JP3859966B2 - Semiconductive resin composition and molded article - Google Patents

Semiconductive resin composition and molded article Download PDF

Info

Publication number
JP3859966B2
JP3859966B2 JP2000392903A JP2000392903A JP3859966B2 JP 3859966 B2 JP3859966 B2 JP 3859966B2 JP 2000392903 A JP2000392903 A JP 2000392903A JP 2000392903 A JP2000392903 A JP 2000392903A JP 3859966 B2 JP3859966 B2 JP 3859966B2
Authority
JP
Japan
Prior art keywords
weight
parts
fibrous
graphite
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392903A
Other languages
Japanese (ja)
Other versions
JP2002194229A (en
Inventor
貴之 宮下
峰生 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2000392903A priority Critical patent/JP3859966B2/en
Priority to TW90130313A priority patent/TW572955B/en
Priority to CN 01821338 priority patent/CN1247703C/en
Priority to PCT/JP2001/011143 priority patent/WO2002051940A1/en
Publication of JP2002194229A publication Critical patent/JP2002194229A/en
Application granted granted Critical
Publication of JP3859966B2 publication Critical patent/JP3859966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Description

【0001】
【発明の属する技術分野】
本発明は、黒鉛、繊維状導電性充填材及び繊維状非導電性充填材を配合した液晶性ポリマー組成物に関するものであり、更に詳しくは、帯電防止性能が要求される電子部品の成形に好適に用いられる半導電性の液晶性ポリマー組成物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
異方性溶融相を形成し得る液晶性ポリマーは、熱可塑性樹脂の中でも寸法精度、制振性、流動性に優れ、成形時のバリ発生が極めて少ない材料として知られている。従来、このような特徴を活かし、ガラス繊維で強化された液晶性ポリマー組成物が電子部品として多く採用されてきた。しかし、近年、電子部品において、組み立て時の接触・摺動により帯電し、静電気障害が生じるという問題が発生しており、それを防止すべく、成形品のプラスチック材料に導電性充填材を配合し、それ自体に帯電防止性能を付与することが行われている。
【0003】
例えば、特開昭62−131067号公報では、液晶性ポリマーに導電性カーボンブラックを配合し導電性を改良する試みがなされており、かかる手法によれば導電性は向上するものの体積抵抗率が1×101 Ω・cm以下となり、帯電防止効果はあるが成形品自体が導電性となるため、絶縁が必要な部分への使用が不可能である。このように、導電性カーボンブラックを用いた場合、導電性を示さず、且つ帯電防止効果のある体積抵抗率1×104 〜1×1011Ω・cmの範囲での制御は困難である。また、特開平6−207083号公報及び特開2000−281885号公報では、黒鉛を導電性充填材として配合し帯電防止性を改良する試みがなされているが、黒鉛だけを導電性充填材として用いた場合、表面抵抗値の制御に関しては優れているが、帯電防止性を発現するためには黒鉛等の充填量が多くなりすぎ、流動性や機械的物性の低下があり、実用性に欠ける。更に、特開昭63−146959号公報、特開平4−311758号公報、特開平6−93173号公報、特開平6−172619号公報では、黒鉛及び/又はピッチ系炭素繊維を配合し摺動性を向上させる試みがなされており、摺動性の向上は認められるものの体積抵抗率を制御することが困難であり、成形品の体積抵抗率の変動が大きく、上記の全ての問題を解決することのできる材料は存在しなかった。
【0004】
【課題を解決するための手段】
本発明者等は上記問題点に鑑み、帯電防止性に関し優れた特性を有する素材について鋭意探索、検討を行ったところ、液晶性ポリマーに特定の黒鉛と繊維状導電性充填材及び繊維状非導電性充填材を、特定の配合量でブレンドすることにより、機械的性質を大きく低下させることなく安定した帯電防止性を付与し得ることを見出し、本発明を完成するに至った。
【0005】
即ち本発明は、液晶性ポリマー(A) 100 重量部に、固定炭素95重量%以上の黒鉛(B) 1〜50重量部、繊維状導電性充填材(C) 1〜50重量部及び繊維状非導電性充填材(D) 1〜50重量部を、(B) 、(C) 、(D) 成分の総配合量が(A) 100 重量部に対し25〜100 重量部であり、(B) :(C) =1:3〜4:1、且つ[(B) +(C) ]:(D) =1:2〜2:1の比率を満足する範囲で配合してなる、体積抵抗率が1×104 〜1×1011Ω・cmである半導電性樹脂組成物を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明で使用する液晶性ポリマー(A) とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
【0007】
前記のような液晶性ポリマー(A) としては特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。これらは60℃でペンタフルオロフェノールに濃度0.1重量%で溶解したときに、好ましくは少なくとも約2.0dl/g、さらに好ましくは2.0〜10.0dl/gの対数粘度(I.V.)を有するものが使用される。
【0008】
本発明に適用できる液晶性ポリマー(A) としての芳香族ポリエステル又は芳香族ポリエステルアミドとして特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル、芳香族ポリエステルアミドである。
【0009】
より具体的には、
(1)主として芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミドなどが挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
【0010】
本発明に適用できる前記液晶性ポリマー(A) を構成する具体的化合物の好ましい例としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)および下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸および下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p−アミノフェノール、p−フェニレンジアミン等の芳香族アミン類が挙げられる。
【0011】
【化1】

Figure 0003859966
【0012】
(但し、X :アルキレン(C1〜C4)、アルキリデン、-O- 、-SO-、-SO2- 、-S- 、-CO-より選ばれる基、Y :-(CH2)n-(n =1〜4)、-O(CH2)nO-(n =1〜4)より選ばれる基)
本発明が適用される特に好ましい液晶性ポリマー(A) としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸を主構成単位成分とする芳香族ポリエステルである。
【0013】
本発明の目的である、機械的性質を大きく低下させることなく安定した帯電防止性を付与するためには、液晶性ポリマー(A) 100 重量部に、固定炭素95重量%以上の黒鉛(B) 1〜50重量部、繊維状導電性充填材(C) 1〜50重量部及び繊維状非導電性充填材(D) 1〜50重量部を、(B) 、(C) 、(D) 成分の総配合量が(A) 100 重量部に対し25〜100 重量部であり、(B) :(C) =1:3〜4:1、且つ[(B) +(C) ]:(D) =1:2〜2:1の比率を満足する範囲で配合する必要がある。
【0014】
本発明において、(B) 黒鉛としては、人造黒鉛、天然黒鉛である鱗片状黒鉛、鱗状黒鉛、土状黒鉛等のいかなる種類の黒鉛でも使用可能であるが、帯電防止性を達成するための導電性を付与させるためには、固定炭素が95重量%以上、好ましくは98重量%以上の黒鉛を用いる必要がある。これらの中でも、性能の面から、固定炭素率が高い人造黒鉛や、成形品内でストラクチャを構成しやすい鱗片状黒鉛や鱗状黒鉛が好ましい。
【0015】
次に、本発明において、(C) 繊維状導電性充填材としては、炭素繊維、金属繊維等の導電性繊維、及びガラス繊維、ウィスカー、無機系繊維、鉱石系繊維等にニッケル、銅等の金属をコートし、導電性を付与したものが使用可能である。
【0016】
炭素繊維としては、ポリアクリロニトリルを原料とするPAN系、ピッチを原料とするピッチ系繊維が用いられる。
【0017】
金属繊維としては、軟鋼、ステンレス、鋼およびその合金、黄銅、アルミニウムおよびその合金、鉛等の繊維が用いられる。これらの金属繊維は、その導電性により必要であれば更に導電性を付与するために他の金属をコートしたものも使用可能である。
【0018】
金属をコートして用いられるウィスカーとしては、窒化珪素ウィスカー、三窒化珪素ウィスカー、塩基性硫酸マグネシウムウィスカー、チタン酸バリウムウィスカー、炭化珪素ウィスカー、ボロンウィスカー等が使用可能であり、無機系繊維としては、ロックウール、ジルコニア、アルミナシリカ、チタン酸カリウム、チタン酸バリウム、酸化チタン、炭化珪素、アルミナ、シリカ、高炉スラグ等の各種ファイバーが使用可能であり、鉱石系繊維としては、アスベスト等が使用可能である。これらの中でも性能の面から、炭素繊維が好ましい。
【0019】
次に、本発明で用いられる(D) 繊維状非導電性充填材とは、ガラス繊維、ウィスカー、無機系繊維、鉱石系繊維等であり、これらの具体例としては、上記(C) 繊維状導電性充填材において金属コートして用いられるものと同様のものが例示される。その中でも性能の面から、ガラス繊維が好ましい。
【0020】
また、繊維状非導電性充填材(D) の組成物成形品中の重量平均繊維長は600 μm 以下程度が好ましい。重量平均繊維長が600 μm を超える場合、難燃性がV−0にならないことがある。
【0021】
本発明において、押出性、成形性、機械的物性が良好であり、且つ安定した帯電防止性を付与するためには、黒鉛(B) 、繊維状導電性充填材(C) 及び繊維状非導電性充填材(D) の配合量は重要であり、個々の配合量及び総配合量が特定範囲内になければならない。
【0022】
即ち、黒鉛(B) の配合量は、配合量が多い場合、押出性及び成形性を悪化させ機械的強度を低下させる。一方、配合量が少ない場合は導電性が発現されず帯電防止効果に劣る。その際、繊維状導電性充填材(C) の配合量を増やすことにより導電性を付与しようとすると導電性のバラツキが大きくなり、安定した導電防止効果が発現されない。そのため、黒鉛(B) の配合量は、液晶性ポリマー(A) 100 重量部に対して1〜50重量部、好ましくは10〜30重量部の範囲に限定される。
【0023】
また、繊維状導電性充填材(C) の配合量は、配合量が多い場合、機械的物性は向上するが、押出性、成形性が悪化し、また導電性が良くなりすぎ導通を起こす。一方、配合量が少ない場合は導電性が発現されず帯電防止効果に劣る。その際、前記黒鉛(B) の配合量を増やすことにより導電性を付与しようとすると、前記の通り押出性及び成形性を悪化させ機械的強度を低下させる。そのため、繊維状導電性充填材(C) の配合量は、液晶性ポリマー(A) 100 重量部に対して1〜50重量部、好ましくは5〜25重量部の範囲に限定される。
【0024】
また、黒鉛(B) と繊維状導電性充填材(C) との配合比率も重要であり、(B) :(C) =1:3〜4:1にする必要がある。(B) 成分がこの比率より多くなると目的の導電性が発現できず、この比率より少なく導電性が良くなりすぎ、導通を起こすおそれがあり好ましくない。
【0025】
また、本発明において、繊維状非導電性充填材(D) の配合の効果は特に重要である。即ち、液晶性ポリマー組成物に繊維状充填材を添加すると成形品表面が荒れ、摺動性は低下するが、その反面、導電性を安定に保つ効果が現れる。しかし、これを繊維状導電性充填材(C) で行おうとすると配合量が増え、前記のように導通の問題が発生するため、特定量の繊維状非導電性充填材(D) の配合が必要である。つまり、繊維状非導電性充填材(D) の配合量は、配合量が多い場合は導電性を安定化するが、押出性、成形性を悪化させ、一方、配合量が少ない場合は導電性が安定せず、また機械的強度も低下させる。そのため、繊維状非導電性充填材(D) の配合量は、液晶性ポリマー(A) 100 重量部に対して1〜50重量部、好ましくは10〜40重量部であり、且つ[(B) +(C) ]:(D) =1:2〜2:1の比率を満足する範囲に限定される。
【0026】
また、(B) 、(C) 、(D) 成分の総配合量は、配合量が多すぎる場合は押出性、成形性を悪化させ、一方、配合量が少ない場合は導電性が安定せず、また機械的強度も低下させるので、液晶性ポリマー(A) 100 重量部に対し25〜100 重量部、好ましくは40〜80重量部、更に好ましくは50〜70重量部である。
【0027】
また、本発明の半導電性樹脂組成物には、本発明の目的とする帯電防止性能を損なわない範囲で、板状や粉粒状等の非繊維状充填材を配合することもできる。非繊維状充填材としては、具体的にはタルク、マイカ、カオリン、クレー、グラファイト、バーミキュライト、珪酸カルシウム、珪酸アルミニウム、長石粉、酸性白土、ロウ石クレー、セリサイト、シリマナイト、ベントナイト、ガラスフレーク、スレート粉、シラン等の珪酸塩、炭酸カルシウム、胡粉、炭酸バリウム、炭酸マグネシウム、ドロマイト等の炭酸塩、バライト粉、ブランフィックス、沈降性硫酸カルシウム、焼石膏、硫酸バリウム等の硫酸塩、水和アルミナ等の水酸化物、アルミナ、酸化アンチモン、マグネシア、酸化チタン、亜鉛華、シリカ、珪砂、石英、ホワイトカーボン、珪藻土等の酸化物、二硫化モリブデン等の硫化物、金属粉粒体等の材質からなるものである。
【0028】
本発明において使用する黒鉛、繊維状導電性充填材、繊維状非導電性充填材、非繊維状充填材はそのままでも使用できるが、一般的に用いられる公知の表面処理剤、収束剤を併用することができる。
【0029】
なお、液晶性ポリマー組成物に対し、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤および難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明で言う液晶性ポリマー組成物の範囲に含まれる。
【0030】
本発明の液晶性ポリマー組成物は、2種以上の導電性充填材と1種以上の非導電性充填材を用いることにより各々の欠点を補い合うことにより機械的性質を損なうことなく、帯電防止性に優れた材料を得るものであり、更には成形体中の各充填材が均一に分散し、繊維状充填材の間に黒鉛が存在するような分散状態で、より高性能が発揮される。
【0031】
このような液晶性ポリマー組成物を製造するには、両者を前記組成割合で配合し、混練すればよい。通常、押出機で混練し、ペレット状に押し出し、射出成形等に用いるが、この様な押出機による混練に限定されるものではない。
【0032】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性の測定および試験は次の方法で行った。
(1) 体積抵抗率
φ100 ×3t平板試験片を用い、ASTM D257 に準拠し体積抵抗率の測定を行い、試験片5枚の平均値を体積抵抗率とした。尚、体積抵抗率の平均は対数平均により求めた。また、5枚の試験片間の測定バラツキの評価も行った。
(2) 引張試験
ASTM1号ダンベル試験片を用い、ASTM D638 に準拠し、引張強度および引張伸度の測定を行った。
(3) 曲げ試験
130 ×13×0.8mm の曲げ試験片を用い、ASTM D790 に準拠し、曲げ強度および曲げ弾性率の測定を行った。
(4) ガラス繊維(GF)の繊維長測定方法
ペレット約2gを電気炉にて約700 ℃で4時間加熱し、樹脂、黒鉛、カーボン繊維を全て燃焼させ、灰分として残ったガラス繊維をポリエチレングリコールの5%水溶液に分散させ、適量をガラスシャーレに移し、顕微鏡にて拡大観察し、繊維500 〜1000本について画像処理装置により重量平均繊維長の測定を行った。
(5) 燃焼試験
130 ×13×0.8mm の燃焼試験片を用い、UL−94に準拠し、燃焼性の測定を行った。
実施例1〜5および比較例1〜12
液晶性ポリエステル(LCP;ポリプラスチックス(株)製、ベクトラA950)100 重量部に対し、表1〜2に示す各種充填材を表1〜2に示す割合でドライブレンドした後、二軸押出機(池貝鉄工(株)製、PCM−30型)にて溶融混練し、ペレット化した。このペレットから射出成形機により上記試験片を作製し、評価したところ、表1〜2に示す結果を得た。
【0033】
【表1】
Figure 0003859966
【0034】
【表2】
Figure 0003859966
【0035】
GP;黒鉛
GP1;日本黒鉛(株)製 HAG−15、人造黒鉛、固定炭素98.5重量%
GP2;日本黒鉛(株)製 CP、鱗状黒鉛、固定炭素97.0重量%
GP3;日本黒鉛(株)製 AOP、土状黒鉛、固定炭素93.0重量%
CF;チョップド炭素繊維、PAN系、径7μm 、長さ6mm
GF;チョップドガラス繊維、径10μm 、長さ3mm[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystalline polymer composition containing graphite, a fibrous conductive filler, and a fibrous non-conductive filler, and more particularly suitable for molding electronic components that require antistatic performance. The present invention relates to a semiconductive liquid crystalline polymer composition used in the above.
[0002]
[Prior art and problems to be solved by the invention]
A liquid crystalline polymer capable of forming an anisotropic molten phase is known as a material that is excellent in dimensional accuracy, vibration damping properties, and fluidity among thermoplastic resins, and generates very little burrs during molding. Conventionally, liquid crystal polymer compositions reinforced with glass fibers have been widely used as electronic components by taking advantage of such characteristics. However, in recent years, there has been a problem that electronic parts are charged due to contact / sliding during assembly, resulting in static electricity failure. In order to prevent this problem, a conductive filler is added to the plastic material of the molded product. It has been practiced to impart antistatic performance to itself.
[0003]
For example, in Japanese Patent Application Laid-Open No. Sho 62-131067, an attempt has been made to improve conductivity by adding conductive carbon black to a liquid crystalline polymer. According to such a technique, although the conductivity is improved, the volume resistivity is 1 × 10 1 Ω · cm or less, which has an antistatic effect, but the molded product itself is conductive, so that it cannot be used for parts that require insulation. Thus, when conductive carbon black is used, it is difficult to control the volume resistivity in the range of 1 × 10 4 to 1 × 10 11 Ω · cm which does not exhibit conductivity and has an antistatic effect. In JP-A-6-207083 and JP-A-2000-28185, attempts have been made to improve the antistatic property by blending graphite as a conductive filler, but only graphite is used as a conductive filler. In this case, the control of the surface resistance value is excellent, but in order to exhibit antistatic properties, the amount of graphite and the like is excessively increased, and the fluidity and mechanical properties are deteriorated, so that it is not practical. Further, in JP-A-63-146959, JP-A-4-31758, JP-A-6-93173, and JP-A-6-172619, graphite and / or pitch-based carbon fiber is blended and slidability. Attempts have been made to improve the slidability, but it is difficult to control the volume resistivity, and the volume resistivity of the molded product varies greatly, which solves all the above problems. There was no material that could be used.
[0004]
[Means for Solving the Problems]
In view of the above-mentioned problems, the present inventors diligently searched for and examined a material having excellent characteristics regarding antistatic properties. As a result, specific graphite, a fibrous conductive filler, and a fibrous non-conductive material were used for the liquid crystalline polymer. The present inventors have found that stable antistatic properties can be imparted without greatly degrading mechanical properties by blending the functional filler at a specific blending amount, and the present invention has been completed.
[0005]
That is, the present invention relates to 100 parts by weight of a liquid crystalline polymer (A), 1 to 50 parts by weight of graphite (B) having a fixed carbon of 95% by weight or more, 1 to 50 parts by weight of a fibrous conductive filler (C), and fibrous. 1 to 50 parts by weight of the non-conductive filler (D), the total amount of the components (B), (C) and (D) is 25 to 100 parts by weight with respect to (A) 100 parts by weight, ): (C) = 1: 3-4: 1, and [(B) + (C)]: (D) = 1: 2-2: 1 A semiconductive resin composition having a rate of 1 × 10 4 to 1 × 10 11 Ω · cm is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The liquid crystalline polymer (A) used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystalline polymer applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in the molten stationary state, and optically anisotropic.
[0007]
The liquid crystalline polymer (A) is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and an aromatic polyester or a polyester partially containing the aromatic polyester amide in the same molecular chain. Is also in that range. They preferably have a logarithmic viscosity (IV) of at least about 2.0 dl / g, more preferably 2.0-10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by weight. .) Are used.
[0008]
The aromatic polyester or aromatic polyester amide as the liquid crystalline polymer (A) applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines. An aromatic polyester or aromatic polyester amide having the above compound as a constituent component.
[0009]
More specifically,
(1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof; c) Polyester comprising at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof;
(3) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). A polyesteramide comprising one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof;
(4) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). One or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof; and (d) at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof, and The polyesteramide which consists of, etc. are mentioned. Furthermore, you may use a molecular weight modifier together with said structural component as needed.
[0010]
Specific examples of the specific compound constituting the liquid crystalline polymer (A) applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6- Aromatic diols such as dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, compounds represented by the following general formula (I) and the following general formula (II); terephthalic acid, isophthal Aromatic dicarboxylic acids such as acids, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and compounds represented by the following general formula (III); aromatics such as p-aminophenol and p-phenylenediamine Examples include amines.
[0011]
[Chemical 1]
Figure 0003859966
[0012]
(However, X: alkylene (C 1 ~C 4), alkylidene, -O-, -SO -, - SO 2 -, -S-, a group selected from -CO-, Y :-( CH 2) n - (a group selected from n = 1 to 4) and —O (CH 2 ) n O— (n = 1 to 4))
Particularly preferred liquid crystalline polymers (A) to which the present invention is applied are aromatic polyesters containing p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as the main structural unit component.
[0013]
In order to impart stable antistatic properties without greatly reducing mechanical properties, which is an object of the present invention, graphite (B) having a fixed carbon of 95% by weight or more to 100 parts by weight of the liquid crystalline polymer (A). 1 to 50 parts by weight, fibrous conductive filler (C) 1 to 50 parts by weight and fibrous non-conductive filler (D) 1 to 50 parts by weight, (B), (C), (D) component The total blending amount of (A) is 25 to 100 parts by weight with respect to 100 parts by weight, (B) :( C) = 1: 3-4: 1, and [(B) + (C)] :( D ) = 1: It is necessary to mix | blend in the range which satisfies the ratio of 2: 1.
[0014]
In the present invention, as (B) graphite, any type of graphite such as artificial graphite, natural graphite scaly graphite, scaly graphite, earthy graphite and the like can be used. In order to impart properties, it is necessary to use graphite having a fixed carbon content of 95% by weight or more, preferably 98% by weight or more. Among these, from the viewpoint of performance, artificial graphite having a high fixed carbon ratio, and scaly graphite and scaly graphite that easily form a structure in a molded product are preferable.
[0015]
Next, in the present invention, (C) the fibrous conductive filler includes conductive fibers such as carbon fibers and metal fibers, and glass fibers, whiskers, inorganic fibers, ore fibers, nickel, copper, etc. What coated the metal and provided electroconductivity can be used.
[0016]
As the carbon fiber, a PAN-based material using polyacrylonitrile as a raw material and a pitch-based fiber material using pitch as a raw material are used.
[0017]
As the metal fibers, fibers such as mild steel, stainless steel, steel and alloys thereof, brass, aluminum and alloys thereof, and lead are used. As these metal fibers, those coated with other metals can be used in order to impart further conductivity if necessary due to their conductivity.
[0018]
As the whisker used by coating a metal, silicon nitride whisker, silicon trinitride whisker, basic magnesium sulfate whisker, barium titanate whisker, silicon carbide whisker, boron whisker and the like can be used, and as inorganic fibers, Various fibers such as rock wool, zirconia, alumina silica, potassium titanate, barium titanate, titanium oxide, silicon carbide, alumina, silica, blast furnace slag, etc. can be used. As ore fiber, asbestos etc. can be used. is there. Among these, carbon fiber is preferable from the viewpoint of performance.
[0019]
Next, the (D) fibrous non-conductive filler used in the present invention is glass fiber, whisker, inorganic fiber, ore fiber, and specific examples thereof include (C) fibrous The thing similar to what is used by metal coating in a conductive filler is illustrated. Among these, glass fiber is preferable from the viewpoint of performance.
[0020]
In addition, the weight average fiber length in the composition molded article of the fibrous nonconductive filler (D) is preferably about 600 μm or less. When the weight average fiber length exceeds 600 μm, the flame retardancy may not be V-0.
[0021]
In the present invention, in order to provide good extrudability, moldability, mechanical properties, and provide stable antistatic properties, graphite (B), fibrous conductive filler (C), and fibrous non-conductive The blending amount of the filler (D) is important, and the individual blending amount and the total blending amount must be within a specific range.
[0022]
That is, when the blending amount of graphite (B) is large, the extrudability and moldability are deteriorated and the mechanical strength is lowered. On the other hand, when the blending amount is small, conductivity is not expressed and the antistatic effect is poor. At that time, if an attempt is made to impart conductivity by increasing the blending amount of the fibrous conductive filler (C), the variation in conductivity increases, and a stable anti-conductive effect is not exhibited. Therefore, the blending amount of graphite (B) is limited to the range of 1 to 50 parts by weight, preferably 10 to 30 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A).
[0023]
When the fibrous conductive filler (C) is blended in a large amount, the mechanical properties are improved, but the extrudability and moldability are deteriorated, and the conductivity is too good to cause conduction. On the other hand, when the blending amount is small, conductivity is not expressed and the antistatic effect is poor. At that time, if it is attempted to impart conductivity by increasing the blending amount of the graphite (B), as described above, the extrudability and moldability are deteriorated and the mechanical strength is lowered. Therefore, the blending amount of the fibrous conductive filler (C) is limited to the range of 1 to 50 parts by weight, preferably 5 to 25 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A).
[0024]
Further, the blending ratio of graphite (B) and fibrous conductive filler (C) is also important, and it is necessary that (B) :( C) = 1: 3 to 4: 1. If the component (B) exceeds this ratio, the desired conductivity cannot be exhibited, and if the ratio is less than this ratio, the conductivity becomes too good and conduction may occur, which is not preferable.
[0025]
In the present invention, the effect of blending the fibrous non-conductive filler (D) is particularly important. That is, when a fibrous filler is added to the liquid crystalline polymer composition, the surface of the molded product is roughened and the slidability is lowered, but on the other hand, the effect of keeping the conductivity stable appears. However, if this is done with the fibrous conductive filler (C), the amount of blending increases and the problem of conduction occurs as described above, so that a certain amount of the fibrous non-conductive filler (D) is blended. is necessary. In other words, the blending amount of the fibrous non-conductive filler (D) stabilizes the conductivity when the blending amount is large, but deteriorates the extrudability and moldability, whereas the blending amount is small when the blending amount is small. Is not stable, and the mechanical strength is also reduced. Therefore, the blending amount of the fibrous non-conductive filler (D) is 1 to 50 parts by weight, preferably 10 to 40 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A), and [(B) + (C)] :( D) = 1: 2 to 2: 1.
[0026]
In addition, the total compounding amount of the components (B), (C), and (D) deteriorates the extrudability and moldability when the compounding amount is too large, while the conductivity is not stable when the compounding amount is small. Further, since the mechanical strength is also lowered, the amount is 25 to 100 parts by weight, preferably 40 to 80 parts by weight, and more preferably 50 to 70 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A).
[0027]
In addition, the semiconductive resin composition of the present invention can also be blended with a non-fibrous filler such as a plate or powder in a range that does not impair the antistatic performance targeted by the present invention. Specific examples of non-fibrous fillers include talc, mica, kaolin, clay, graphite, vermiculite, calcium silicate, aluminum silicate, feldspar powder, acid clay, sericite, sillimanite, bentonite, glass flakes, Silicates such as slate powder, silane, carbonates such as calcium carbonate, pepper, barium carbonate, magnesium carbonate, dolomite, barite powder, blankfix, precipitated calcium sulfate, calcined gypsum, sulfate such as barium sulfate, hydrated alumina From oxides such as hydroxide, alumina, antimony oxide, magnesia, titanium oxide, zinc white, silica, silica sand, quartz, white carbon, diatomaceous earth, sulfides such as molybdenum disulfide, metal powders, etc. It will be.
[0028]
The graphite, fibrous conductive filler, fibrous nonconductive filler, and nonfibrous filler used in the present invention can be used as they are, but commonly used known surface treatment agents and converging agents are used in combination. be able to.
[0029]
Addition of additives such as nucleating agent, carbon black, pigments such as inorganic baked pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents and flame retardants to the liquid crystalline polymer composition, Compositions imparted with desired characteristics are also included in the range of the liquid crystalline polymer composition referred to in the present invention.
[0030]
The liquid crystalline polymer composition of the present invention has an antistatic property without impairing mechanical properties by compensating for each defect by using two or more kinds of conductive fillers and one or more kinds of nonconductive fillers. In addition, each of the fillers in the molded body is uniformly dispersed, and high performance is exhibited in a dispersed state in which graphite exists between the fibrous fillers.
[0031]
In order to produce such a liquid crystalline polymer composition, both may be blended in the above composition ratio and kneaded. Usually, they are kneaded with an extruder, extruded into pellets, and used for injection molding, but are not limited to such kneading with an extruder.
[0032]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement and test of the physical property in an Example were performed with the following method.
(1) Volume resistivity φ100 × 3t flat plate test piece was used, volume resistivity was measured according to ASTM D257, and the average value of the five test pieces was defined as volume resistivity. The average volume resistivity was determined by logarithmic average. In addition, the measurement variation between the five test pieces was also evaluated.
(2) Tensile test
Using ASTM No. 1 dumbbell specimens, tensile strength and tensile elongation were measured according to ASTM D638.
(3) Bending test
Bending strength and bending elastic modulus were measured in accordance with ASTM D790 using a 130 x 13 x 0.8 mm bending test piece.
(4) Glass fiber (GF) fiber length measurement method Approximately 2 g of pellets are heated in an electric furnace at approximately 700 ° C. for 4 hours to burn all the resin, graphite and carbon fibers, and the remaining glass fibers as ash are polyethylene glycol. An appropriate amount was transferred to a glass petri dish, magnified and observed with a microscope, and the weight average fiber length of 500 to 1000 fibers was measured with an image processing apparatus.
(5) Combustion test
Combustibility was measured according to UL-94 using a 130 x 13 x 0.8 mm test piece.
Examples 1-5 and Comparative Examples 1-12
After dry blending various fillers shown in Tables 1 and 2 with respect to 100 parts by weight of liquid crystalline polyester (LCP; manufactured by Polyplastics Co., Ltd., Vectra A950), a twin screw extruder The mixture was melt-kneaded and pelletized using a PCM-30 model (Ikegai Iron Works Co., Ltd.). When the said test piece was produced from this pellet with the injection molding machine and evaluated, the result shown to Tables 1-2 was obtained.
[0033]
[Table 1]
Figure 0003859966
[0034]
[Table 2]
Figure 0003859966
[0035]
GP: Graphite GP1, HAG-15 manufactured by Nippon Graphite Co., artificial graphite, fixed carbon 98.5% by weight
GP2: Nippon Graphite Co., Ltd. CP, scaly graphite, fixed carbon 97.0% by weight
GP3: manufactured by Nippon Graphite Co., Ltd. AOP, earth graphite, fixed carbon 93.0% by weight
CF: chopped carbon fiber, PAN, diameter 7 μm, length 6 mm
GF: Chopped glass fiber, diameter 10μm, length 3mm

Claims (5)

液晶性ポリマー(A) 100 重量部に、固定炭素95重量%以上の黒鉛(B) 1〜50重量部、繊維状導電性充填材(C) 1〜50重量部及び繊維状非導電性充填材(D) 1〜50重量部を、(B) 、(C) 、(D) 成分の総配合量が(A) 100 重量部に対し25〜100 重量部であり、(B) :(C) =1:3〜4:1、且つ[(B) +(C) ]:(D) =1:2〜2:1の比率を満足する範囲で配合してなる、体積抵抗率が1×104 〜1×1011Ω・cmである半導電性樹脂組成物。Liquid crystalline polymer (A) 100 parts by weight, fixed carbon 95% by weight or more graphite (B) 1-50 parts by weight, fibrous conductive filler (C) 1-50 parts by weight and fibrous non-conductive filler (D) 1-50 parts by weight, (B): (C), (D) the total amount of the component is 25-100 parts by weight with respect to (A) 100 parts by weight, (B): (C) = 1: 3 to 4: 1, and [(B) + (C)] :( D) = 1: 2 to 2: 1, the volume resistivity is 1 × 10. A semiconductive resin composition having 4 to 1 × 10 11 Ω · cm. 組成物中に繊維状非導電性充填材(D) が重量平均繊維長600 μm 以下で分散している請求項1記載の半導電性樹脂組成物。The semiconductive resin composition according to claim 1, wherein the fibrous nonconductive filler (D) is dispersed in the composition at a weight average fiber length of 600 µm or less. 繊維状導電性充填材(C) がPAN系炭素繊維である請求項1又は2記載の半導電性樹脂組成物。The semiconductive resin composition according to claim 1 or 2, wherein the fibrous conductive filler (C) is a PAN-based carbon fiber. 繊維状非導電性充填材(D) がガラス繊維である請求項1〜3の何れか1項記載の半導電性樹脂組成物。The semiconductive resin composition according to any one of claims 1 to 3, wherein the fibrous nonconductive filler (D) is a glass fiber. 請求項1〜4の何れか1項記載の半導電性樹脂組成物から製造された成形品。The molded article manufactured from the semiconductive resin composition of any one of Claims 1-4.
JP2000392903A 2000-12-25 2000-12-25 Semiconductive resin composition and molded article Expired - Fee Related JP3859966B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000392903A JP3859966B2 (en) 2000-12-25 2000-12-25 Semiconductive resin composition and molded article
TW90130313A TW572955B (en) 2000-12-25 2001-12-07 Semiconductive resin composition and molded article
CN 01821338 CN1247703C (en) 2000-12-25 2001-12-19 Semi-conductive resin composition and molding
PCT/JP2001/011143 WO2002051940A1 (en) 2000-12-25 2001-12-19 Semiconductive resin composition and formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392903A JP3859966B2 (en) 2000-12-25 2000-12-25 Semiconductive resin composition and molded article

Publications (2)

Publication Number Publication Date
JP2002194229A JP2002194229A (en) 2002-07-10
JP3859966B2 true JP3859966B2 (en) 2006-12-20

Family

ID=18858816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392903A Expired - Fee Related JP3859966B2 (en) 2000-12-25 2000-12-25 Semiconductive resin composition and molded article

Country Status (4)

Country Link
JP (1) JP3859966B2 (en)
CN (1) CN1247703C (en)
TW (1) TW572955B (en)
WO (1) WO2002051940A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136324B2 (en) * 2007-09-28 2013-02-06 東レ株式会社 Liquid crystalline resin composition and molded article comprising the same
JP6962546B2 (en) * 2016-07-07 2021-11-05 ユニチカ株式会社 Plate-shaped molded product and its manufacturing method
JP2019214694A (en) * 2018-06-12 2019-12-19 積水樹脂株式会社 Fiber-reinforced thermoplastic resin composition
KR20230061917A (en) * 2021-10-29 2023-05-09 롯데케미칼 주식회사 Liquid crystalline polymer composition and article produced therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819262B2 (en) * 1988-07-22 1996-02-28 東海ゴム工業株式会社 Conductive resin composition
JP3693275B2 (en) * 1998-06-30 2005-09-07 ニチアス株式会社 Fuel cell separator
JP4724896B2 (en) * 1999-10-27 2011-07-13 東レ株式会社 Thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JP2002194229A (en) 2002-07-10
CN1483061A (en) 2004-03-17
CN1247703C (en) 2006-03-29
WO2002051940A1 (en) 2002-07-04
TW572955B (en) 2004-01-21

Similar Documents

Publication Publication Date Title
JP4450902B2 (en) Liquid crystalline polymer composition
JP4118425B2 (en) Liquid crystalline polymer composition for connector and connector
JP3686718B2 (en) Liquid crystalline polymer composition and molded article
JP2001207054A (en) Molded article of liquid crystalline polymer
WO2001068770A1 (en) Liquid-crystalline polymer composition and molding method
JP4672552B2 (en) Conductive resin composition
JP2005187696A (en) Conductive resin composition
JP4223272B2 (en) Conductive resin composition
JP3384808B2 (en) Synthetic resin composition and molded article thereof
JP4920394B2 (en) Resin composition
JP3859966B2 (en) Semiconductive resin composition and molded article
JP2005306955A (en) Method for producing highly heat-conductive resin composition
JP2002194194A (en) Semiconductive resin composition and molded product
JPH0762209A (en) Polyester resin composition
JP3285485B2 (en) Tooth wheel
JP2005200595A (en) Liquid crystal display part
CN116601230A (en) Conductive liquid crystalline resin composition
JPH1053654A (en) Injection molding product
JPS63264660A (en) Aromatic polyester composition and aromatic polyester-amide composition with inorganic filler
JPH05311056A (en) Polyester resin composition
JP2000290504A (en) Polyphenylene sulfied resin composition
JPH07150017A (en) Aromatic polyester composition containing inorganic filler
JP2004330482A (en) Method for molding electroconductive resin molded product
KR20060089533A (en) Liquid crystal display component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Ref document number: 3859966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees