirable compound contained in the raw material gas is a compound having an Si--C bond and a cyclic structure, and specifically, silacyclobutane. It is presumed that the presence of the network structure composed of Si and C of silacyclobutane in the silicon carbide structure as the separation active layer contributes to improving the gas separation coefficient of the gas separation material.

対向ガスは、前述の原料ガスと反応して炭化珪素を生成可能なガスであれば特に限定はないが、還元性のガスが望ましい。上記の原料ガスを還元雰囲気でエネルギー付与により分解することで、無機多孔質部に炭化珪素系の反応生成物が堆積する。具体的には、水素ガス(H)が望ましく、水素ガスと共に不活性ガスを含んでもよい。水素ガスを必須で含む対向ガスを使用することで、炭化珪素系の生成物が非晶質構造を含む場合、非晶質構造中に存在する欠陥に繋がる非結合終端が水素終端されることで、非晶質構造が安定化するため有効である。 The counter gas is not particularly limited as long as it can react with the above-mentioned raw material gas to produce silicon carbide, but a reducing gas is preferable. By decomposing the above-mentioned raw material gas by applying energy in a reducing atmosphere, a silicon carbide-based reaction product is deposited in the inorganic porous portion. Specifically, hydrogen gas (H 2 ) is preferable, and an inert gas may be included together with the hydrogen gas. By using a counter gas that essentially contains hydrogen gas, if the silicon carbide-based product contains an amorphous structure, the non-bond terminations that lead to defects in the amorphous structure are terminated with hydrogen. , is effective because it stabilizes the amorphous structure.

原料ガスは分解され、後述の反応工程にて、対向ガスとの圧力バランスで細孔内に堆積する。原料ガスを分解する方法に特に限定はなく、無機多孔質部の細孔内に供給される原料ガスを加熱するのが望ましい。すなわち、原料ガス供給工程は、熱分解された原料ガスが供給される工程であるのが望ましい。熱分解の温度としては、望ましくは300~650℃、より望ましくは400~550℃、特に望ましくは460~530℃である。そのため、原料ガスに含まれる化合物は、化合物自体の分解温度が650℃以下であるのが望ましく、より望ましくは150~450℃、特に望ましくは180~400℃である。650℃以下の比較的低温で反応させることで、非晶質の炭化珪素が生成されやすい。熱分解の方法としては、たとえば、ヒーターなどを用いて無機多孔質部ごと外部から加熱する方法が簡便である。その他の方法としては、高周波、マイクロ波などの電波照射、紫外線などの光照射、レーザ照射などの電磁波を用いる他、プラズマ照射などが挙げられる。 The raw material gas is decomposed and deposited in the pores in a pressure balance with the opposing gas in the reaction process described below. There is no particular limitation on the method of decomposing the raw material gas, and it is desirable to heat the raw material gas supplied into the pores of the inorganic porous part. That is, it is desirable that the source gas supply step is a step in which thermally decomposed source gas is supplied. The thermal decomposition temperature is preferably 300 to 650°C, more preferably 400 to 550°C, particularly preferably 460 to 530°C. Therefore, the compound contained in the raw material gas preferably has a decomposition temperature of 650°C or lower, more preferably 150 to 450°C, particularly preferably 180 to 400°C. By performing the reaction at a relatively low temperature of 650° C. or lower, amorphous silicon carbide is likely to be produced. A convenient method for thermal decomposition is, for example, to heat the entire inorganic porous portion from the outside using a heater or the like. Other methods include use of electromagnetic waves such as radio wave irradiation such as high frequency waves and microwaves, light irradiation such as ultraviolet rays, and laser irradiation, as well as plasma irradiation.

本発明のガス分離材の製造方法では、無機多孔質部の細孔の一端側に原料ガスを供給する原料ガス供給工程を実施しながら、反応工程を繰り返し実施する。反応工程は、対向ガス供給工程、対向ガス停止工程および原料ガス導入工程を含む。以下に、反応工程を詳説する。 In the method for producing a gas separation material of the present invention, the reaction step is repeatedly carried out while carrying out the raw material gas supply step of supplying the raw material gas to one end side of the pores of the inorganic porous part. The reaction step includes a counter gas supply step, a counter gas stop step, and a raw material gas introduction step. The reaction process will be explained in detail below.

<対向ガス供給工程>
対向ガス供給工程は、無機多孔質部の細孔の他端側に化合物と反応して炭化珪素を生成する対向ガスを供給する工程である。対向ガス供給工程は、原料ガス供給工程を実施しながら行うため、原料ガスと対向ガスの流量バランスを調整することでより望ましい炭化珪素系ガス分離層が形成される。原料ガスおよび対向ガスの流量は、無機多孔質部の体積あるいはガス分離層が形成される面積や処理空間の容積に応じて適宜決定されるが、原料ガスと対向ガスとの流量(単位:mL/分)の比を1:9~9:1とするのが望ましく、2:8~6:4とするのがより望ましい。
<Counter gas supply process>
The counter gas supply step is a step of supplying a counter gas that reacts with a compound to produce silicon carbide to the other end side of the pores of the inorganic porous portion. Since the counter gas supply step is performed while performing the raw material gas supply step, a more desirable silicon carbide-based gas separation layer is formed by adjusting the flow rate balance of the raw material gas and the counter gas. The flow rates of the raw material gas and the counter gas are appropriately determined depending on the volume of the inorganic porous part, the area where the gas separation layer is formed, and the volume of the processing space. /min) is preferably 1:9 to 9:1, more preferably 2:8 to 6:4.

<対向ガス停止工程>
対向ガス停止工程は、対向ガス供給工程の後に行う、対向ガスの供給を停止する工程である。細孔への対向ガスの供給が停止されさえすればよいため、ガス供給源から無機多孔質部へ連通するガス流路を遮断するといった通常の方法を用いればよい。対向ガス停止工程は、原料ガス供給工程を実施しながら行うが、このとき無機多孔質部の周囲に存在するのは、ほとんどが原料ガスであるため、実質的に反応が停止する方向へ作用する。
<Opposing gas stop process>
The counter gas stopping process is a process of stopping the supply of the counter gas, which is performed after the counter gas supply process. Since it is only necessary to stop the supply of counter gas to the pores, a normal method such as blocking the gas flow path communicating from the gas supply source to the inorganic porous portion may be used. The counter gas stopping process is performed while the raw material gas supply process is being carried out, but at this time, since most of what exists around the inorganic porous part is the raw material gas, it acts in the direction of substantially stopping the reaction. .

反応工程において、対向ガス供給工程から対向ガス停止工程へ変更するタイミングについては、後述する。 In the reaction step, the timing of changing from the counter gas supply step to the counter gas stop step will be described later.

<原料ガス導入工程>
原料ガス導入工程は、対向ガス停止工程と同時にまたは対向ガス停止工程の後に行う、原料ガスを無機多孔質部の細孔の一端側から他端側へと引き込む工程である。原料ガス導入工程も、原料ガス供給工程を実施しながら行うため、たとえば、細孔の一端側と他端側との間に差圧を作用させることで、原料ガスは容易に細孔の一端側から他端側へと引き込まれる。原料ガス導入工程は、原料ガスを無機多孔質部の細孔の一端側に供給したまま他端側から排気する原料ガス排気工程であるのが望ましく、一般的な対向拡散CVD装置に付属の真空ポンプを流用したり、別の真空ポンプを増設したり、などの簡便な構成で、原料ガスを細孔の一端側から他端側へと引き込むことができる。
<Raw material gas introduction process>
The raw material gas introducing step is a step of drawing the raw material gas from one end side of the pores of the inorganic porous portion to the other end side, which is performed simultaneously with the opposing gas stopping step or after the opposing gas stopping step. The raw material gas introduction process is also performed while the raw material gas supply process is being carried out, so for example, by applying a differential pressure between one end of the pore and the other end, the raw material gas can be easily transferred to one end of the pore. from the other end. The raw material gas introduction step is preferably a raw material gas exhausting step in which the raw material gas is supplied to one end of the pores of the inorganic porous part and exhausted from the other end. With a simple configuration such as reusing a pump or adding another vacuum pump, the raw material gas can be drawn from one end of the pore to the other end.

実質的に反応が停止している状態で原料ガスを細孔の一端側から他端側へと引き込むことで、反応自体を一時停止させた状態で、細孔の一端側に高濃度で存在する原料ガスを細孔の他端側へと移動させることができる。この状態で対向ガスの供給を再開、さらには反応工程を繰り返し実施すれば、前回の対向ガス供給工程の反応において生成した炭化珪素系の生成物の近傍、具体的には無機多孔質部の細孔の内部で反応を再開させることができるため、厚膜化の抑制および欠陥の低減が可能となると考えられる。とりわけ、原料ガス導入工程により、無機多孔質部の表面に存在する原料ガスの濃度が低下するため、無機多孔質部の表面を覆うような炭化珪素系の生成物の生成が抑制される。そして、反応工程を望ましくは3回以上、さらに望ましくは5回以上繰り返すことが望ましい。無機多孔質部の細孔の内部で確実に繰り返し反応させることにより、ガス分離層の厚膜化を抑制できると考えられる。なお、反応工程は、望ましくは5回以下、さらに望ましくは10回以下とするのが実用的である。 By drawing the raw material gas from one end of the pore to the other end while the reaction is essentially stopped, the gas is present at a high concentration at one end of the pore while the reaction itself is temporarily stopped. The source gas can be moved to the other end of the pore. In this state, if the counter gas supply is restarted and the reaction process is repeated, the silicon carbide products generated in the reaction of the previous counter gas supply process will be located in the vicinity of the silicon carbide-based products, specifically in the fine areas of the inorganic porous part. Since the reaction can be restarted inside the pores, it is thought that it is possible to suppress thickening of the film and reduce defects. In particular, since the raw material gas introduction step reduces the concentration of the raw material gas present on the surface of the inorganic porous part, the generation of silicon carbide-based products that cover the surface of the inorganic porous part is suppressed. It is desirable to repeat the reaction step desirably three times or more, more desirably five times or more. It is thought that by ensuring repeated reactions inside the pores of the inorganic porous portion, it is possible to suppress the increase in thickness of the gas separation layer. Note that it is practical to carry out the reaction step desirably 5 times or less, and more desirably 10 times or less.

図1および図2は、本発明のガス分離材の製造方法における反応工程の一実施形態を模式的に示した図である。横軸は時間経過を示し、各ガスの供給(実線で示す)または導入(点線で示す)を実施するか否かを「ON」および「OFF」で示している。反応工程において連続的に行われる原料ガス供給工程と共に対向ガス供給工程Aが行われる間は、原料ガスと対向ガスとが反応して、反応生成物である炭化珪素系の生成物が細孔内に堆積する。図1に示す実施形態では、対向ガス供給工程Aに続いて、対向ガス停止工程Bおよび原料ガス導入工程Bが同時に行われる。この工程Aおよび工程Bが1サイクルとなる。あるいは、図2に示す実施形態では、対向ガス供給工程Aに続いて対向ガス停止工程C、対向ガス停止工程Cに続いて原料ガス導入工程Dが行われる。この工程A、工程Cおよび工程Dが1サイクルとなる。工程B、CおよびDでは、基本的に原料ガスと対向ガスとの接触はなく、反応は実質的に停止する。つまり、炭化珪素系の反応生成物が生成される工程と生成が停止する工程とで、1サイクルが構成されると言うこともできる。 FIG. 1 and FIG. 2 are diagrams schematically showing one embodiment of the reaction step in the method for producing a gas separation material of the present invention. The horizontal axis shows the passage of time, and "ON" and "OFF" indicate whether each gas is supplied (indicated by a solid line) or introduced (indicated by a dotted line). While the counter gas supply step A is performed together with the raw material gas supply step that is performed continuously in the reaction process, the raw material gas and the counter gas react, and silicon carbide-based products, which are reaction products, are absorbed into the pores. is deposited on. In the embodiment shown in FIG. 1, following the counter gas supply step A, the counter gas stop step B and the raw material gas introduction step B are performed simultaneously. These steps A and B constitute one cycle. Alternatively, in the embodiment shown in FIG. 2, the counter gas supply step A is followed by the counter gas stop step C, and the counter gas stop step C is followed by the source gas introduction step D. These steps A, C, and D constitute one cycle. In steps B, C, and D, there is basically no contact between the raw material gas and the counter gas, and the reaction substantially stops. In other words, it can be said that one cycle consists of a step in which a silicon carbide-based reaction product is produced and a step in which the production is stopped.

1サイクルの実施時間に特に限定はなく、ガス分離層が形成される面積や細孔径に応じて適宜決定されるが、1サイクルあたりの実施時間は、望ましくは25~180秒、より望ましくは50~100秒である。1サイクルあたりの実施時間を25秒以上とすることで、対向ガスの流量が安定して成膜の再現性が向上する。1サイクルあたりの実施時間が180秒以下であれば、原料ガスの過剰な消費を抑制し、原料ガスと対向ガスとのバランスを保つことができる。また、1サイクルあたりの工程Aおよび工程Bの実施時間は、工程Aの実施時間と工程Bの実施時間の比で、望ましくは1:2~2:1、より望ましくは2:3~3:2である。なお、1サイクルあたりの工程Bの実施時間は、1サイクルあたりの工程Cと工程Dの実施時間の和と捉えることができる。さらに、工程Cおよび工程Dの実施時間は、工程Cの実施時間と工程Dの実施時間の比で、望ましくは1:2~1:10、より望ましくは1:3~1:9である。図1および図2では、サイクル毎の実施時間を等しく示しているが、サイクル毎に実施時間を変更してもよい。 The execution time of one cycle is not particularly limited and is appropriately determined depending on the area where the gas separation layer is formed and the pore diameter, but the execution time per cycle is preferably 25 to 180 seconds, more preferably 50 seconds. ~100 seconds. By setting the execution time per cycle to 25 seconds or more, the flow rate of the opposing gas is stabilized and the reproducibility of film formation is improved. If the execution time per cycle is 180 seconds or less, excessive consumption of the raw material gas can be suppressed and the balance between the raw material gas and the counter gas can be maintained. Further, the implementation time of process A and process B per cycle is the ratio of the implementation time of process A to the implementation time of process B, which is preferably 1:2 to 2:1, more preferably 2:3 to 3: It is 2. Note that the implementation time of process B per cycle can be regarded as the sum of the implementation times of process C and process D per cycle. Furthermore, the implementation time of Step C and Step D is the ratio of the implementation time of Step C to the implementation time of Step D, and is preferably 1:2 to 1:10, more preferably 1:3 to 1:9. Although FIGS. 1 and 2 show the same execution time for each cycle, the execution time may be changed for each cycle.

<その他の工程>
本発明のガス分離材の製造方法は、製造するガス分離材の用途に応じて他の工程をさらに実施してもよい。たとえば、先に説明した反応工程の後に、さらに対向ガス供給工程のみを行ってもよい。また、無機多孔質部の材質によっては、反応工程の前に、無機多孔質部を還元する還元工程を行ってもよい。還元工程は、無機多孔質部を構成する材料が、添加金属を含む場合に有効である。
<Other processes>
The method for producing a gas separation material of the present invention may further include other steps depending on the use of the gas separation material to be produced. For example, after the reaction step described above, only a counter gas supply step may be performed. Further, depending on the material of the inorganic porous part, a reduction step for reducing the inorganic porous part may be performed before the reaction step. The reduction step is effective when the material constituting the inorganic porous portion contains an additive metal.

<ガス分離材>
本発明のガス分離材は、複数の細孔を有する無機多孔質部と、炭化珪素を含み無機多孔質部の少なくとも細孔の内部を閉塞するガス分離層と、を備える。なお、本発明のガス分離材は、先に詳説した本発明のガス分離材の製造方法により製造可能である。
<Gas separation material>
The gas separation material of the present invention includes an inorganic porous portion having a plurality of pores, and a gas separation layer containing silicon carbide and closing at least the inside of the pores of the inorganic porous portion. Note that the gas separation material of the present invention can be manufactured by the method for manufacturing the gas separation material of the present invention described in detail above.

無機多孔質部は、複数の細孔を有するものであれば、特に限定はない。無機多孔質部は、原料ガスと対向ガスとを対向拡散させるため、線状または網目状に貫通する細孔、換言すれば連通孔を有する多孔質体が好ましい。ただし、化学蒸着では原料ガスと対向ガスとを反応させる際に無機多孔質部の周辺も高温になることがあることから、熱的に安定な材料で構成されるのが好ましい。具体的には、α-アルミナ、ムライト、コージェライト、炭化珪素などが挙げられる。ただし、これらの無機多孔質材料は、通常、連通孔の平均細孔径が150~1000nmであるため、対向拡散CVDを用いて細孔を反応生成物で閉塞させて細孔内部にガス分離層を形成するには不向きである。細孔内部にガス分離層を形成する場合には、前述の無機多孔質材料からなる無機多孔質部材に形成された、1~10nm程度の平均細孔径をもつ無機多孔質中間層を無機多孔質部として用いるのが好ましい。特に、炭化珪素を主成分とするガス分離層に対しては、好ましくは10nm以下、より好ましくは9nm以下、特に好ましくは8nm以下の平均細孔径の細孔を有するγ-アルミナからなる中間層を用いるのがよい。なかでも、添加金属元素としてニッケル(Ni)元素を含むγ-アルミナ中間層は、ガス分離材に必要とされる耐湿性の観点から好適である。つまり、無機多孔質部は、アルミニウム(Al)、酸素(O)およびニッケル(Ni)を含むアルミナ系材料から構成されるのが好ましい。γ-アルミナ中間層における細孔の平均細孔径の下限を規定するのであれば、好ましくは2nm、より好ましくは3nm、特に好ましくは4nmである。このようなγ-アルミナ中間層は、好ましくは40~200nm、より好ましくは60~150nmの平均細孔径の細孔を有する無機多孔質部材の表面に形成されるのが好ましい。中間層の膜厚に限定はないが、1~6μmが好ましく、2~5μmがより好ましい。γ-アルミナ中間層は、公知の方法で成膜可能である。 The inorganic porous part is not particularly limited as long as it has a plurality of pores. The inorganic porous portion is preferably a porous body having pores penetrating linearly or in a mesh pattern, in other words, communicating pores, in order to cause the raw material gas and the counter gas to diffuse in opposite directions. However, in chemical vapor deposition, when the source gas and counter gas are reacted, the temperature around the inorganic porous portion may become high, so it is preferable to use a thermally stable material. Specific examples include α-alumina, mullite, cordierite, and silicon carbide. However, these inorganic porous materials usually have communicating pores with an average pore diameter of 150 to 1000 nm, so counter-diffusion CVD is used to block the pores with a reaction product to form a gas separation layer inside the pores. Not suitable for forming. When forming a gas separation layer inside the pores, an inorganic porous intermediate layer having an average pore diameter of about 1 to 10 nm formed in an inorganic porous member made of the above-mentioned inorganic porous material is used as an inorganic porous intermediate layer. It is preferable to use it as a part. In particular, for a gas separation layer mainly composed of silicon carbide, an intermediate layer made of γ-alumina having pores with an average pore size of preferably 10 nm or less, more preferably 9 nm or less, particularly preferably 8 nm or less is used. Good to use. Among these, a γ-alumina intermediate layer containing nickel (Ni) as an added metal element is suitable from the viewpoint of moisture resistance required for a gas separation material. That is, the inorganic porous portion is preferably composed of an alumina-based material containing aluminum (Al), oxygen (O), and nickel (Ni). If the lower limit of the average pore diameter of the pores in the γ-alumina intermediate layer is to be defined, it is preferably 2 nm, more preferably 3 nm, and particularly preferably 4 nm. Such a γ-alumina intermediate layer is preferably formed on the surface of an inorganic porous member having pores with an average pore diameter of preferably 40 to 200 nm, more preferably 60 to 150 nm. The thickness of the intermediate layer is not limited, but is preferably 1 to 6 μm, more preferably 2 to 5 μm. The γ-alumina intermediate layer can be formed by a known method.

なお、本明細書において、無機多孔質部材の平均細孔径は、市販の細孔分布測定装置を用いてバブルポイント法およびハーフドライ法により測定された細孔分布における50%透過流束径である。また、中間層の平均細孔径は、西華産業株式会社製細孔径分布測定装置「ナノパームポロメーター」により測定された細孔分布における50%透過流束径である。 In this specification, the average pore diameter of the inorganic porous member is the 50% permeation flux diameter in the pore distribution measured by the bubble point method and the half dry method using a commercially available pore distribution measuring device. . Further, the average pore diameter of the intermediate layer is the 50% permeation flux diameter in the pore distribution measured by a pore diameter distribution measuring device "Nanopalm Porometer" manufactured by Seika Sangyo Co., Ltd.

無機多孔質部材の形状は、目的や用途に応じて選択されるが、板状、柱状、筒状、半筒状、棒状、塊状などのいずれであってもよい。無機多孔質部材の大きさも、目的や用途に応じて選択され、角筒や円筒などの筒状、曲板や平板などの板状、などが挙げられる。無機多孔質部材の形状が、ガス分離材に好適な円筒形状である場合は、その外径をφ2~16mmとするのが好ましく、φ5~13mmとするのがより好ましい。 The shape of the inorganic porous member is selected depending on the purpose and use, and may be any of plate, columnar, cylindrical, semi-cylindrical, rod-like, block-like, etc. The size of the inorganic porous member is also selected depending on the purpose and use, and examples include cylindrical shapes such as square tubes and cylinders, and plate shapes such as curved plates and flat plates. When the shape of the inorganic porous member is a cylindrical shape suitable for a gas separation material, the outer diameter is preferably φ2 to 16 mm, more preferably φ5 to 13 mm.

ガス分離層は、炭化珪素を含み、無機多孔質部の少なくとも細孔の内部を閉塞する。ガス分離材は、無機多孔質部の細孔の内壁に形成され該細孔の内部を閉塞するのが好ましく、基本的には、細孔の内部のみに存在するのが好ましい。換言すれば、ガス分離層は、無機多孔質部の細孔から外にはみ出る外出部を含まないのが好ましい。しかし、外出部を敢えて規定するのであれば、無機多孔質部の表面から外出部の表面までの外出部における膜厚が好ましくは100nm以下、さらに好ましくは10nm以上60nm以下である。ガス外出部を確認するには、表面を白金蒸着したガス分離材の断面に対して、走査型電子顕微鏡に付属のエネルギー分散形X線分析装置を用いたSEM/EDS分析を行い、白金蒸着層付近の最表面を観察することで可能となる。外出部の膜厚が厚いと、ガス透過量が低減して処理能力が低下すると共に、クラックが入りやすいなど欠陥発生の原因となりガス分離特性の低下につながるため好ましくない。 The gas separation layer contains silicon carbide and closes at least the inside of the pores of the inorganic porous portion. It is preferable that the gas separation material is formed on the inner walls of the pores of the inorganic porous part to block the insides of the pores, and basically, it is preferable that the gas separation material exists only inside the pores. In other words, it is preferable that the gas separation layer does not include any protruding parts that protrude from the pores of the inorganic porous part. However, if the outgoing part is intentionally defined, the film thickness in the outgoing part from the surface of the inorganic porous part to the surface of the outgoing part is preferably 100 nm or less, more preferably 10 nm or more and 60 nm or less. In order to confirm the gas exit part, a cross section of the gas separation material whose surface is coated with platinum is subjected to SEM/EDS analysis using an energy dispersive X-ray analyzer attached to a scanning electron microscope. This is possible by observing the nearby outermost surface. If the film thickness of the external portion is thick, the amount of gas permeation is reduced, which lowers the processing capacity, and it is also undesirable because it causes defects such as easy cracking and leads to a reduction in gas separation characteristics.

ガス分離層に含まれる炭化珪素は、非晶質炭化珪素を含むのが好ましい。非晶質は、結晶粒界が無いため欠陥が入り難く、ガス分離特性に優れる。なお、非晶質を含むガス分離層を製造するには、前述の通り、分解温度の低い原料ガスを選定し、低い温度で反応させるのが望ましい。 The silicon carbide contained in the gas separation layer preferably includes amorphous silicon carbide. Since amorphous materials do not have grain boundaries, they are less likely to have defects and have excellent gas separation properties. In addition, in order to manufacture a gas separation layer containing an amorphous substance, as mentioned above, it is desirable to select a raw material gas with a low decomposition temperature and to react at a low temperature.

本発明のガス分離材は、二酸化炭素の透過率に対する水素の透過率の比であらわされる理想分離係数(H/CO)が400℃において1000以上さらには2000以上であるのが好ましい。なお、理想分離係数の上限を敢えて規定するならば、20000以下さらには10000以下であるのが好ましい。水素ガスおよび二酸化炭素ガスの透過率は、「定容積圧力変化法」による透過量の測定値から算出される。 The gas separation material of the present invention preferably has an ideal separation coefficient (H 2 /CO 2 ) expressed as a ratio of hydrogen permeability to carbon dioxide permeability of 1000 or more and more preferably 2000 or more at 400°C. Note that, if the upper limit of the ideal separation coefficient is to be specified, it is preferably 20,000 or less, and more preferably 10,000 or less. The permeability of hydrogen gas and carbon dioxide gas is calculated from the measured value of permeation amount by "constant volume pressure change method".

以上、本発明のガス分離材およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。いずれの実施形態が最良であるかは、要求性能、利用対象などによって異なるが、本発明の要旨を逸脱しない範囲において当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Although the embodiments of the gas separation material and the method for producing the same of the present invention have been described above, the present invention is not limited to the above embodiments. Which embodiment is best depends on the required performance, intended use, etc., but the present invention may be implemented in various forms with changes and improvements that can be made by those skilled in the art without departing from the gist of the present invention. I can do it.

以下に、本発明のガス分離材およびその製造方法の実施例を挙げて、本発明を具体的に説明する。図3に実施例1に用いた蒸着処理装置を、図4に実施例1に用いた無機多孔質部材を、模式的に示す。 The present invention will be specifically explained below by giving examples of the gas separation material of the present invention and its manufacturing method. FIG. 3 schematically shows the vapor deposition processing apparatus used in Example 1, and FIG. 4 schematically shows the inorganic porous member used in Example 1.

<実施例1>
(1)蒸着処理装置
蒸着処理装置は、処理室10と、原料ガス供給手段20と、対向ガス供給手段30と、原料ガス導入手段40と、エネルギー付与手段50と、を備える。
<Example 1>
(1) Vapor Deposition Processing Apparatus The vapor deposition processing apparatus includes a processing chamber 10, a raw material gas supply means 20, a counter gas supply means 30, a raw material gas introduction means 40, and an energy application means 50.

処理室10は、円筒形状で軸方向の両端部を真空継手16および17を介して配管と接続可能なステンレス鋼製の反応器11からなる。反応器11は、内径がφ28mm、全長が476mmであり、外周面には2個の開口18、19が形成されている。 The processing chamber 10 includes a cylindrical reactor 11 made of stainless steel and having both axial ends connectable to piping via vacuum joints 16 and 17. The reactor 11 has an inner diameter of 28 mm, a total length of 476 mm, and two openings 18 and 19 are formed in the outer peripheral surface.

原料ガス供給手段20は、原料ガス供給管218、原料ガス配管21、バブラー22、マスフローコントローラ(これ以下「MFC」と略記)23、23dおよびガスボンベ24、24dから構成され、さらにガス放出手段として原料ガス放出管219、原料ガス放出配管29およびコールドトラップ28を備える。原料ガス供給管218は、ステンレス鋼製で、開口18から反応器11の径方向外周側へ延出するように開口18に溶接されている。原料ガス配管21は、ステンレス鋼製配管であって、原料ガス供給管218とバブラー22とを接続する。ガスボンベ24はバブラー22に接続され、ガスボンベ24からバブラー22に供給されるガスの流速制御を行うMFC23および開閉バルブ25がガスボンベ24とバフラー22との間に取り付けられている。また、原料ガス供給管218とバブラー22との間には、開閉バルブ25bが取り付けられている。ガスボンベ24dは、原料ガス配管21から分岐した先に接続され、流速制御を行うMFC23dおよび開閉バルブ25dがガスボンベ24dと原料ガス供給管218との間に取り付けられている。また、原料ガス放出管219は、ステンレス鋼製で、開口19から反応器11の径方向外周側へ延出するように開口19に溶接されている。原料ガス放出配管29は、ステンレス鋼製配管であって、原料ガス放出管219とコールドトラップ28とを接続する。圧力計27と開閉バルブ26は、原料ガス放出管219とコールドトラップ28との間に取り付けられている。 The raw material gas supply means 20 is composed of a raw material gas supply pipe 218, a raw material gas pipe 21, a bubbler 22, mass flow controllers (hereinafter abbreviated as "MFC") 23, 23d, and gas cylinders 24, 24d, and further includes a raw material gas supply pipe 218, a raw material gas pipe 21, a bubbler 22, a mass flow controller (hereinafter abbreviated as "MFC") 23, 23d, and gas cylinders 24, 24d. A gas release pipe 219, a raw material gas release pipe 29, and a cold trap 28 are provided. The raw material gas supply pipe 218 is made of stainless steel and is welded to the opening 18 so as to extend from the opening 18 toward the outer peripheral side of the reactor 11 in the radial direction. The raw material gas pipe 21 is a stainless steel pipe, and connects the raw material gas supply pipe 218 and the bubbler 22. The gas cylinder 24 is connected to the bubbler 22 , and an MFC 23 and an opening/closing valve 25 are installed between the gas cylinder 24 and the baffler 22 to control the flow rate of gas supplied from the gas cylinder 24 to the bubbler 22 . Further, an on-off valve 25b is installed between the raw material gas supply pipe 218 and the bubbler 22. The gas cylinder 24d is connected to a branched end of the source gas pipe 21, and an MFC 23d for controlling the flow rate and an on-off valve 25d are installed between the gas cylinder 24d and the source gas supply pipe 218. Further, the raw material gas discharge pipe 219 is made of stainless steel and is welded to the opening 19 so as to extend from the opening 19 toward the radially outer peripheral side of the reactor 11 . The raw material gas discharge pipe 29 is a stainless steel pipe, and connects the raw material gas discharge pipe 219 and the cold trap 28 . The pressure gauge 27 and the on-off valve 26 are installed between the raw material gas discharge pipe 219 and the cold trap 28.

対向ガス供給手段30は、対向ガス配管31、MFC32およびガスボンベ33から構成される。対向ガス配管31は、ステンレス鋼製配管であって、対向ガス配管31の一端部が真空継手17を介して反応器11の一端部に接続され、対向ガス配管31の他端部がガスボンベ33に接続されている。対向ガス配管31には開閉バルブ36とMFC32が取り付けられている。MFC32は、開閉バルブ36の開放時に、ガスボンベ33から反応器11へ流出するガスの流速制御を行う。 The counter gas supply means 30 includes a counter gas pipe 31, an MFC 32, and a gas cylinder 33. The counter gas pipe 31 is a stainless steel pipe, and one end of the counter gas pipe 31 is connected to one end of the reactor 11 via the vacuum joint 17, and the other end of the counter gas pipe 31 is connected to the gas cylinder 33. It is connected. An on-off valve 36 and an MFC 32 are attached to the opposing gas pipe 31. The MFC 32 controls the flow rate of gas flowing out from the gas cylinder 33 to the reactor 11 when the on-off valve 36 is opened.

原料ガス導入手段40は、主として、二方向に分岐する排気配管49および分岐の一方に接続されたロータリーポンプ48から構成される。排気配管49は、ステンレス鋼製配管であって、排気配管49の一端部が真空継手16を介して反応器11の他端部に接続され、排気配管49の分岐した他端部が開閉バルブ44および流量調整バルブ46を介してロータリーポンプ48に接続されている。また、排気配管49の分岐した他方には、開閉バルブ45が取り付けられており、開閉バルブ44および45を交互に開閉することで、ロータリーポンプ48による原料ガスの導入と対向ガスの放出とを切り替える。圧力計47は、排気配管49が分岐する手前に位置し、反応器11内の圧力変化を計測する。 The raw material gas introducing means 40 is mainly composed of an exhaust pipe 49 branching in two directions and a rotary pump 48 connected to one of the branches. The exhaust pipe 49 is made of stainless steel, and one end of the exhaust pipe 49 is connected to the other end of the reactor 11 via the vacuum joint 16, and the other branched end of the exhaust pipe 49 is connected to the on-off valve 44. and is connected to a rotary pump 48 via a flow rate adjustment valve 46. Further, an on-off valve 45 is attached to the other branched end of the exhaust pipe 49, and by alternately opening and closing the on-off valves 44 and 45, the introduction of raw material gas by the rotary pump 48 and the discharge of counter gas are switched. . The pressure gauge 47 is located before the exhaust pipe 49 branches, and measures pressure changes within the reactor 11.

エネルギー付与手段50は、円筒形状の発熱体51と断熱材52とがアルミニウム製の筐体53に収容されてなる、セラミックス電気管状炉を用いる。セラミックス電気管状炉は、軸方向に二分割開閉可能に構成されており、断面には、閉状態にて原料ガス供給管218および原料ガス放出管219を挟持可能な半円形状溝を有する。また、発熱体51の両端部には、リング型の耐熱性スペーサ54および55が載置され、発熱体51の中空部分に反応管11が互いに同軸的になるように収容される。発熱体51の全長が、反応器11の全長よりも短いため、反応器11の両端部は、セラミックス電気管状炉から突出する。エネルギー付与手段50の両端部外側には、真空継手16および17に用いられるゴム製Oリング14および15近傍を冷却することを目的として、それぞれ冷却ファン(図示せず)が取り付けられている。 The energy imparting means 50 uses a ceramic electric tubular furnace in which a cylindrical heating element 51 and a heat insulating material 52 are housed in an aluminum casing 53. The ceramic electric tubular furnace is configured to be able to be opened and closed in two parts in the axial direction, and has a semicircular groove in its cross section that can hold the raw material gas supply pipe 218 and the raw material gas discharge pipe 219 in the closed state. Further, ring-shaped heat-resistant spacers 54 and 55 are placed on both ends of the heating element 51, and the reaction tubes 11 are accommodated in the hollow portion of the heating element 51 so as to be coaxial with each other. Since the total length of the heating element 51 is shorter than the total length of the reactor 11, both ends of the reactor 11 protrude from the ceramic electric tubular furnace. Cooling fans (not shown) are attached to the outer sides of both ends of the energy applying means 50 for the purpose of cooling the vicinity of the rubber O-rings 14 and 15 used in the vacuum joints 16 and 17, respectively.

(2)無機多孔質部材
無機多孔質部材Sは、α-アルミナ製の管状基材S0の外表面にγ-アルミナ中間層S1およびガラスシールS2を形成してなる。無機多孔質部材Sの長手方向中央部に形成されたγ-アルミナ中間層S1が、炭化珪素系の生成物が蒸着される無機多孔質部Psである。
(2) Inorganic porous member The inorganic porous member S is formed by forming a γ-alumina intermediate layer S1 and a glass seal S2 on the outer surface of a tubular base material S0 made of α-alumina. The γ-alumina intermediate layer S1 formed in the longitudinal center of the inorganic porous member S is an inorganic porous part Ps on which a silicon carbide-based product is deposited.

基材S0として、外径φ3mm、厚さ300μm、長さ400mmで150nmの平均細孔径の連通孔を有し、両端からそれぞれ175mmをガラスシールされたNOK(株)製α-アルミナチューブを使用した。基材S0のうちシールされていない幅(長手方向の長さ。以下、同様)50mmの中央部には、無機多孔質部Psとして、Niを添加したベーマイト系混合液を塗布後、800℃にて焼成することで、添加金属元素としてNiを含有するγ-アルミナ中間層S1を形成した。塗布および焼成を二回行うことで、厚さ2.4μm(図7のSEM像にて確認)、平均細孔径が8nm(50%透過流束径)の中間層S1が得られた。 As the base material S0, an α-alumina tube manufactured by NOK Corporation was used, which had an outer diameter of φ3 mm, a thickness of 300 μm, a length of 400 mm, had communicating pores with an average pore diameter of 150 nm, and was glass-sealed for 175 mm from both ends. . A boehmite-based mixture containing Ni was applied as an inorganic porous part Ps to the unsealed width (longitudinal length; hereinafter the same) 50 mm central part of the base material S0, and then heated to 800 °C. By firing, a γ-alumina intermediate layer S1 containing Ni as an added metal element was formed. By performing coating and baking twice, an intermediate layer S1 having a thickness of 2.4 μm (as confirmed by the SEM image in FIG. 7) and an average pore diameter of 8 nm (50% permeation flux diameter) was obtained.

(3)ガス分離材の作製
図3に示した蒸着処理装置を用いて、無機多孔質部Psに炭化珪素系のガス分離層を形成した。無機多孔質部材Sを、処理室10の一端部から他端部へ挿入した。その両端部を2つ一組のOリング14および15を介して真空継手16および17で固定し、反応器11の内部が気密になるようにした。反応器11の内部は、無機多孔質部材Sにより、外周面側に位置する原料ガス供給側12と、内周面側に位置する対向ガス供給側13と、に区画された。
(3) Preparation of gas separation material A silicon carbide-based gas separation layer was formed in the inorganic porous part Ps using the vapor deposition processing apparatus shown in FIG. The inorganic porous member S was inserted from one end of the processing chamber 10 to the other end. Both ends thereof were fixed with vacuum joints 16 and 17 via a pair of O-rings 14 and 15, so that the inside of reactor 11 was made airtight. The inside of the reactor 11 was divided by the inorganic porous member S into a raw material gas supply side 12 located on the outer peripheral surface side and a counter gas supply side 13 located on the inner peripheral surface side.

次に、反応器11をセラミックス電気管状炉の発熱体51内に収容した。この状態で、真空継手16と排気配管49、真空継手17と対向ガス配管31、原料ガス供給管218と原料ガス配管21および原料ガス放出管219と原料ガス放出配管29、をそれぞれ接続した。 Next, the reactor 11 was housed in a heating element 51 of a ceramic electric tubular furnace. In this state, the vacuum joint 16 and the exhaust pipe 49, the vacuum joint 17 and the counter gas pipe 31, the raw material gas supply pipe 218 and the raw material gas pipe 21, and the raw material gas discharge pipe 219 and the raw material gas discharge pipe 29 were connected, respectively.

ガスボンベ24および24dにはアルゴンガス、ガスボンベ33には水素ガス、をそれぞれ準備した。バブラー22には、シラシクロブタン(SCB:分解温度200℃)を準備した。つまり、原料ガスとして、SCBおよびアルゴンガスの混合ガスを用い、対向ガスとして水素ガスを用いた。初期状態で、各バルブ25、25b、25d、26、36、44、45および46は、全て閉じた。 Argon gas was prepared in the gas cylinders 24 and 24d, and hydrogen gas was prepared in the gas cylinder 33, respectively. The bubbler 22 was prepared with silacyclobutane (SCB: decomposition temperature 200°C). That is, a mixed gas of SCB and argon gas was used as the raw material gas, and hydrogen gas was used as the counter gas. In the initial state, each valve 25, 25b, 25d, 26, 36, 44, 45, and 46 were all closed.

はじめに、ロータリーポンプ48を作動させてバルブ44および46を開き、反応器11内を減圧した。反応器11内の圧力が20Paに到達したら、発熱体51を作動させて、反応器11内の温度を515℃まで昇温させた。このとき、反応器11の両端部は、冷却ファン(図示せず)により冷却した。次に、バルブ44を閉じバルブ26および25dを開け、ガスボンベ24dより反応器11内をアルゴンガスパージした後、バルブ45および36を開けて反応器11内にガスボンベ33から水素ガスを導入し、無機多孔質部Psの水素還元処理を2時間行った。水素還元処理後、バルブ36を閉じて、ガスボンベ24dより反応器11内をアルゴンガスパージした。 First, the rotary pump 48 was operated to open the valves 44 and 46 to reduce the pressure inside the reactor 11. When the pressure inside the reactor 11 reached 20 Pa, the heating element 51 was activated to raise the temperature inside the reactor 11 to 515°C. At this time, both ends of the reactor 11 were cooled by cooling fans (not shown). Next, the valve 44 is closed, the valves 26 and 25d are opened, and the inside of the reactor 11 is purged with argon gas from the gas cylinder 24d. After that, the valves 45 and 36 are opened, hydrogen gas is introduced into the reactor 11 from the gas cylinder 33, and the inorganic porous The mass part Ps was subjected to hydrogen reduction treatment for 2 hours. After the hydrogen reduction treatment, the valve 36 was closed and the inside of the reactor 11 was purged with argon gas from the gas cylinder 24d.

[原料ガス供給工程]
水素還元処理に引き続き、反応器11内の温度は、515℃に維持した。バブラー22の温度は、25℃とした。原料濃度を下げるため、MFC23dによりガスボンベ24dからアルゴンガスを64.3mL/分、希釈ガスとして流した。次に、バルブ25を開けてMFC23によりアルゴンガスを7.2mL/分流してバブラー22内のSCBをバブリングさせた。バルブ25bを開けて、反応器11の原料ガス供給側12に原料ガスを導入した。余剰の原料ガスが反応器11外に放出されるように、バルブ26を開放した。
[Raw material gas supply process]
Following the hydrogen reduction treatment, the temperature inside the reactor 11 was maintained at 515°C. The temperature of the bubbler 22 was 25°C. In order to lower the raw material concentration, 64.3 mL/min of argon gas was flowed as a dilution gas from the gas cylinder 24d by the MFC 23d. Next, the valve 25 was opened and 7.2 mL/minute of argon gas was flowed through the MFC 23 to bubble the SCB in the bubbler 22. The valve 25b was opened and the raw material gas was introduced into the raw material gas supply side 12 of the reactor 11. The valve 26 was opened so that excess raw material gas was discharged outside the reactor 11.

[反応工程]
[対向ガス供給工程]
バルブ36を開け、反応器11の対向ガス供給側13(無機多孔質部材Sの内周側)に水素ガスを275mL/分にて導入した。余剰の対向ガスが反応器11外に放出されるように、バルブ45を開放した。この状態で90秒間、SCBガスと水素ガスとを対向拡散させた。
[Reaction process]
[Opposing gas supply process]
The valve 36 was opened, and hydrogen gas was introduced into the opposing gas supply side 13 (the inner peripheral side of the inorganic porous member S) of the reactor 11 at a rate of 275 mL/min. Valve 45 was opened so that excess counter gas was discharged to the outside of reactor 11. In this state, SCB gas and hydrogen gas were counter-diffused for 90 seconds.

[対向ガス停止工程および原料ガス導入工程]
対向ガス停止工程および原料ガス導入工程は、図1に示したように同時に行った。バルブ36を閉じて水素ガスの供給を停止し、同時にバルブ45を閉じてからバルブ44および46を開けて、圧力計47の表示で差圧が98kPaとなるようにし、反応器11内を90秒間吸引した。
[Counter gas stop process and raw material gas introduction process]
The opposing gas stopping process and the source gas introducing process were performed simultaneously as shown in FIG. Close the valve 36 to stop the supply of hydrogen gas, and at the same time close the valve 45 and open the valves 44 and 46 so that the differential pressure becomes 98 kPa as indicated by the pressure gauge 47, and the inside of the reactor 11 is heated for 90 seconds. I aspirated it.

上記の反応工程を、合計で5サイクル繰り返し、最後に対向ガス供給工程のみを90秒間行い、実施例1のガス分離材を得た。 The above reaction process was repeated for a total of 5 cycles, and finally only the opposing gas supply process was performed for 90 seconds to obtain the gas separation material of Example 1.

<ガス分離性能評価>
実施例1のガス分離材について、純ガスを用いた減圧式透過率測定を行った。減圧式透過率測定とは、分離膜を透過したガスを容積一定の容器に溜めた際に生じる圧力変化に要する時間から透過量を測定し、分離膜のガス透過率を算出する方法である。測定には、図5に模式図を示すガス透過試験装置を用い、定容積圧力変化法に基づき、50℃、200℃または400℃における単成分ガス透過試験を行った。単成分ガスは、ヘリウム、水素、二酸化炭素、アルゴン、酸素および窒素を用いた。水素ガスで測定する場合には、まず、ガス分離材を保持した透過セル内に大気圧の供給ガスを500mL/分にて流し、バッファタンク内を真空ポンプにより6kPa(開始設定)に減圧した。次に、真空ポンプとバッファタンクとの間に設置したストップバルブを閉じ、圧力計P2によってバッファタンク内が10kPa(終了設定)に昇圧するまでの時間を計測した。なお、用いるガスの種類によって、バッファタンク内ガス圧の開始設定および終了設定を変更した。ヘリウムでは、6kPaで開始して12kPaで終了した。二酸化炭素、アルゴン、酸素および窒素では、4kPaで開始して4.01kPaで終了した。圧力変化量および計測した変化時間から透過量[mol・s-1・Pa-1]を、さらに、単位面積あたりの透過率[mol・m-2・s-1・Pa-1]を、それぞれ算出した。結果を図6に示した。
<Gas separation performance evaluation>
Regarding the gas separation material of Example 1, vacuum transmittance measurement using pure gas was performed. Decompression type permeability measurement is a method of calculating the gas permeability of the separation membrane by measuring the amount of permeation from the time required for the pressure change that occurs when the gas that has permeated through the separation membrane is stored in a container with a constant volume. For the measurements, a single component gas permeation test was conducted at 50°C, 200°C, or 400°C based on the constant volume pressure change method using a gas permeation test device schematically shown in FIG. 5. Single component gases used were helium, hydrogen, carbon dioxide, argon, oxygen, and nitrogen. When measuring with hydrogen gas, first, a supply gas at atmospheric pressure was flowed at 500 mL/min into a permeation cell holding a gas separation material, and the pressure inside the buffer tank was reduced to 6 kPa (starting setting) using a vacuum pump. Next, a stop valve installed between the vacuum pump and the buffer tank was closed, and the time required for the pressure inside the buffer tank to rise to 10 kPa (end setting) was measured using a pressure gauge P2. Note that the start and end settings of the gas pressure in the buffer tank were changed depending on the type of gas used. For helium, it started at 6kPa and ended at 12kPa. For carbon dioxide, argon, oxygen and nitrogen, it started at 4kPa and ended at 4.01kPa. From the pressure change amount and the measured change time, the permeation amount [mol・s −1・Pa −1 ] and the permeability per unit area [mol・m −2・s −1・Pa −1 ] are calculated, respectively. Calculated. The results are shown in FIG.

また、二酸化炭素ガスおよび水素ガスの透過率の値を用い、理想分離係数を求めた。結果を表1に示した。理想分離係数は、測定温度が高くなる程、値が大きくなる傾向にあったが、50℃の低温域でも300を超える値を示し、400℃では、平均値で2500を超え、最大値は3503であった。 Furthermore, the ideal separation coefficient was determined using the permeability values of carbon dioxide gas and hydrogen gas. The results are shown in Table 1. The ideal separation coefficient tended to increase as the measurement temperature increased, but it still exceeded 300 even in the low temperature range of 50°C, and at 400°C, the average value exceeded 2500 and the maximum value was 3503. Met.

<SEM/EDX分析>
さらに、実施例1のガス分離材について、SEM/EDX分析(加速電圧:5kV)を行った。SEM像および炭素(C)と白金(Pt)のEDS線分析結果を図7に、珪素(Si)および炭素(C)のEDS線分析結果を図8(a)および図8(b)に、それぞれ示した。分析は、実施例1のガス分離材を切断後、その表面に60nmの白金(Pt)コートさらにタングステン(W)コートを施して無機多孔質部側の最表面を保護した状態で、その断面を収束イオンビーム(FIB)加工して500nmの厚さとしたサンプルを用いた。
<SEM/EDX analysis>
Furthermore, the gas separation material of Example 1 was subjected to SEM/EDX analysis (acceleration voltage: 5 kV). The SEM image and EDS line analysis results of carbon (C) and platinum (Pt) are shown in Figure 7, and the EDS line analysis results of silicon (Si) and carbon (C) are shown in Figures 8(a) and 8(b). shown respectively. In the analysis, after cutting the gas separation material of Example 1, its surface was coated with 60 nm of platinum (Pt) and further coated with tungsten (W) to protect the outermost surface on the inorganic porous side. A sample processed by focused ion beam (FIB) to a thickness of 500 nm was used.

図7は、SEM像およびSEM像上に白線で示した位置をEDS線分析した結果であって、EDS線分析結果はCおよびPtを重ねて示した。SEM像に見られる基材S0と中間層S1(無機多孔質部Ps)との境界で、Cの検出強度が急激に増大しており、Cは中間層S1の細孔の内部に存在した。また、Ptの検出位置から中間層S1の最表面の位置が判るため、図8に示したEDS線分析結果において最表面の位置を点線で示した。図8(a)では、最表面付近にSiの検出強度が高くあらわれているが、最表面よりも内側に存在した。外出部は、多く見積もっても50nm程度の範囲内であった。つまり、AlおよびOを含む中間層S1の細孔から外にはみ出る外出部の存在を示すようなCおよびSiはほとんど確認できないと言える。なお、図8(a)にて5μm以上で検出されているのは、Wのオーバーラップピークである。したがって、実施例1のガス分離材において、炭化珪素系の生成物は、中間層S1の細孔の内壁に形成されてガス分離層として細孔の内部を閉塞しており、ガス分離機能は細孔内部に存在する層によるものであると推測された。 FIG. 7 shows the results of EDS line analysis of the SEM image and the positions indicated by white lines on the SEM image, and the EDS line analysis results show C and Pt superimposed. At the boundary between the base material S0 and the intermediate layer S1 (inorganic porous part Ps) seen in the SEM image, the detection intensity of C rapidly increased, and C was present inside the pores of the intermediate layer S1. Furthermore, since the position of the outermost surface of the intermediate layer S1 can be determined from the detected position of Pt, the position of the outermost surface is indicated by a dotted line in the EDS line analysis results shown in FIG. In FIG. 8(a), the detection intensity of Si appears high near the outermost surface, but it exists inside the outermost surface. The outside portion was within a range of about 50 nm at most. In other words, it can be said that C and Si, which indicate the existence of an external portion protruding from the pores of the intermediate layer S1 containing Al and O, can hardly be confirmed. In addition, what is detected at 5 μm or more in FIG. 8(a) is an overlap peak of W. Therefore, in the gas separation material of Example 1, the silicon carbide-based products are formed on the inner walls of the pores of the intermediate layer S1 and block the insides of the pores as a gas separation layer, and the gas separation function is It was assumed that this was due to the layer existing inside the pore.

<比較例1>
原料ガスとしてt-ブチルシラン(TBS:分解温度340℃)および窒素ガスの混合ガスを用い、反応工程を対向ガス供給工程のみ(10分)とし、無機多孔質部材Sの寸法を変更した他は、実施例1と同様にして比較例1のガス分離材を作製した。原料ガスの変更に伴い、バブリングのための窒素ガス流量を10mL/分、希釈ガスとしての窒素ガス流量を90mL/分とし、水素ガス流量を150mL/分とした。また、無機多孔質部材Sの寸法変更に伴い、反応器11の内径をφ17mm、全長を389mmとした。本比較例に用いた無機多孔質部材を、図4を用いて以下に説明する。
<Comparative example 1>
A mixed gas of t-butylsilane (TBS: decomposition temperature 340°C) and nitrogen gas was used as the raw material gas, the reaction step was only a counter gas supply step (10 minutes), and the dimensions of the inorganic porous member S were changed. A gas separation material of Comparative Example 1 was produced in the same manner as in Example 1. With the change in raw material gas, the nitrogen gas flow rate for bubbling was set to 10 mL/min, the nitrogen gas flow rate as diluent gas was set to 90 mL/min, and the hydrogen gas flow rate was set to 150 mL/min. Further, due to the change in dimensions of the inorganic porous member S, the inner diameter of the reactor 11 was set to φ17 mm, and the total length was set to 389 mm. The inorganic porous member used in this comparative example will be explained below using FIG. 4.

無機多孔質部材Sは、α-アルミナ製の管状基材S0の外表面にγ-アルミナ中間層S1およびガラスシールS2を形成してなる。基材S0として、外径φ6mm、厚さ880μm、長さ400mmで150nmの平均細孔径の連通孔を有する(株)ノリタケカンパニーリミテド製α-アルミナチューブを使用した。基材S0の両端からそれぞれ225mmの幅でガラス粉末を塗布後、溶融させて凝固させることで基材S0の両端部表面を完全にガラスで被覆し、蒸着処理が不要な連通孔をガラスにより閉塞させた。基材S0のうちシールされていない幅50mmの中央部には、無機多孔質部Psとして、Niを添加したベーマイト系混合液を塗布後、800℃にて焼成することで、添加金属元素としてNiを含有するγ-アルミナ中間層S1を形成した。塗布および焼成を二回行うことで、厚さ2μm、平均細孔径が8nm(50%透過流束径)の中間層S1が得られた。 The inorganic porous member S is formed by forming a γ-alumina intermediate layer S1 and a glass seal S2 on the outer surface of a tubular base material S0 made of α-alumina. As the substrate S0, an α-alumina tube manufactured by Noritake Co., Ltd., having an outer diameter of φ6 mm, a thickness of 880 μm, a length of 400 mm, and communicating pores with an average pore diameter of 150 nm was used. After applying glass powder to a width of 225 mm from both ends of the base material S0, it is melted and solidified to completely cover the surfaces of both ends of the base material S0 with glass, and the communicating holes that do not require vapor deposition treatment are closed with glass. I let it happen. In the unsealed central part of the base material S0 with a width of 50 mm, a boehmite-based mixture containing Ni is applied as an inorganic porous part Ps, and then Ni is added as an added metal element by baking at 800°C. A γ-alumina intermediate layer S1 was formed. By performing coating and baking twice, an intermediate layer S1 having a thickness of 2 μm and an average pore diameter of 8 nm (50% permeation flux diameter) was obtained.

<ガス分離性能評価>
比較例1のガス分離材について、実施例1のガス分離材と同様、定容積圧力変化法に基づき、50℃における減圧式透過率測定を行って、ガス分離性能を評価した。その結果を表1に示した。50℃で測定した理想分離係数は7であったため、400℃で測定しても1000以上の理想分離係数を示すことは期待できない。
<Gas separation performance evaluation>
Regarding the gas separation material of Comparative Example 1, similarly to the gas separation material of Example 1, vacuum permeability measurement was performed at 50° C. based on the constant volume pressure change method to evaluate the gas separation performance. The results are shown in Table 1. Since the ideal separation factor measured at 50° C. was 7, it cannot be expected to show an ideal separation factor of 1000 or more even if measured at 400° C.

<実施例2>
原料ガスとして1,4-ジシラブタン(DSB:分解温度350℃)および窒素ガスの混合ガスを用い、バブラー温度を20℃、反応器内の温度を490℃、反応工程を10サイクル(対向ガス供給工程:30秒、対向ガス停止工程および原料ガス導入工程:30秒)、反応工程後の対向ガス供給工程を30秒とした他は、実施例1と同様にして実施例2のガス分離材を作製した。なお、原料ガスの変更に伴い、バブリングのための窒素ガス流量を12mL/分、希釈ガスとしての窒素ガス流量を100mL/分とした。
<Example 2>
Using a mixed gas of 1,4-disilabutane (DSB: decomposition temperature 350°C) and nitrogen gas as the raw material gas, the bubbler temperature was 20°C, the temperature inside the reactor was 490°C, and the reaction process was carried out for 10 cycles (counter gas supply process). The gas separation material of Example 2 was produced in the same manner as in Example 1, except that the counter gas supply step after the reaction step was changed to 30 seconds, the counter gas stop step and raw material gas introduction step: 30 seconds), and the counter gas supply step after the reaction step was changed to 30 seconds. did. In addition, due to the change in raw material gas, the flow rate of nitrogen gas for bubbling was set to 12 mL/min, and the flow rate of nitrogen gas as diluent gas was set to 100 mL/min.

<ガス分離性能評価>
実施例2のガス分離材について、実施例1のガス分離材と同様、定容積圧力変化法に基づき、400℃における減圧式透過率測定を行って、ガス分離性能を評価した。その結果を表1に示した。400℃で測定した理想分離係数は、1020で、高いガス分離特性を示した。
<Gas separation performance evaluation>
As with the gas separation material of Example 1, the gas separation material of Example 2 was evaluated for gas separation performance by performing vacuum permeability measurement at 400° C. based on the constant volume pressure change method. The results are shown in Table 1. The ideal separation coefficient measured at 400°C was 1020, indicating high gas separation properties.

Figure 0007420473000001
Figure 0007420473000001

Claims (8)

複数の細孔を有する無機多孔質部の該細孔の両端側よりそれぞれ対向拡散させた原料ガスと対向ガスとを反応させる化学蒸着によりガス分離層を形成するガス分離材の製造方法において、
前記原料ガスは炭素(C)および珪素(Si)を含む化合物を含み、前記細孔の一端側に該原料ガスを供給する原料ガス供給工程を実施しながら、反応工程を繰り返し実施し、該反応工程は、
前記細孔の他端側に前記化合物と反応して炭化珪素を生成する対向ガスを供給する対向ガス供給工程と、
前記対向ガス供給工程の後に行う、前記対向ガスの供給を停止する対向ガス停止工程と、
前記対向ガス停止工程と同時にまたは該対向ガス停止工程の後に行う、前記原料ガスを前記細孔の一端側から他端側へと引き込む原料ガス導入工程と、
を含むガス分離材の製造方法。
In a method for producing a gas separation material in which a gas separation layer is formed by chemical vapor deposition in which a counter gas is reacted with a source gas diffused in opposite directions from both ends of the pores of an inorganic porous part having a plurality of pores,
The raw material gas contains a compound containing carbon (C) and silicon (Si), and the reaction step is repeatedly carried out while carrying out the raw material gas supply step of supplying the raw material gas to one end side of the pore. The process is
a counter gas supply step of supplying a counter gas that reacts with the compound to produce silicon carbide to the other end side of the pore;
a counter gas stop step of stopping the supply of the counter gas, which is performed after the counter gas supply step;
A raw material gas introducing step of drawing the raw material gas from one end side of the pore to the other end side, which is performed simultaneously with the opposing gas stopping step or after the opposing gas stopping step;
A method for producing a gas separation material comprising:
前記反応工程を3回以上繰り返す請求項1に記載のガス分離材の製造方法。 The method for producing a gas separation material according to claim 1, wherein the reaction step is repeated three or more times. 前記原料ガス供給工程は、300~650℃で熱分解された前記原料ガスを供給する工程である請求項1または2に記載のガス分離材の製造方法。 The method for producing a gas separation material according to claim 1 or 2, wherein the raw material gas supplying step is a step of supplying the raw material gas thermally decomposed at 300 to 650°C. 前記原料ガスは、分解温度が150~450℃である化合物を含む請求項1~3のいずれかに記載のガス分離材の製造方法。 The method for producing a gas separation material according to claim 1, wherein the raw material gas contains a compound having a decomposition temperature of 150 to 450°C. 前記原料ガスは、Si-C結合を有する化合物を含む請求項1~4のいずれかに記載のガス分離材の製造方法。 The method for producing a gas separation material according to any one of claims 1 to 4, wherein the raw material gas contains a compound having an Si--C bond. 前記原料ガスは、環状構造を含む化合物を含む請求項1~5のいずれかに記載のガス分離材の製造方法。 The method for producing a gas separation material according to claim 1, wherein the raw material gas contains a compound having a cyclic structure. 前記原料ガスは、シラシクロブタンを含む請求項6に記載のガス分離材の製造方法。 7. The method for producing a gas separation material according to claim 6, wherein the raw material gas contains silacyclobutane. 前記原料ガス導入工程は、前記原料ガスを前記細孔の一端側から供給したまま他端側から排気する原料ガス排気工程である請求項1~7のいずれかに記載のガス分離材の製造方法。 The method for producing a gas separation material according to any one of claims 1 to 7, wherein the raw material gas introduction step is a raw material gas exhausting step in which the raw material gas is supplied from one end of the pore and exhausted from the other end. .
JP2019017475A 2019-02-01 2019-02-01 Gas separation material and its manufacturing method Active JP7420473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017475A JP7420473B2 (en) 2019-02-01 2019-02-01 Gas separation material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017475A JP7420473B2 (en) 2019-02-01 2019-02-01 Gas separation material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020124656A JP2020124656A (en) 2020-08-20
JP7420473B2 true JP7420473B2 (en) 2024-01-23

Family

ID=72083287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017475A Active JP7420473B2 (en) 2019-02-01 2019-02-01 Gas separation material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7420473B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435941B2 (en) 2020-06-30 2024-02-21 一般財団法人ファインセラミックスセンター Film forming equipment and film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246295A (en) 2007-03-29 2008-10-16 Nok Corp Manufacturing method of hydrogen separation membrane
JP2016123893A (en) 2014-12-26 2016-07-11 一般財団法人ファインセラミックスセンター Gas separation membrane, gas separation material, and gas separation membrane manufacturing method
JP2017179431A (en) 2016-03-29 2017-10-05 一般財団法人ファインセラミックスセンター Vapor deposition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461307A (en) * 1987-08-29 1989-03-08 Ibiden Co Ltd Production of beta-type silicon carbide fine powder
US5011706A (en) * 1989-04-12 1991-04-30 Dow Corning Corporation Method of forming coatings containing amorphous silicon carbide
JP4161052B2 (en) * 2003-08-11 2008-10-08 独立行政法人産業技術総合研究所 Silicon carbide separation membrane and method for producing the same
JP2010215417A (en) * 2009-03-13 2010-09-30 Japan Atomic Energy Agency Method for producing ceramic thin film for gas separation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246295A (en) 2007-03-29 2008-10-16 Nok Corp Manufacturing method of hydrogen separation membrane
JP2016123893A (en) 2014-12-26 2016-07-11 一般財団法人ファインセラミックスセンター Gas separation membrane, gas separation material, and gas separation membrane manufacturing method
JP2017179431A (en) 2016-03-29 2017-10-05 一般財団法人ファインセラミックスセンター Vapor deposition apparatus

Also Published As

Publication number Publication date
JP2020124656A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP4562565B2 (en) Inorganic porous separation membrane and method for producing the same
US7109137B2 (en) Methods for making microporous ceramic materials
Ohta et al. Development of pore size-controlled silica membranes for gas separation by chemical vapor deposition
JP4728308B2 (en) Hydrogen separation membrane and method for producing hydrogen separation membrane
JP7420473B2 (en) Gas separation material and its manufacturing method
Choi et al. Obtention of ZrO2–SiO2 hydrogen permselective membrane by chemical vapor deposition method
Nagano et al. Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition
JP2002128512A (en) Ceramic material, ceramic membrane and use thereof
JP4871312B2 (en) Method for producing hydrogen gas separator
JP4129975B2 (en) Porous ceramic material and method for producing the same
Nijmeijer et al. Low-temperature CVI modification of γ-alumina membranes
JP2017139297A (en) Film growth method and film growth apparatus
Pages et al. Gas permeation of PECVD membranes inside alumina substrate tubes
Akamatsu et al. Dimethoxydimethylsilane-derived silica membranes prepared by chemical vapor deposition at 973 K exhibiting improved thermal/hydrothermal stability
JP6717632B2 (en) Vapor deposition processing equipment
JP5049498B2 (en) Method for producing ceramic membrane for gas separation
JP2003010658A (en) Gas separation material, method for producing the same, and reactor
JP4471556B2 (en) Porous ceramic material and method for producing the same
JP6683365B2 (en) Method for manufacturing gas separation filter
Lee et al. Gas permeation properties of NaA zeolite membranes: effect of silica source on hydrogel synthesis and layer thickness
JP7435941B2 (en) Film forming equipment and film forming method
JP2007152230A (en) Compact silica-based hydrogen separation membrane and hydrogen manufacturing method
JPH11114388A (en) Hydrogen separating material
JP4872752B2 (en) Production method of hydrogen separation membrane
WO2023085371A1 (en) Zeolite membrane composite body, membrane reaction device, and method for producing zeolite membrane composite body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150