JP4223272B2 - Conductive resin composition - Google Patents

Conductive resin composition Download PDF

Info

Publication number
JP4223272B2
JP4223272B2 JP2002352740A JP2002352740A JP4223272B2 JP 4223272 B2 JP4223272 B2 JP 4223272B2 JP 2002352740 A JP2002352740 A JP 2002352740A JP 2002352740 A JP2002352740 A JP 2002352740A JP 4223272 B2 JP4223272 B2 JP 4223272B2
Authority
JP
Japan
Prior art keywords
graphite
resin composition
liquid crystalline
conductive resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002352740A
Other languages
Japanese (ja)
Other versions
JP2004182895A (en
Inventor
貴之 宮下
孝司 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2002352740A priority Critical patent/JP4223272B2/en
Publication of JP2004182895A publication Critical patent/JP2004182895A/en
Application granted granted Critical
Publication of JP4223272B2 publication Critical patent/JP4223272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、黒鉛を配合した液晶性ポリマー組成物に関するものであり、更に詳しくは、導電性が要求される燃料電池セパレータ等の成形に好適に用いられる導電性の液晶性ポリマー組成物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、燃料電池セパレータは、黒鉛素材からの切削品、導電性熱硬化性樹脂組成物を用いた成形品、導電性熱可塑性樹脂組成物を用いた成形品、金属での検討が行われている。しかしながら、黒鉛素材からの切削品ではコストが高く、量産性に劣るという問題があり、導電性熱硬化性樹脂組成物では成形サイクルが長いため量産性に劣り、更に成形後のバリ取り作業等の煩雑な後加工が必要である。また、従来の導電性熱可塑性樹脂組成物では導電性と流動性を両立させることが困難である。金属では金属イオンの溶出による電解質膜の劣化、触媒被毒の問題がある。この問題解決のため、表面を金メッキすることも検討されているが、コストが高くなり現実的ではない。
【0003】
一方、異方性溶融相を形成し得る液晶性ポリマーは、熱可塑性樹脂の中でも寸法精度、制振性、流動性に優れ、成形時のバリ発生が極めて少ない材料として知られている。従来、このような特徴を活かし、ガラス繊維で強化された液晶性ポリマー組成物が電子部品として多く採用されてきた。近年、液晶性ポリマーの優れた流動性を活かし、導電性充填材を配合し、導電性を付与することも行われている。
【0004】
例えば、特許文献1では、液晶性ポリマーに導電性カーボンブラックを配合し導電性を改良する試みがなされており、かかる手法によれば導電性は向上するものの体積抵抗率を5×10-2Ω・cm以下とするには充填量が多くなり、導電性カーボンブラックのストラクチャーが発達しているため増粘が激しく成形が困難となる。また、特許文献2では、黒鉛を導電性充填材として配合し帯電防止性を改良する試みがなされているが、この手法では燃料電池セパレータで要求される導電性を付与することが困難である。更に、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8では、特定の黒鉛及び/又はピッチ系炭素繊維を配合し摺動性を向上させる試みがなされており、摺動性の向上は認められるものの、この手法でも燃料電池セパレータで要求される導電性を付与することは困難である。
【0005】
また、特許文献9では、セパレータに特定粒径以上の膨張黒鉛を用いることにより導電性、ガス透過性等を改良する試みがなされている。この手法によれば導電性は向上するものの、膨張黒鉛の嵩比重が低いため、熱可塑性樹脂と混練することが困難である。
【0006】
更に、特許文献10では、セパレータに特定粒径の黒鉛粗粒子を用いることにより導電性、機械的強度、寸法精度等を向上させる試みがなされている。この手法によりプレス成形によって作成したセパレータは、導電性、ガス透過性に優れるものの、用いている黒鉛粒子が細かいため、樹脂組成物の粘度が高くなり、射出成形にて作成した場合、形状によっては流動末端まで樹脂が充填せずガス透過性が悪化するという問題があった。
【0007】
以上のように燃料電池セパレータに用いる導電性樹脂組成物に関しては様々な検討が行われているが、上記の問題全てを解決することのできる材料は存在しなかった。
【0008】
【特許文献1】
特開昭62−131067号公報
【特許文献2】
特開平6−207083号公報
【特許文献3】
特開昭63−146959号公報
【特許文献4】
特開平4−311758号公報
【特許文献5】
特開平6−93173号公報
【特許文献6】
特開平6−172619号公報
【特許文献7】
特開平6−271748号公報
【特許文献8】
特開平7−18162号公報
【特許文献9】
特開平11−354136号公報
【特許文献10】
特開平11−306852号公報
【0009】
【課題を解決するための手段】
本発明者等は上記問題点に鑑み、導電性に関し優れた特性を有する素材について鋭意探索、検討を行ったところ、液晶性ポリマーに特定の黒鉛を特定の配合量でブレンドすることにより、流動性を大きく低下させることなく導電性を付与し得ることを見出し、本発明を完成するに至った。
【0010】
即ち本発明は、液晶性ポリマー(A)100重量部に、固定炭素95重量%以上で平均粒径が350〜1000μmの黒鉛(B)を350〜500重量部配合してなる、体積抵抗率が5×10−2Ω・cm以下である導電性樹脂組成物を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明で使用する液晶性ポリマー(A) とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
【0012】
前記のような液晶性ポリマー(A) としては特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。これらは60℃でペンタフルオロフェノールに濃度0.1重量%で溶解したときに、好ましくは少なくとも約2.0dl/g、さらに好ましくは2.0〜10.0dl/gの対数粘度(I.V.)を有するものが使用される。
【0013】
本発明に適用できる液晶性ポリマー(A) としての芳香族ポリエステル又は芳香族ポリエステルアミドとして特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル、芳香族ポリエステルアミドである。
【0014】
より具体的には、
(1)主として芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステル;(3)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸およびその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミンおよびその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸およびその誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオールおよびその誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミドなどが挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
【0015】
本発明に適用できる前記液晶性ポリマー(A) を構成する具体的化合物の好ましい例としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)および下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸および下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p−アミノフェノール、p−フェニレンジアミン等の芳香族アミン類が挙げられる。
【0016】
【化1】

Figure 0004223272
【0017】
(但し、X :アルキレン(C1〜C4)、アルキリデン、-O- 、-SO-、-SO2- 、-S- 、-CO-より選ばれる基、Y :-(CH2)n-(n =1〜4)、-O(CH2)nO-(n =1〜4)より選ばれる基)
本発明が適用される特に好ましい液晶性ポリマー(A) としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸を主構成単位成分とする芳香族ポリエステルである。
【0018】
本発明の目的である導電性を達成するためには、液晶性ポリマー(A) 100 重量部に、固定炭素95重量%以上で平均粒径が160 〜1000μm の黒鉛(B) を300 〜600 重量部を配合する必要がある。
【0019】
また、本発明において、液晶性ポリマー(A) の溶融粘度も重要であり、溶融粘度が高いと混練時の剪断応力による黒鉛粒子の破壊が大きく、その結果、導電性の低下、増粘による成形流動性の悪化が引き起こされる。そのため、その融点+10℃の測定温度における溶融粘度が10Pa・s以下、好ましくは5Pa・s以下の液晶性ポリマーを用いることが望ましい。
【0020】
本発明において黒鉛(B) としては、人造黒鉛、天然黒鉛である鱗片状黒鉛、鱗状黒鉛、土状黒鉛等のいかなる種類の黒鉛でも使用可能であるが、5×10-2Ω・cm以下、特に2×10-2Ω・cm以下の体積抵抗率を達成するためには、固定炭素が95重量%以上、好ましくは98重量%以上の黒鉛を用いなければならない。その中でも、性能の面から、固定炭素率が高い人造黒鉛や、鱗片状黒鉛、鱗状黒鉛が好ましい。しかし、膨張黒鉛のように嵩比重が小さい黒鉛は、押出性が極端に悪化し、高充填することが困難であるため、本発明の使用には好ましくない。この点で、本発明の使用に好ましい黒鉛は、少なくとも0.2 以上の嵩比重を有する。
【0021】
また、本発明において、5×10-2Ω・cm以下の体積抵抗率を達成するためには、黒鉛(B) の平均粒径および配合量が重要であり、平均粒径が小さ過ぎると所望の導電性を発現させるために多量に配合する必要があり成形時の流動性に劣り、逆に大き過ぎると所望の導電性は発現されるが、成形品にピンホールが発生し、燃料電池セパレータとして使用する際にガスが透過するという問題が生じる。そのため、平均粒径160 〜1000μm 、好ましくは200 〜450 μm の黒鉛を用いなければならない。また、黒鉛(B) の配合量は、配合量が少ない場合、所望の導電性を得られず、多すぎる場合、押出性および成形性を悪化させる。そのため、液晶性ポリマー(A) 100 重量部に対し、300 〜600 重量部、好ましくは350 〜500 重量部の範囲にあることが必要である。
【0022】
更に、本発明においては、黒鉛配合後の樹脂組成物の溶融粘度も重要であり、溶融粘度が高いと成形流動性が悪化する。そのため、樹脂組成物の成形温度、即ち300 〜350 ℃で樹脂組成物が溶融状態での樹脂組成物の溶融粘度が500 Pa・s以下、好ましくは350Pa・s以下であることが望ましい。
【0023】
また、本発明の組成物には、目的とする導電性を損なわない範囲で各種の繊維状及び非繊維状充填材を配合することもできる。
【0024】
繊維状充填材としては、ガラス繊維、カーボン繊維、ウィスカー、無機系繊維、鉱石系繊維等が使用できる。ウィスカーとしては、窒化珪素ウィスカー、三窒化珪素ウィスカー、塩基性硫酸マグネシウムウィスカー、チタン酸バリウムウィスカー、炭化珪素ウィスカー、ボロンウィスカー等が使用可能であり、無機系繊維としては、ロックウール、ジルコニア、アルミナシリカ、チタン酸カリウム、チタン酸バリウム、酸化チタン、炭化珪素、アルミナ、シリカ、高炉スラグ等の各種ファイバーが使用可能であり、鉱石系繊維としては、アスベスト等が使用可能である。これらの中でも性能の面から、ガラス繊維、カーボン繊維が好ましい。
【0025】
板状や粉粒状の非繊維状充填材としては、具体的にはタルク、マイカ、カオリン、クレー、バーミキュライト、珪酸カルシウム、珪酸アルミニウム、長石粉、酸性白土、ロウ石クレー、セリサイト、シリマナイト、ベントナイト、ガラスフレーク、スレート粉、シラン等の珪酸塩、炭酸カルシウム、胡粉、炭酸バリウム、炭酸マグネシウム、ドロマイト等の炭酸塩、バライト粉、ブランフィックス、沈降性硫酸カルシウム、焼石膏、硫酸バリウム等の硫酸塩、水和アルミナ等の水酸化物、アルミナ、酸化アンチモン、マグネシア、酸化チタン、亜鉛華、シリカ、珪砂、石英、ホワイトカーボン、珪藻土等の酸化物、二硫化モリブデン等の硫化物、金属粉粒体等の材質からなるものである。
【0026】
本発明において使用する黒鉛、充填材はそのままでも使用できるが、一般的に用いられる公知の表面処理剤、収束剤を併用することができる。
【0027】
なお、液晶性ポリマー組成物に対し、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤および難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明で言う液晶性ポリマー組成物の範囲に含まれる。
【0028】
本発明の導電性樹脂組成物は、特定の黒鉛を用いることにより、成形性を損なうことなく、導電性に優れた材料を得るものであり、更には成形体中の各充填材が均一に分散し、微視的には凝集し、巨視的には均一になるような分散状態で、より高性能が発揮される。
【0029】
このような液晶性ポリマー組成物を製造するには、前記組成割合で配合し、混練すればよい。通常、押出機で混練し、ペレット状に押し出し、射出成形等に用いるが、この様な押出機による混練に限定されるものではない。
【0030】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性の測定および試験は次の方法で行った。成形流動性、離型性については、射出成形機(日本製鋼所製、J180EII−SP)を用いて、以下の成形条件にて行った。
【0031】
試験片;120mm ×120mm ×3t平板
設定シリンダー温度;350 ℃
金型温度;150 ℃
射速;3〜5m/min
保圧;60MPa
(1) 成形流動性
成形に際しての、成形流動性を下記基準で評価した。
【0032】
○;問題なし
△;流動性のバラツキあり
×;粘度増加により成形不可
(2) 離型性
成形に際しての、金型からの離型を下記基準で評価した。
【0033】
○;問題なし
△;離型時に金型への樹脂付着あり
×;離型が不可
(3) 体積抵抗率
φ30mm×2t平板試験片を用い、金メッキした電極の上にカーボンペーパー、試験片、カーボンペーパー、電極の順に重ね、1MPa の荷重をかけ、電極間の抵抗値を四端子法にて測定し、その値からカーボンペーパー抵抗値を引き、体積抵抗率を計算し、試験片5枚の平均値を体積抵抗率とした。
(4) 溶融粘度
ペレットを用い、溶融粘度測定装置((株)東洋精機製キャピログラフ1B型)にて、シェアレート1000sec-1前後の5〜6点を測定し、そのデータから近似線を求め、その近似線からシェアレート1000sec-1の値を計算し、溶融粘度とした。
実施例1〜4および比較例1〜5
液晶性ポリエステル(ポリプラスチックス(株)製、ベクトラ)100 重量部に対し、表1に示す黒鉛を表1に示す割合で配合し、二軸押出機((株)日本製鋼所製、TEX30α型)を用いて混練しペレットを形成後、このペレットから射出成形機により上記試験片を作製し、評価したところ、表1に示す結果を得た。
【0034】
尚、使用した液晶性ポリエステル及び黒鉛の詳細は以下の通りである。
液晶性ポリエステル1;溶融粘度3Pa・s(340 ℃測定)
液晶性ポリエステル2;溶融粘度50Pa・s(300 ℃測定)
黒鉛1;(株)エスイーシー製、人造黒鉛SGS−350、固定炭素99.9重量%、平均粒径350 μm 、嵩比重0.8
黒鉛2;日本黒鉛工業(株)製、人造黒鉛PAG60N、固定炭素99.8重量%、平均粒径470 μm 、嵩比重0.78
黒鉛3;(株)エスイーシー製、人造黒鉛SGP−50、固定炭素99.9重量%、平均粒径50μm 、嵩比重0.4
黒鉛4;西村黒鉛(株)製、鱗状黒鉛8094、固定炭素94.0重量%、平均粒径250 μm 、嵩比重0.48
黒鉛5;日本黒鉛工業(株)製、膨張黒鉛EXP−P、固定炭素95.0重量%、平均粒径100 μm 、嵩比重0.06
【0035】
【表1】
Figure 0004223272
【0036】
注1;成形不可のため未評価
注2;機械の測定限界以上で測定不可
注3;押出機による混練不可で測定不可[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystalline polymer composition containing graphite, and more particularly to a conductive liquid crystalline polymer composition suitably used for molding a fuel cell separator or the like that requires electrical conductivity.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, fuel cell separators have been studied with graphite cut products, molded products using conductive thermosetting resin compositions, molded products using conductive thermoplastic resin compositions, and metals. . However, there is a problem that the cutting product from the graphite material is high in cost and inferior in mass productivity, and the conductive thermosetting resin composition is inferior in mass productivity because of a long molding cycle, and further, such as deburring work after molding. Complex post-processing is required. In addition, it is difficult to achieve both conductivity and fluidity with a conventional conductive thermoplastic resin composition. Metals have problems of electrolyte membrane degradation and catalyst poisoning due to elution of metal ions. In order to solve this problem, it is also considered that the surface is gold-plated, but the cost increases and is not practical.
[0003]
On the other hand, a liquid crystalline polymer capable of forming an anisotropic molten phase is known as a material that is excellent in dimensional accuracy, vibration damping properties, and fluidity among thermoplastic resins, and has very few burrs during molding. Conventionally, liquid crystal polymer compositions reinforced with glass fibers have been widely used as electronic components by taking advantage of such characteristics. In recent years, taking advantage of the excellent fluidity of a liquid crystalline polymer, a conductive filler is blended to impart conductivity.
[0004]
For example, in Patent Document 1, an attempt is made to improve conductivity by adding conductive carbon black to a liquid crystalline polymer. According to such a technique, although the conductivity is improved, the volume resistivity is 5 × 10 −2 Ω.・ To make it less than cm, the filling amount increases, and since the structure of conductive carbon black is developed, the thickening becomes severe and molding becomes difficult. In Patent Document 2, attempts are made to improve the antistatic property by blending graphite as a conductive filler, but it is difficult to impart the conductivity required for the fuel cell separator with this technique. Furthermore, in Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8, an attempt is made to improve sliding performance by blending specific graphite and / or pitch-based carbon fiber. Although improvement in slidability is recognized, it is difficult to impart the conductivity required for the fuel cell separator even with this method.
[0005]
In Patent Document 9, an attempt is made to improve conductivity, gas permeability, and the like by using expanded graphite having a specific particle size or more for the separator. According to this method, although conductivity is improved, it is difficult to knead with the thermoplastic resin because the expanded graphite has a low bulk specific gravity.
[0006]
Further, in Patent Document 10, an attempt is made to improve conductivity, mechanical strength, dimensional accuracy, and the like by using graphite coarse particles having a specific particle size for the separator. Separators made by press molding by this method are excellent in conductivity and gas permeability, but because the graphite particles used are fine, the viscosity of the resin composition is high, and when made by injection molding, depending on the shape There was a problem that the gas permeability deteriorated because the resin was not filled to the flow end.
[0007]
As described above, various studies have been made on the conductive resin composition used for the fuel cell separator, but there has been no material that can solve all of the above problems.
[0008]
[Patent Document 1]
JP 62-131067 A [Patent Document 2]
JP-A-6-207083 [Patent Document 3]
JP 63-146959 A [Patent Document 4]
JP-A-4-31758 [Patent Document 5]
JP-A-6-93173 [Patent Document 6]
JP-A-6-172619 [Patent Document 7]
JP-A-6-271748 [Patent Document 8]
JP 7-18162 A [Patent Document 9]
Japanese Patent Laid-Open No. 11-354136 [Patent Document 10]
Japanese Patent Laid-Open No. 11-306852
[Means for Solving the Problems]
In view of the above problems, the present inventors diligently searched for and examined a material having excellent conductivity-related properties. As a result, by blending a specific graphite with a specific amount of liquid crystal polymer, fluidity was obtained. The inventors have found that conductivity can be imparted without greatly reducing the thickness of the present invention, and have completed the present invention.
[0010]
That is, the present invention has a volume resistivity of 100 parts by weight of the liquid crystalline polymer (A) and 350 to 500 parts by weight of graphite (B) having a fixed carbon of 95% by weight or more and an average particle size of 350 to 1000 μm. The present invention provides a conductive resin composition that is 5 × 10 −2 Ω · cm or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The liquid crystalline polymer (A) used in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystalline polymer applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in the molten stationary state, and optically anisotropic.
[0012]
The liquid crystalline polymer (A) is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and an aromatic polyester or a polyester partially containing the aromatic polyester amide in the same molecular chain. Is also in that range. They preferably have a logarithmic viscosity (IV) of at least about 2.0 dl / g, more preferably 2.0-10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by weight. .) Are used.
[0013]
The aromatic polyester or aromatic polyester amide as the liquid crystalline polymer (A) applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic hydroxyamines and aromatic diamines. An aromatic polyester or aromatic polyester amide having the above compound as a constituent component.
[0014]
More specifically,
(1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof; c) a polyester comprising at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof; (3) mainly (a) one of aromatic hydroxycarboxylic acids and derivatives thereof; 2 or more types, (b) one or more types of aromatic hydroxyamine, aromatic diamine and derivatives thereof, and (c) one or two types of aromatic dicarboxylic acids, alicyclic dicarboxylic acids and derivatives thereof A polyesteramide comprising:
(4) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). One or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof; and (d) at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof, and The polyesteramide which consists of, etc. are mentioned. Furthermore, you may use a molecular weight modifier together with said structural component as needed.
[0015]
Specific examples of the specific compound constituting the liquid crystalline polymer (A) applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6- Aromatic diols such as dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, compounds represented by the following general formula (I) and the following general formula (II); terephthalic acid, isophthal Aromatic dicarboxylic acids such as acids, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and compounds represented by the following general formula (III); aromatics such as p-aminophenol and p-phenylenediamine Examples include amines.
[0016]
[Chemical 1]
Figure 0004223272
[0017]
(However, X: alkylene (C 1 ~C 4), alkylidene, -O-, -SO -, - SO 2 -, -S-, a group selected from -CO-, Y :-( CH 2) n - (a group selected from n = 1 to 4) and —O (CH 2 ) n O— (n = 1 to 4))
Particularly preferred liquid crystalline polymers (A) to which the present invention is applied are aromatic polyesters containing p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as the main structural unit component.
[0018]
In order to achieve the conductivity which is the object of the present invention, 300 to 600 weight parts of graphite (B) having a fixed carbon of 95 weight% or more and an average particle diameter of 160 to 1000 μm are added to 100 weight parts of the liquid crystalline polymer (A). Parts need to be blended.
[0019]
In the present invention, the melt viscosity of the liquid crystalline polymer (A) is also important.If the melt viscosity is high, the graphite particles are greatly destroyed by shear stress during kneading. Deterioration of fluidity is caused. Therefore, it is desirable to use a liquid crystalline polymer having a melting viscosity of 10 Pa · s or less, preferably 5 Pa · s or less at a measurement temperature of melting point + 10 ° C.
[0020]
As the graphite (B) in the present invention, any type of graphite such as artificial graphite, natural graphite scaly graphite, scaly graphite, earthy graphite can be used, but not more than 5 × 10 −2 Ω · cm, In particular, in order to achieve a volume resistivity of 2 × 10 −2 Ω · cm or less, graphite having a fixed carbon content of 95 wt% or more, preferably 98 wt% or more must be used. Among these, from the viewpoint of performance, artificial graphite, scaly graphite, and scaly graphite having a high fixed carbon ratio are preferable. However, graphite with a small bulk specific gravity, such as expanded graphite, is not preferred for use in the present invention because its extrudability is extremely deteriorated and it is difficult to achieve high filling. In this regard, the graphite preferred for use in the present invention has a bulk specific gravity of at least 0.2.
[0021]
In the present invention, in order to achieve a volume resistivity of 5 × 10 −2 Ω · cm or less, the average particle size and blending amount of graphite (B) are important. If the average particle size is too small, In order to express the conductivity of the resin, it is necessary to be blended in a large amount and the fluidity at the time of molding is inferior. On the contrary, if it is too large, the desired conductivity is exhibited, but a pinhole is generated in the molded product, and the fuel cell separator When used as a gas, there arises a problem of gas permeation. Therefore, graphite having an average particle size of 160 to 1000 μm, preferably 200 to 450 μm must be used. Further, when the blending amount of graphite (B) is small, desired conductivity cannot be obtained, and when it is too large, extrudability and moldability are deteriorated. Therefore, it is necessary to be in the range of 300 to 600 parts by weight, preferably 350 to 500 parts by weight with respect to 100 parts by weight of the liquid crystalline polymer (A).
[0022]
Furthermore, in the present invention, the melt viscosity of the resin composition after blending with graphite is also important. If the melt viscosity is high, the molding fluidity is deteriorated. For this reason, it is desirable that the resin composition has a melt viscosity of 500 Pa · s or less, preferably 350 Pa · s or less, preferably 350 Pa · s or less, at a molding temperature of the resin composition, that is, 300 to 350 ° C.
[0023]
Moreover, various fibrous and non-fibrous fillers can also be blended with the composition of the present invention as long as the intended conductivity is not impaired.
[0024]
As the fibrous filler, glass fiber, carbon fiber, whisker, inorganic fiber, ore fiber and the like can be used. As the whisker, silicon nitride whisker, silicon trinitride whisker, basic magnesium sulfate whisker, barium titanate whisker, silicon carbide whisker, boron whisker and the like can be used, and as the inorganic fiber, rock wool, zirconia, alumina silica Various fibers such as potassium titanate, barium titanate, titanium oxide, silicon carbide, alumina, silica, and blast furnace slag can be used. As the ore fiber, asbestos or the like can be used. Among these, glass fiber and carbon fiber are preferable from the viewpoint of performance.
[0025]
Specific examples of non-fibrous fillers in the form of plates and powders include talc, mica, kaolin, clay, vermiculite, calcium silicate, aluminum silicate, feldspar powder, acid clay, waxy clay, sericite, sillimanite, bentonite. , Silicates such as glass flakes, slate powder, silane, carbonates such as calcium carbonate, hum powder, barium carbonate, magnesium carbonate, dolomite, sulfates such as barite powder, blankfix, precipitated calcium sulfate, calcined gypsum, barium sulfate Hydroxides such as hydrated alumina, alumina, antimony oxide, magnesia, titanium oxide, zinc white, silica, silica sand, quartz, white carbon, diatomaceous earth oxides, sulfides such as molybdenum disulfide, metal particles It consists of materials such as.
[0026]
The graphite and filler used in the present invention can be used as they are, but commonly used known surface treatment agents and sizing agents can be used in combination.
[0027]
Addition of additives such as nucleating agent, carbon black, pigments such as inorganic baked pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents and flame retardants to the liquid crystalline polymer composition, Compositions imparted with desired characteristics are also included in the range of the liquid crystalline polymer composition referred to in the present invention.
[0028]
The conductive resin composition of the present invention obtains a material having excellent conductivity without impairing moldability by using specific graphite. Furthermore, each filler in the molded body is uniformly dispersed. In addition, higher performance is exhibited in a dispersed state in which the particles are aggregated microscopically and become macroscopically uniform.
[0029]
In order to produce such a liquid crystalline polymer composition, the composition may be blended and kneaded. Usually, they are kneaded with an extruder, extruded into pellets, and used for injection molding, but are not limited to such kneading with an extruder.
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement and test of the physical property in an Example were performed with the following method. About molding fluidity | liquidity and mold release property, it performed on the following molding conditions using the injection molding machine (Nippon Steel Works make, J180EII-SP).
[0031]
Test piece: 120mm x 120mm x 3t flat plate setting cylinder temperature: 350 ° C
Mold temperature: 150 ℃
Shooting speed: 3-5m / min
Holding pressure: 60MPa
(1) Molding fluidity The molding fluidity during molding was evaluated according to the following criteria.
[0032]
○: No problem △: Fluidity variation ×: Impossible to mold due to increased viscosity
(2) Releaseability The mold release from the mold was evaluated according to the following criteria.
[0033]
○: No problem △; Resin adheres to the mold during mold release ×;
(3) Using a volume resistivity φ30mm × 2t flat plate test piece, superimpose carbon paper, test piece, carbon paper and electrode on the gold-plated electrode in this order, apply a load of 1MPa, and determine the resistance value between the electrodes using the four-terminal method. The carbon paper resistance value was subtracted from the measured value to calculate the volume resistivity, and the average value of the five test pieces was taken as the volume resistivity.
(4) Using melt viscosity pellets, measure 5 to 6 points around a share rate of 1000 sec -1 with a melt viscosity measuring device (Capillograph Type 1B manufactured by Toyo Seiki Co., Ltd.), and obtain an approximate line from the data. A value at a shear rate of 1000 sec −1 was calculated from the approximate line, and was defined as melt viscosity.
Examples 1-4 and Comparative Examples 1-5
Graphite shown in Table 1 is blended in a proportion shown in Table 1 with respect to 100 parts by weight of liquid crystalline polyester (Polyplastics Co., Ltd., Vectra), and a twin screw extruder (manufactured by Nippon Steel Works, TEX30α type). ) Were used to form the pellets, and the above test pieces were produced from the pellets with an injection molding machine and evaluated. The results shown in Table 1 were obtained.
[0034]
The details of the liquid crystalline polyester and graphite used are as follows.
Liquid crystalline polyester 1; melt viscosity 3 Pa · s (measured at 340 ° C.)
Liquid crystalline polyester 2; melt viscosity 50 Pa · s (300 ° C measurement)
Graphite 1; manufactured by SCC Co., Ltd., artificial graphite SGS-350, fixed carbon 99.9% by weight, average particle size 350 μm, bulk specific gravity 0.8
Graphite 2; manufactured by Nippon Graphite Industries Co., Ltd., artificial graphite PAG60N, fixed carbon 99.8% by weight, average particle size 470 μm, bulk specific gravity 0.78
Graphite 3; manufactured by SCC Co., Ltd., artificial graphite SGP-50, fixed carbon 99.9% by weight, average particle size 50 μm, bulk specific gravity 0.4
Graphite 4; manufactured by Nishimura Graphite Co., Ltd., scale-like graphite 8094, fixed carbon 94.0% by weight, average particle size 250 μm, bulk specific gravity 0.48
Graphite 5; manufactured by Nippon Graphite Industries Co., Ltd., expanded graphite EXP-P, fixed carbon 95.0% by weight, average particle size 100 μm, bulk specific gravity 0.06
[0035]
[Table 1]
Figure 0004223272
[0036]
Note 1; Not evaluated because molding is not possible Note 2; Cannot be measured beyond the measurement limit of the machine Note 3; Cannot be measured because it cannot be kneaded by an extruder

Claims (5)

液晶性ポリマー(A)100重量部に、固定炭素95重量%以上で平均粒径が350〜1000μmの黒鉛(B)を350〜500重量部配合してなる、体積抵抗率が5×10−2Ω・cm以下である導電性樹脂組成物。A volume resistivity of 5 × 10 −2 is obtained by blending 350 to 500 parts by weight of graphite (B) having an average particle size of 350 to 1000 μm with a fixed carbon of 95% by weight or more in 100 parts by weight of the liquid crystalline polymer (A). A conductive resin composition having an Ω · cm or less. 体積抵抗率が2×10 −2 Ω・cm以下である請求項1記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the volume resistivity is 2 × 10 −2 Ω · cm or less . 液晶性ポリマー(A)が、その融点+10℃での溶融粘度が10Pa・s以下のものである請求項1又は2記載の導電性樹脂組成物。 3. The conductive resin composition according to claim 1, wherein the liquid crystalline polymer (A) has a melting viscosity at a melting point of + 10 ° C. of 10 Pa · s or less . 300〜350℃で導電性樹脂組成物が溶融状態での導電性樹脂組成物の溶融粘度が500Pa・s以下である請求項1〜3の何れか1項記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 3, wherein the conductive resin composition in a molten state at 300 to 350 ° C has a melt viscosity of 500 Pa · s or less . 熱伝導率が5W/m・K以上である請求項1〜4の何れか1項記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 4, wherein the thermal conductivity is 5 W / m · K or more .
JP2002352740A 2002-12-04 2002-12-04 Conductive resin composition Expired - Fee Related JP4223272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352740A JP4223272B2 (en) 2002-12-04 2002-12-04 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352740A JP4223272B2 (en) 2002-12-04 2002-12-04 Conductive resin composition

Publications (2)

Publication Number Publication Date
JP2004182895A JP2004182895A (en) 2004-07-02
JP4223272B2 true JP4223272B2 (en) 2009-02-12

Family

ID=32754274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352740A Expired - Fee Related JP4223272B2 (en) 2002-12-04 2002-12-04 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP4223272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261820A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Fuel cell system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307017A (en) * 2005-04-28 2006-11-09 Polyplastics Co Conductive resin composition
JP2007039663A (en) * 2005-06-30 2007-02-15 Toray Ind Inc Liquid crystalline resin composition and formed product comprising the same
KR20120114048A (en) * 2011-04-06 2012-10-16 삼성정밀화학 주식회사 Thermally conductive polymer composite material and article including the same
US9512293B2 (en) 2013-03-13 2016-12-06 Ticona Llc Antistatic liquid crystalline polymer composition
CN111417681B (en) 2017-12-05 2023-08-22 提克纳有限责任公司 Aromatic polymer composition for camera module
JP6741835B1 (en) * 2019-08-09 2020-08-19 住友化学株式会社 Liquid crystal polyester resin pellets and liquid crystal polyester resin moldings
JP2023514820A (en) 2020-02-26 2023-04-11 ティコナ・エルエルシー electronic device
KR20220147110A (en) 2020-02-26 2022-11-02 티코나 엘엘씨 Polymer Compositions for Electronic Devices
EP4111834A1 (en) 2020-02-26 2023-01-04 Ticona LLC Circuit structure
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261820A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Fuel cell system

Also Published As

Publication number Publication date
JP2004182895A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4450902B2 (en) Liquid crystalline polymer composition
JP4118425B2 (en) Liquid crystalline polymer composition for connector and connector
JP3686718B2 (en) Liquid crystalline polymer composition and molded article
JP4672552B2 (en) Conductive resin composition
JP2001207054A (en) Molded article of liquid crystalline polymer
JPWO2008023839A1 (en) Asymmetric electronic components
WO2001068770A1 (en) Liquid-crystalline polymer composition and molding method
JP4223272B2 (en) Conductive resin composition
JP2003268252A (en) Liquid crystalline polymer composition
JP4302508B2 (en) Conductive resin composition
JPWO2010067561A1 (en) Liquid crystalline resin composition
JP4368079B2 (en) Liquid crystalline polyester resin composition
JP2009114224A (en) Liquid crystalline polyester resin composition
JP3859966B2 (en) Semiconductive resin composition and molded article
JP4932695B2 (en) Liquid crystalline polymer composition
JP4376445B2 (en) Liquid crystalline polymer composition
WO2020070904A1 (en) Liquid crystal polyester resin
JP7373080B2 (en) Conductive liquid crystal resin composition
JP2004330482A (en) Method for molding electroconductive resin molded product
JP2005310533A (en) Fuel cell separator
WO2020070903A1 (en) Liquid crystal polyester resin
JP2002194194A (en) Semiconductive resin composition and molded product
JPH09229166A (en) Gear
JPH04164956A (en) Composite resin composition
JPH04239560A (en) Polyphenylene sulfide resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees