JP2019214694A - Fiber-reinforced thermoplastic resin composition - Google Patents

Fiber-reinforced thermoplastic resin composition Download PDF

Info

Publication number
JP2019214694A
JP2019214694A JP2018135088A JP2018135088A JP2019214694A JP 2019214694 A JP2019214694 A JP 2019214694A JP 2018135088 A JP2018135088 A JP 2018135088A JP 2018135088 A JP2018135088 A JP 2018135088A JP 2019214694 A JP2019214694 A JP 2019214694A
Authority
JP
Japan
Prior art keywords
weight
parts
fiber
carbon fiber
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018135088A
Other languages
Japanese (ja)
Inventor
昌生 国村
Masao Kunimura
昌生 国村
静香 杉本
Shizuka Sugimoto
静香 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Publication of JP2019214694A publication Critical patent/JP2019214694A/en
Pending legal-status Critical Current

Links

Abstract

To provide a fiber-reinforced thermoplastic resin composition that contains a carbon fiber and a glass fiber and has excellent bending strength.SOLUTION: A fiber-reinforced thermoplastic resin composition contains a thermoplastic resin, and a carbon fiber of 5-25 pts.wt. and a glass fiber of 20-70 pts.wt. relative to the thermoplastic resin 100 pts.wt., so that the sum total of the carbon fiber and the glass fiber is 40-75 pts.wt. Such a structure of the composition can efficiently improve the bending strength of it.SELECTED DRAWING: None

Description

本発明は、繊維強化熱可塑性樹脂組成物に関し、特に繊維として炭素繊維及びガラス繊維を含む繊維強化熱可塑性樹脂組成物に関する。   The present invention relates to a fiber-reinforced thermoplastic resin composition, and more particularly to a fiber-reinforced thermoplastic resin composition containing carbon fibers and glass fibers as fibers.

成形材料として熱可塑性樹脂を利用する場合に、強度を高める方法として、従来から繊維を配合する方法が知られている。繊維としては、例えば、炭素繊維やガラス繊維を挙げることができる。   When a thermoplastic resin is used as a molding material, a method of blending fibers has been conventionally known as a method of increasing the strength. Examples of the fiber include a carbon fiber and a glass fiber.

本出願人は、特許文献1に示すように、炭素繊維強化樹脂からなる管状の芯材の外面に、その主成分樹脂がエチレン−アクリル酸共重合体である被覆樹脂層が設けられている樹脂被覆体を開示している。   As disclosed in Patent Document 1, the present applicant has disclosed a resin in which a coating resin layer whose main component resin is an ethylene-acrylic acid copolymer is provided on the outer surface of a tubular core material made of carbon fiber reinforced resin. A coating is disclosed.

特開2014−168872号公報JP 2014-16887 A

ところで、炭素繊維を配合する場合は、比較的少量の配合でも強度を大きく高めることができるが、コストが高く、いわゆる、汎用製品の材料としては利用しにくいので、特許文献1に示すように、二層構造の一方の層のみに炭素繊維を配合するような、製品全体ではなく、その一部に利用することが多い。   By the way, when carbon fiber is compounded, the strength can be greatly increased even with a relatively small amount of compounding, but the cost is high and it is difficult to use it as a material for so-called general-purpose products. It is often used not for the whole product, but for a part of it, in which carbon fibers are compounded in only one layer of the two-layer structure.

一方、ガラス繊維は、熱硬化性樹脂に配合してFRPに利用されたり、長尺のガラス繊維を熱可塑性樹脂で被覆した被覆材料として利用されたりしているが、炭素繊維に比べると強度の上昇の程度が小さく、強度を高めるためには大量に配合する必要があった。   On the other hand, glass fiber is used in FRP by being blended with thermosetting resin, or as a coating material in which long glass fiber is coated with a thermoplastic resin, but has a higher strength than carbon fiber. The degree of rise was small, and it was necessary to mix a large amount to increase the strength.

本発明者はかかる従来の問題点に鑑み鋭意研究の結果、熱可塑性樹脂に対して、炭素繊維とガラス繊維とを特定の割合で配合することによって、炭素繊維とガラス繊維とが相乗的に作用し、配合組成物の強度が著しく高まることを見いだし、本発明を完成するに至った。   The present inventors have conducted intensive studies in view of such conventional problems, and as a result of blending carbon fibers and glass fibers with a thermoplastic resin in a specific ratio, carbon fibers and glass fibers act synergistically. However, they have found that the strength of the blended composition is significantly increased, and have completed the present invention.

上記目的を達成するために、本発明は次のような構成としている。
すなわちこの発明に係る繊維強化熱可塑性樹脂組成物は、熱可塑性樹脂と、熱可塑性樹脂100重量部に対して炭素繊維5〜25重量部と、ガラス繊維20〜70重量部とを含み、かつ、炭素繊維とガラス繊維との総和が前記熱可塑性樹脂100重量部に対して40〜75重量部であることを特徴とするものである。
In order to achieve the above object, the present invention has the following configuration.
That is, the fiber-reinforced thermoplastic resin composition according to the present invention contains a thermoplastic resin, 5 to 25 parts by weight of carbon fibers, and 20 to 70 parts by weight of glass fibers based on 100 parts by weight of the thermoplastic resin, and The total of carbon fiber and glass fiber is 40 to 75 parts by weight based on 100 parts by weight of the thermoplastic resin.

本発明において、前記熱可塑性樹脂と、熱可塑性樹脂100重量部に対して前記炭素繊維8〜20重量部と、前記ガラス繊維48〜70重量部とを含み、かつ、前記炭素繊維と前記ガラス繊維との総和が前記熱可塑性樹脂100重量部に対して65〜75重量部であるようにすることが更に好ましい。   In the present invention, the thermoplastic resin contains 8 to 20 parts by weight of the carbon fiber and 48 to 70 parts by weight of the glass fiber with respect to 100 parts by weight of the thermoplastic resin, and the carbon fiber and the glass fiber Is more preferably 65 to 75 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

本発明によれば、炭素繊維とガラス繊維とを特定の割合で配合することによって、炭素繊維とガラス繊維とが相乗的に作用し、炭素繊維とガラス繊維の配合割合から想定される曲げ強度よりも著しく高めることができる。   According to the present invention, by blending the carbon fiber and the glass fiber at a specific ratio, the carbon fiber and the glass fiber act synergistically, and the bending strength is estimated from the blending ratio of the carbon fiber and the glass fiber. Can also be significantly increased.

次に、本発明を実施するための最良の形態について、具体的に説明する。   Next, the best mode for carrying out the present invention will be specifically described.

本発明に係る繊維強化熱可塑性樹脂組成物は、熱可塑性樹脂と、炭素繊維とガラス繊維とを含むものである。   The fiber reinforced thermoplastic resin composition according to the present invention contains a thermoplastic resin, and carbon fibers and glass fibers.

熱可塑性合成樹脂としては、ポリプロピレン、ポリエチレン等のオレフィン系樹脂、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリスチレン等が使用される。   As the thermoplastic synthetic resin, olefin resins such as polypropylene and polyethylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene are used.

ガラス繊維としては、特に制限はないが、例えば、平均直径5〜20μm、平均繊維長100〜500μmのものを用いることができる。   Although there is no particular limitation on the glass fibers, for example, those having an average diameter of 5 to 20 μm and an average fiber length of 100 to 500 μm can be used.

炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系、レーヨン系、リグニン系、フェノール系、ピッチ系、気相成長系炭素繊維などが挙げられる。また、炭素繊維の形状も特に制限はないが、例えば、平均直径1〜10μm、平均繊維長100〜500μmのものを用いることができる。   Examples of the carbon fibers include polyacrylonitrile (PAN) -based, rayon-based, lignin-based, phenol-based, pitch-based, and vapor-grown carbon fibers. The shape of the carbon fiber is not particularly limited. For example, a carbon fiber having an average diameter of 1 to 10 μm and an average fiber length of 100 to 500 μm can be used.

次に本発明の実施形態について、実施例に基づいて説明する。   Next, embodiments of the present invention will be described based on examples.

〔実施例1〕
熱可塑性樹脂として、ポリエチレンテレフタレート樹脂(以下、「PET樹脂」)と、PET樹脂100重量部に対して、炭素繊維7.7重量部、ガラス繊維46.2重量部を含み、全繊維量53.9重量部である混合物を作製した。具体的には、PET樹脂に炭素繊維のみ配合したペレット状配合物(株式会社中屋敷技研製、製品名:炭素繊維強化・改質PET樹脂)と、PET樹脂にガラス繊維のみ配合したペレット状配合物(ポリプラスチック株式会社製、製品名FR−PET(R)GF−PET)と、PET樹脂からなるペレット状配合物(株式会社中屋敷技研製、製品名:改質PET樹脂、品番PET−HMW)とをそれぞれ作製し、前記の配合比率となるように、それぞれのペレット状配合物を混合した混合物を得た。配合割合を表1に示す。以下、各実施例の配合割合は表1,表3、各比較例の配合割合は表2,表4に示す。
[Example 1]
The thermoplastic resin contains polyethylene terephthalate resin (hereinafter, “PET resin”), 7.7 parts by weight of carbon fiber and 46.2 parts by weight of glass fiber with respect to 100 parts by weight of PET resin. A mixture of 9 parts by weight was prepared. More specifically, a pellet-like compound made by mixing only carbon fibers with PET resin (manufactured by Nakayashiki Giken Co., Ltd., product name: carbon fiber reinforced / modified PET resin) and a pellet-like compound made by mixing only glass fibers with PET resin Product (manufactured by Polyplastics Co., Ltd., product name: FR-PET (R) GF-PET) and a pellet-like compound made of PET resin (manufactured by Nakayashiki Giken Co., Ltd., product name: modified PET resin, product number: PET-HMW) ) Was prepared, and a mixture was obtained by mixing the respective pellet-like compounds so that the above-mentioned mixing ratio was obtained. The blending ratio is shown in Table 1. Hereinafter, the blending ratios of the respective examples are shown in Tables 1 and 3, and the blending ratios of the respective comparative examples are shown in Tables 2 and 4.

続いて、実施例1の混合物を原料とし、射出成形機を用いて、成形温度を260〜280℃に設定し、JIS−K7152の熱可塑性プラスチック材料の射出成形試験片に基づく成形物を作製した。   Subsequently, using the mixture of Example 1 as a raw material, a molding temperature was set to 260 to 280 ° C. using an injection molding machine, and a molded product based on an injection molded test piece of a thermoplastic material of JIS-K7152 was produced. .

〔実施例2〕
実施例1において、PET樹脂100重量部に対して、炭素繊維8.7重量部、ガラス繊維65.2重量部、全繊維量73.9重量部とした以外は同様にして、成形物を作製した。
[Example 2]
A molded article was produced in the same manner as in Example 1, except that 8.7 parts by weight of carbon fiber, 65.2 parts by weight of glass fiber, and 73.9 parts by weight of the total fiber were used with respect to 100 parts by weight of PET resin. did.

〔実施例3〕
実施例1において、PET樹脂100重量部に対して、炭素繊維16.7重量部、ガラス繊維50重量部、全繊維量66.7重量部とした以外は同様にして、成形物を作製した。
Example 3
A molded article was produced in the same manner as in Example 1, except that 16.7 parts by weight of carbon fiber, 50 parts by weight of glass fiber, and 66.7 parts by weight of total fiber were used with respect to 100 parts by weight of PET resin.

〔実施例4〕
実施例1において、PET樹脂100重量部に対して、炭素繊維21.7重量部、ガラス繊維22.8重量部、全繊維量44.5重量部とした以外は同様にして、成形物を作製した。
Example 4
A molded article was prepared in the same manner as in Example 1, except that 21.7 parts by weight of carbon fiber, 22.8 parts by weight of glass fiber, and 44.5 parts by weight of total fiber were used with respect to 100 parts by weight of PET resin. did.

〔実施例5〕
実施例1において、PET樹脂100重量部に対して、炭素繊維24重量部、ガラス繊維36重量部、全繊維量60重量部とした以外は同様にして、成形物を作製した。
Example 5
A molded article was produced in the same manner as in Example 1, except that the carbon fiber was 24 parts by weight, the glass fiber was 36 parts by weight, and the total fiber amount was 60 parts by weight based on 100 parts by weight of the PET resin.

〔比較例1〕
実施例1において、PET樹脂100重量部に対して、炭素繊維5.3重量部とし、ガラス繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 1]
A molded article was prepared in the same manner as in Example 1 except that 5.3 parts by weight of carbon fiber was used with respect to 100 parts by weight of PET resin, and no glass fiber was blended.

〔比較例2〕
実施例1において、PET樹脂100重量部に対して、炭素繊維11.1重量部とし、ガラス繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 2]
A molded article was produced in the same manner as in Example 1, except that the carbon fiber was 11.1 parts by weight with respect to 100 parts by weight of the PET resin, and no glass fiber was blended.

〔比較例3〕
実施例1において、PET樹脂100重量部に対して、炭素繊維17.6重量部とし、ガラス繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 3]
A molded article was produced in the same manner as in Example 1 except that 17.6 parts by weight of carbon fiber was used with respect to 100 parts by weight of PET resin, and no glass fiber was blended.

〔比較例4〕
実施例1において、PET樹脂100重量部に対して、炭素繊維42.9重量部とし、ガラス繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 4]
A molded article was prepared in the same manner as in Example 1 except that 42.9 parts by weight of carbon fiber was used with respect to 100 parts by weight of PET resin, and no glass fiber was blended.

〔比較例5〕
実施例1において、PET樹脂100重量部に対して、ガラス繊維17.6重量部とし、炭素繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 5]
A molded article was produced in the same manner as in Example 1 except that 17.6 parts by weight of glass fiber was used with respect to 100 parts by weight of PET resin, and no carbon fiber was blended.

〔比較例6〕
実施例1において、PET樹脂100重量部に対して、ガラス繊維81.8重量部とし、炭素繊維を配合しなかった以外は同様にして成形物を作製した。
[Comparative Example 6]
A molded article was prepared in the same manner as in Example 1, except that the glass fiber was 81.8 parts by weight with respect to 100 parts by weight of the PET resin, and that no carbon fiber was blended.

〔曲げ強度の測定〕
作製した成形物について、JIS−K7171に基づく曲げ試験を実施した。各実施例及び各比較例の曲げ試験に基づく曲げ強度を表1及び表2の「実測値」の欄に示す。
[Measurement of bending strength]
The bending test based on JIS-K7171 was implemented about the produced molded object. The bending strength of each of the examples and comparative examples based on the bending test is shown in the column of “measured value” in Tables 1 and 2.

〔検量線の作製〕
比較例1〜比較例4の曲げ強度に基づき、炭素繊維の配合量(x)に対する曲げ強度(y)の変化を最小二乗法により一定の傾きを有する一次関数からなる近似式1(y=ax+b)を求めた。その結果、a=1.896、b=135.3となった。
[Preparation of calibration curve]
Based on the bending strengths of Comparative Examples 1 to 4, the change of the bending strength (y) with respect to the blending amount (x) of the carbon fiber was determined by the least squares method using an approximate expression 1 (y = ax + b) composed of a linear function having a constant slope. ). As a result, a = 1.896 and b = 135.3.

比較例5及び比較例6の曲げ強度に基づき、ガラス繊維の配合量(x)に対する曲げ強度(y)の変化を一定の傾きを有する一次関数からなる近似式2(y=cx+d)を求めた。その結果、c=0.545、d=153.4となった。   Based on the bending strengths of Comparative Example 5 and Comparative Example 6, the change of the bending strength (y) with respect to the blending amount (x) of the glass fiber was determined by an approximate expression 2 (y = cx + d) composed of a linear function having a constant slope. . As a result, c = 0.545 and d = 153.4.

〔曲げ強度の推定〕
前記二つの検量線を用いて、実施例1〜実施例5に対して炭素繊維のみを配合した時の曲げ強度に対して、ガラス繊維の配合により増加する曲げ強度を加算した値を想定値1として表1の「想定値1」の欄に表した。具体的には、近似式1において炭素繊維の配合量をxに当てはめてy値を算出し、次にガラス繊維の配合量に近似式2のc値を乗じ、その和を想定値1とした。
[Estimation of bending strength]
Using the two calibration curves, a value obtained by adding the bending strength increased by the glass fiber blending to the bending strength when only the carbon fiber was blended in Examples 1 to 5 was assumed value 1. In the column of “estimated value 1” in Table 1. Specifically, in the approximate expression 1, the amount of the carbon fiber is applied to x to calculate the y value, and then the amount of the glass fiber is multiplied by the c value of the approximate expression 2, and the sum is set as the assumed value 1. .

前記二つの検量線を用いて、実施例1〜実施例5に対してガラス繊維のみを配合した時の曲げ強度に対して、炭素繊維の配合により増加する曲げ強度を加算した値を想定値2として表1の「想定値2」の欄に表した。具体的には、近似式2においてガラス繊維の配合量をxに当てはめてy値を算出し、次に炭素繊維の配合量に近似式1のa値を乗じ、その和を想定値2とした。   Using the two calibration curves, the value obtained by adding the bending strength increased by the blending of the carbon fiber to the bending strength when blending only the glass fiber in Examples 1 to 5 is assumed value 2 In the column of “assumed value 2” in Table 1. Specifically, in Formula 2, the y value is calculated by applying the amount of glass fiber to x, and then the value of a in Formula 1 is multiplied by the amount of carbon fiber, and the sum thereof is assumed value 2. .

前記想定値1、想定値2のうち大きい方を想定値3として、表1の「想定値3」の欄に表した。   The larger of the assumed value 1 and the assumed value 2 was set as the assumed value 3 and is shown in the column of “assumed value 3” in Table 1.

〔曲げ強度の強度比〕
実施例1〜実施例5の曲げ強度の実測値を、前記検量線を用いて算出した想定値3で除した値を表1の「強度比」の欄に表した。ここで、強度比の値が1よりも大きければ、炭素繊維とガラス繊維とを配合することによって相乗効果が生じて曲げ強度が上昇したものと考えられる。また、強度比が大きいほど、相乗効果が大きいと言える。
[Strength ratio of bending strength]
The value obtained by dividing the measured value of the bending strength in Examples 1 to 5 by the assumed value 3 calculated using the calibration curve is shown in the column of “strength ratio” in Table 1. Here, if the value of the strength ratio is larger than 1, it is considered that the blending of the carbon fiber and the glass fiber has caused a synergistic effect to increase the bending strength. Also, it can be said that the greater the intensity ratio, the greater the synergistic effect.

〔曲げ弾性率の測定〕
作製した成形物について、JIS−K7171に基づく曲げ試験を実施した。各実施例及び各比較例の曲げ試験に基づく曲げ弾性率を表3及び表4の「実測値」の欄に示す。
(Measurement of flexural modulus)
The bending test based on JIS-K7171 was implemented about the produced molded object. The flexural modulus of each of the examples and comparative examples based on the bending test is shown in the column of “measured value” in Tables 3 and 4.

〔検量線の作製〕
比較例1〜比較例4の曲げ弾性率に基づき、炭素繊維の配合量(x)に対する曲げ弾性率(y)の変化を最小二乗法により一定の傾きを有する一次関数からなる近似式3(y=ax+b)を求めた。その結果、a=262.2、b=3474となった。
[Preparation of calibration curve]
Based on the bending elastic moduli of Comparative Examples 1 to 4, the change of the bending elastic modulus (y) with respect to the blending amount (x) of the carbon fiber was determined by the least squares method using an approximate expression 3 (y) composed of a linear function having a constant slope. = Ax + b). As a result, a = 262.2 and b = 3474.

比較例5及び比較例6の曲げ弾性率に基づき、ガラス繊維の配合量(x)に対する曲げ弾性率(y)の変化を一定の傾きを有する一次関数からなる近似式4(y=cx+d)を求めた。その結果、c=54.78、d=4802となった。   Based on the flexural modulus of Comparative Example 5 and Comparative Example 6, the change of the flexural modulus (y) with respect to the blending amount (x) of the glass fiber was calculated using an approximate expression 4 (y = cx + d) consisting of a linear function having a constant slope. I asked. As a result, c = 54.78 and d = 4802.

〔曲げ弾性率の推定〕
前記二つの検量線を用いて、実施例1〜実施例5に対して炭素繊維のみを配合した時の曲げ弾性率に対して、ガラス繊維の配合により増加する曲げ弾性率を加算した値を想定値1として表1の「想定値1」の欄に表した。具体的には、近似式1において炭素繊維の配合量をxに当てはめてy値を算出し、次にガラス繊維の配合量に近似式2のc値を乗じ、その和を想定値4とした。
(Estimation of flexural modulus)
Using the two calibration curves, a value obtained by adding the flexural modulus increased by the blending of glass fiber to the flexural modulus when only carbon fiber is blended with respect to Examples 1 to 5 is assumed. The value 1 is shown in the column of “estimated value 1” in Table 1. More specifically, in the approximate formula 1, the y value is calculated by applying the blending amount of the carbon fiber to x, and then the blending amount of the glass fiber is multiplied by the c value of the approximate formula 2, and the sum is set to an assumed value 4. .

前記二つの検量線を用いて、実施例1〜実施例5に対してガラス繊維のみを配合した時の曲げ弾性率に対して、炭素繊維の配合により増加する曲げ弾性率を加算した値を想定値2として表1の「想定値2」の欄に表した。具体的には、近似式2においてガラス繊維の配合量をxに当てはめてy値を算出し、次に炭素繊維の配合量に近似式1のa値を乗じ、その和を想定値5とした。   Using the two calibration curves, a value obtained by adding the flexural modulus increased by the blending of carbon fiber to the flexural modulus when only glass fiber is blended with respect to Examples 1 to 5 is assumed. The value 2 is shown in the column of “expected value 2” in Table 1. Specifically, in the approximate expression 2, the y value is calculated by applying the blending amount of the glass fiber to x, and then the blending amount of the carbon fiber is multiplied by the value a of the approximate expression 1, and the sum is set to an assumed value 5. .

前記想定値4、想定値5のうち大きい方を想定値6として、表3の「想定値6」の欄に表した。   The larger of the assumed value 4 and the assumed value 5 was set as the assumed value 6 and is shown in the column of “assumed value 6” in Table 3.

〔曲げ弾性率の弾性率比〕
実施例1〜実施例5の曲げ弾性率の実測値を、前記検量線を用いて算出した想定値6で除した値を弾性率比として表1の「弾性率比」の欄に表した。ここで、弾性率比の値が1よりも大きければ、炭素繊維とガラス繊維とを配合することによって相乗効果が生じて曲げ弾性率が上昇したものと考えられる。また、弾性率比が大きいほど、相乗効果が大きいと言える。
(Elastic modulus ratio of bending elastic modulus)
The value obtained by dividing the actually measured value of the bending elastic modulus in Examples 1 to 5 by the assumed value 6 calculated using the calibration curve was shown as the elastic modulus ratio in the column of “Elastic modulus ratio” in Table 1. Here, when the value of the elastic modulus ratio is larger than 1, it is considered that the blending of the carbon fiber and the glass fiber produces a synergistic effect to increase the bending elastic modulus. Also, it can be said that the greater the elastic modulus ratio, the greater the synergistic effect.

〔曲げ強度の評価〕
表1の「強度比」の欄に記載の通り、実施例1〜実施例5はいずれも1を超えた数値となっており、炭素繊維とガラス繊維とを配合することによって相乗効果が生じて曲げ強度が上昇したものと考えられる。理由は定かではないが、特に実施例2、実施例3においては想定値3よりも2割上昇しており、PET樹脂と、PET樹脂100重量部に対して炭素繊維8〜20重量部、ガラス繊維48〜70重量部を含み、かつ、炭素繊維とガラス繊維との総和が65〜75重量部となる組成物とすることによって、炭素繊維とガラス繊維との相乗効果により曲げ強度が顕著に上昇するものと考えられる。
[Evaluation of bending strength]
As described in the column of “strength ratio” in Table 1, all of Examples 1 to 5 have numerical values exceeding 1, and a synergistic effect is produced by blending carbon fiber and glass fiber. It is considered that the bending strength increased. Although the reason is not clear, in particular, in Examples 2 and 3, it is 20% higher than the assumed value 3, and 8 to 20 parts by weight of carbon fiber and 100 parts by weight of PET resin, By using a composition containing 48 to 70 parts by weight of fiber and having a total of 65 to 75 parts by weight of carbon fiber and glass fiber, the bending strength is remarkably increased due to a synergistic effect of carbon fiber and glass fiber. It is thought to be.

〔曲げ弾性率の評価〕
表3の「弾性率比」の欄に記載の通り、実施例1〜実施例5はいずれも1を超えた数値となっており、炭素繊維とガラス繊維とを配合することによって相乗効果が生じて曲げ弾性率が上昇したものと考えられる。理由は定かではないが、特に実施例2〜実施例4においては想定値3よりも2割上昇していた。
(Evaluation of flexural modulus)
As described in the column of "elastic modulus ratio" in Table 3, all of Examples 1 to 5 have numerical values exceeding 1, and a synergistic effect is produced by blending carbon fiber and glass fiber. It is considered that the flexural modulus increased. Although the reason is not clear, particularly in Examples 2 to 4, the value was increased by 20% from the assumed value 3.

〔曲げ強度と曲げ弾性率との評価〕
曲げ強度の「強度比」及び曲げ弾性率の「弾性率比」は、実施例1〜実施例5においては、同様な傾向であって、特に、実施例2、実施例3において、曲げ強度及び曲げ弾性率に対して、炭素繊維とガラス繊維とを特定の割合で配合することによる相乗効果が顕著に現れており、PET樹脂と、PET樹脂100重量部に対して炭素繊維8〜20重量部、ガラス繊維48〜70重量部を含み、かつ、炭素繊維とガラス繊維との総和がPET樹脂100重量部に対して65〜75重量部となる組成物とすることによって、炭素繊維とガラス繊維との相乗効果により曲げ強度及び曲げ弾性率が顕著に上昇するものと考えられる。
[Evaluation of flexural strength and flexural modulus]
The “strength ratio” of the bending strength and the “elastic modulus ratio” of the flexural modulus have the same tendency in Examples 1 to 5, and particularly, in Examples 2 and 3, the bending strength and The synergistic effect of blending the carbon fiber and the glass fiber at a specific ratio with respect to the flexural modulus is remarkably exhibited, and the carbon fiber is 8 to 20 parts by weight based on 100 parts by weight of the PET resin and the PET resin. By including 48 to 70 parts by weight of glass fiber, and a composition in which the total of carbon fiber and glass fiber is 65 to 75 parts by weight with respect to 100 parts by weight of PET resin, carbon fiber and glass fiber It is thought that the bending strength and the flexural modulus are significantly increased due to the synergistic effect of.

Figure 2019214694
Figure 2019214694

Figure 2019214694
Figure 2019214694

Figure 2019214694
Figure 2019214694

Figure 2019214694
Figure 2019214694

本発明は、パイプ部材のT字状、L字状に連結するための連結部材等、軽量で、かつ、曲げ強度を必要とする部材として広く利用することができる。
INDUSTRIAL APPLICABILITY The present invention can be widely used as a member that is lightweight and requires bending strength, such as a connecting member for connecting a pipe member in a T-shape or an L-shape.

Claims (2)

熱可塑性樹脂と、熱可塑性樹脂100重量部に対して炭素繊維5〜25重量部と、ガラス繊維20〜70重量部とを含み、かつ、炭素繊維とガラス繊維との総和が前記熱可塑性樹脂100重量部に対して40〜75重量部であることを特徴とする繊維強化熱可塑性樹脂組成物。   The thermoplastic resin contains 5 to 25 parts by weight of carbon fiber and 20 to 70 parts by weight of glass fiber with respect to 100 parts by weight of the thermoplastic resin, and the sum of the carbon fiber and the glass fiber is 100% by weight of the thermoplastic resin 100. A fiber-reinforced thermoplastic resin composition characterized by being 40 to 75 parts by weight based on parts by weight. 前記熱可塑性樹脂と、熱可塑性樹脂100重量部に対して前記炭素繊維8〜20重量部と、前記ガラス繊維48〜70重量部とを含み、かつ、前記炭素繊維と前記ガラス繊維との総和が前記熱可塑性樹脂100重量部に対して65〜75重量部であることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂組成物。   The thermoplastic resin, containing 8 to 20 parts by weight of the carbon fiber and 48 to 70 parts by weight of the glass fiber with respect to 100 parts by weight of the thermoplastic resin, and the sum of the carbon fiber and the glass fiber is The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the amount is 65 to 75 parts by weight based on 100 parts by weight of the thermoplastic resin.
JP2018135088A 2018-06-12 2018-07-18 Fiber-reinforced thermoplastic resin composition Pending JP2019214694A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112281 2018-06-12
JP2018112281 2018-06-12

Publications (1)

Publication Number Publication Date
JP2019214694A true JP2019214694A (en) 2019-12-19

Family

ID=68918490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135088A Pending JP2019214694A (en) 2018-06-12 2018-07-18 Fiber-reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2019214694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009743A1 (en) * 2020-07-10 2022-01-13 宇部エクシモ株式会社 Laver cultivation support pillar and production method for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194229A (en) * 2000-12-25 2002-07-10 Polyplastics Co Semi-conductive resin composition and molding
JP2004150500A (en) * 2002-10-29 2004-05-27 Kuraray Co Ltd Joint for fuel piping excellent in fuel permeation resistance
JP2009292953A (en) * 2008-06-05 2009-12-17 Idemitsu Kosan Co Ltd Fiber-reinforced polycarbonate-based composition and molded product thereof
JP2014148656A (en) * 2013-01-31 2014-08-21 Efutekkusu Kk Method for manufacturing polyester/carbon copolymer
JP2017537233A (en) * 2014-10-08 2017-12-14 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Hybrid reinforced assembly
JP2018012836A (en) * 2016-07-07 2018-01-25 ユニチカ株式会社 Plate-like molded body and method for producing the same
JP2018065970A (en) * 2016-10-21 2018-04-26 富士ゼロックス株式会社 Resin composition, and resin molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194229A (en) * 2000-12-25 2002-07-10 Polyplastics Co Semi-conductive resin composition and molding
JP2004150500A (en) * 2002-10-29 2004-05-27 Kuraray Co Ltd Joint for fuel piping excellent in fuel permeation resistance
JP2009292953A (en) * 2008-06-05 2009-12-17 Idemitsu Kosan Co Ltd Fiber-reinforced polycarbonate-based composition and molded product thereof
JP2014148656A (en) * 2013-01-31 2014-08-21 Efutekkusu Kk Method for manufacturing polyester/carbon copolymer
JP2017537233A (en) * 2014-10-08 2017-12-14 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Hybrid reinforced assembly
JP2018012836A (en) * 2016-07-07 2018-01-25 ユニチカ株式会社 Plate-like molded body and method for producing the same
JP2018065970A (en) * 2016-10-21 2018-04-26 富士ゼロックス株式会社 Resin composition, and resin molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009743A1 (en) * 2020-07-10 2022-01-13 宇部エクシモ株式会社 Laver cultivation support pillar and production method for same
KR20230034975A (en) 2020-07-10 2023-03-10 우베 에쿠시모 가부시키가이샤 Seaweed culture support, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009526895A (en) Composite plastic material
JP2010526898A5 (en)
JP6413427B2 (en) PC / ABS resin composition and resin molded product thereof
JP2019214694A (en) Fiber-reinforced thermoplastic resin composition
JP3285480B2 (en) Polyacetal resin composition
CN111004430B (en) High-rigidity composite resin composition having excellent touch and heat resistance, and molded article produced from same
KR20220000876A (en) Carbon fiber-reinforced thermoplastic resin composition suitable for 3D printing filament and molded article comprising the same
CN104610734B (en) High-low temperature resistant nylon composite materials and preparation method thereof
JP2005171242A5 (en)
KR101935632B1 (en) Spun yarn comprising carbon fiber staple and method for preparing the same
BR112021026312A2 (en) Blending small particle starch and starch-based materials with synthetic polymers for increased strength and other properties
KR101558692B1 (en) Polyketone Composite Compositions
KR101751247B1 (en) Anti-abrasive Polyamide Composition
JP2011088997A (en) Molded product composed of composite material and production method therefor
WO2017064778A1 (en) Polyacetal resin composition, fastening member and slide fastener
CN103804781A (en) A polypropylene resin composition reinforced with a long fiber and molded article using the same
WO2018193893A1 (en) Polyolefin resin composition and molded polyolefin resin composition
JPS6038464A (en) Polyether-imide resin composition
KR20200036632A (en) Polyamid resin composition and Molding produced from the same
US3210307A (en) Mixtures of polychloronaphthalenes, ethylene
CN102993562A (en) Antistatic polypropylene composite material
CN107698868A (en) A kind of reinforced wear resistance nylon PP composite material
CN108373580A (en) A kind of ABS and PA plastic alloys product
JP2018130842A (en) Method for manufacturing glass fiber-reinforced resin molding product
KR102056927B1 (en) Multi functional additive agent for polymers and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220726