JP3859390B2 - Operation method of waste gasification and melting system - Google Patents

Operation method of waste gasification and melting system Download PDF

Info

Publication number
JP3859390B2
JP3859390B2 JP13194099A JP13194099A JP3859390B2 JP 3859390 B2 JP3859390 B2 JP 3859390B2 JP 13194099 A JP13194099 A JP 13194099A JP 13194099 A JP13194099 A JP 13194099A JP 3859390 B2 JP3859390 B2 JP 3859390B2
Authority
JP
Japan
Prior art keywords
waste
combustion
ash
melting
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13194099A
Other languages
Japanese (ja)
Other versions
JP2000320825A5 (en
JP2000320825A (en
Inventor
努 平本
哲久 広勢
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP13194099A priority Critical patent/JP3859390B2/en
Publication of JP2000320825A publication Critical patent/JP2000320825A/en
Publication of JP2000320825A5 publication Critical patent/JP2000320825A5/ja
Application granted granted Critical
Publication of JP3859390B2 publication Critical patent/JP3859390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種廃棄物の溶融処理に係り、特に固形廃棄物をガス化した後に高温燃焼により廃棄物中の灰分を溶融スラグ化して処理する方法に関するものである。ここで、各種廃棄物とは一般都市ごみ、産業廃棄物、あるいは、ごみ固形燃料(ごみを原料として固形化したもの)等である。
また、本発明は特に廃棄物発電における昼夜の負荷(発電量)調整に関するものである。
【0002】
【従来の技術】
ガス化炉におけるガス化工程と溶融炉における高温燃焼工程とを組合せ、廃棄物をガス化した後に高温燃焼により廃棄物中の灰分を溶融スラグ化して処理する方法が知られている。
この方法は、灰分を含む固形廃棄物を焼却処理するに際し、ダイオキシン類のような有害な有機化合物を発生させにくくし、かつ灰分を溶融スラグ化して減量化し安定化させることができるものであり、ガス化工程と高温燃焼工程を組合せたガス化溶融燃焼方法である。この場合、灰分の溶融温度は1200℃以上であるため、高温燃焼工程ではこれ以上の温度で燃焼させる必要がある。
【0003】
一般に、溶融炉は、ガス化炉でガス化された可燃ガス及び可燃微粒子が前記溶融炉内で高温燃焼する際に発生する燃焼熱量と溶融炉表面からの放熱量を考慮し、溶融炉内温度が1200〜1500°程度になるように計画される。
しかしながら、定格処理量の75〜100%程度の高負荷時に溶融炉内温度が1250℃以上の高温燃焼が可能であるよう計画されたガス化溶融炉であっても、定格処理量の50〜75%程度以下の低負荷時には、廃棄物供給量が低下するため溶融炉に供給される可燃ガス及び可燃微粒子だけでは燃焼熱量が低下して、前記溶融炉で高温燃焼を行うためには油などの助燃材を必要とする場合がある。一方、油などの助燃材を用いない場合は、溶融炉内での燃焼熱が不足するため高温燃焼ができなく灰分の溶融処理ができなくなることがある。
すなわち、従来のガス化溶融燃焼方法で低負荷運転を伴う場合において、廃棄物を油などの助燃材を用いないで廃棄物の自己燃焼熱のみにより廃棄物中の灰分を溶融処理する時には解決すべき問題点がある。
【0004】
また、廃棄物燃焼時に、廃棄物の燃焼熱から最も利用度の高いエネルギーである電力としてエネルギー回収を行う廃棄物燃焼発電が一般に行われている。
廃棄物発電は、廃棄物の燃焼による熱エネルギーを発電に利用するものであり、廃棄物の燃焼熱を廃熱ボイラで蒸気回収し、蒸気タービン・発電機で発電する方式が一般的である。斯かる廃棄物発電により発電された電力は場内で消費されるほか余剰分は電力会社に売電される。
【0005】
電力会社は、廃棄物発電が行われ自家消費された後の余剰電力を、朝8時頃から夜10時頃までのいわゆる「昼間」には電力需要が多いので高い購入電力単価で、逆に、夜10時頃から朝8時頃までのいわゆる「夜間」には電力需要が少ないため安い購入電力単価で、購入する制度を設けている。電力会社によっては、昼間の電力購入単価が夜間の余剰電力購入単価の4〜5倍になっているものもある。
【0006】
そこで、限られた量の廃棄物を利用して廃棄物発電を行うという観点からは、電力会社の購入単価の高い昼間に高負荷燃焼し発電電力量を最大限多くし、購入単価の安い夜間に低負荷燃焼運転にして廃棄物量の消費を抑制するという運転方法が求められる。
しかしながら、低負荷運転を行う場合には自己燃焼熱のみによる灰分の溶融処理ができなくなるという上述のような問題点があった。
【0007】
さらに、従来の廃棄物燃焼灰の溶融処理方式は、アーク式、電気抵抗式、プラズマ式等の電気溶融方式が用いられることが多い。この場合、廃棄物燃焼発電によりエネルギー回収された発電電力が場内で消費されるだけでなく廃棄物燃焼灰の溶融処理のためのエネルギー源としても費消されるため、売電電力量が大幅に低下してしまうという問題点があった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来技術の前記問題点を解決することにあり、低負荷運転を伴う場合において油などの助燃材を使用せず、廃棄物中の灰分を廃棄物の自己燃焼熱により溶融スラグ化する方法を提供することにある。
また、廃棄物ガス化溶融発電方法において、限られた量の廃棄物を利用して廃棄物発電を行うという観点からは、電力会社の購入単価の高い昼間に高負荷燃焼運転にして発電電力量を最大限多くし、購入単価の安い夜間に低負荷燃焼運転にして廃棄物量の消費を抑制するという運転方法を提供することにある。
さらに、廃棄物ガス化溶融発電方法において、売電電力量の最大化という観点からは、燃焼灰の溶融処理に電力を大量に消費する電気式灰溶融方式を使用することなく、売電電力量がさほど低下しない廃棄物の自己熱溶融の可能な溶融方式を提供することにある。
【0009】
【課題を解決するための手段】
上述した課題を解決するため、本発明の廃棄物ガス化溶融システムの運転方法は、固形廃棄物を流動層ガス化炉にて450〜850℃の層温でガス化した後に廃棄物中の灰分を溶融炉で燃焼またはスラグ化する方法にあたり定格処理量の50〜75%の低負荷時に溶融炉を燃焼室として使用して800〜950℃の温度でガスやタールやチャー等の可燃物を燃焼し、その際発生したスラグ化していない燃焼灰を前記溶融炉の排出口から排出して貯留しておき、定格処理量の75〜100%の高負荷時に前記燃焼灰を流動層ガス化炉または溶融炉に供給し、高負荷時の燃焼廃棄物の灰分とともに1200〜1600℃の温度で溶融スラグ化することを特徴とするものである。
本発明の好ましい態様によれば、前記燃焼灰に前記溶融炉から排出される燃焼排ガスから捕集される灰を加えて高負荷時に前記溶融炉に供給することを特徴とする。
本発明の好ましい態様によれば、溶融炉から排出された燃焼排ガスの熱回収により過熱蒸気を生成し、該過熱蒸気を蒸気タービン及び発電機からなる発電設備に供給し発電する。
本発明の好ましい態様によれば、昼間を高負荷運転とし、夜間を低負荷運転とする
【0010】
本発明は、固形廃棄物をガス化した後に高温燃焼により廃棄物中の灰分を溶融スラグ化する方法において、低負荷時には溶融炉を燃焼室として使用しガス化炉でガス化された可燃ガス及び可燃微粒子を800〜950℃で燃焼し、発生した燃焼灰を捕集・貯留しておき、高負荷時に前記貯留燃焼灰をガス化炉または溶融炉に供給し、高負荷時の処理廃棄物の灰分とともに溶融スラグ化するようにしたものである。
【0011】
本発明は、低負荷時にガス化溶融炉を従来の流動床焼却炉のフリーボードに相当する燃焼室として運転し、溶融処理できない灰分を焼却灰の形態で捕集・貯留しておき、高負荷時に従来のガス化溶融炉として運転し、この際に低負荷時の灰分も溶融処理するようにしたものである。
【0012】
本発明は、低負荷時には廃棄物が完全燃焼されダイオキシン類の発生抑制が達成できれば良いことと、低負荷時に捕集・貯留しておいた焼却灰を高負荷時に廃棄物の自己燃焼熱により溶融処理できることを利用する。
すなわち、常温の乾灰を溶融するのに必要な熱量は約100〜150kcal/kg程度であり、廃棄物の低位発熱量に比べて非常に小さく、処理廃棄物と焼却灰を混合燃焼してもその平均発熱量は自己熱溶融を維持できるものであることを利用する。
【0013】
一般に自己熱溶融に必要な廃棄物の発熱量は炉の規模により異なるが約1500〜2000kcal/kgであるので、廃棄物の低位発熱量が2000kcal/kg程度以上のものに対しては、約30〜40%程度まで焼却灰を追加溶融処理できる。低負荷時には流動床焼却炉のフリーボードに相当する燃焼室として利用される溶融炉(フリーボード)での燃焼温度は850〜950℃(約1120〜1220K)、高負荷時の燃焼温度は1300〜1400℃(約1570〜1670K)であるので、絶対温度での燃焼温度比は約0.7となり、燃焼ガス体積は温度低下により約70%程度に低減する。
したがって、一例として約50%負荷時には、燃焼ガス体積が50%×0.7で約35%になるので、滞留時間は約2.8倍となる。
【0014】
すなわち、燃焼負荷が低下する場合は、燃焼量が低下すること自体により燃焼排ガス量が低減すること、さらに溶融炉を燃焼室として用い溶融燃焼温度より低温で燃焼することにより燃焼ガス量が低減すること、すなわち、この二重の燃焼ガス量低減効果により著しく滞留時間が長くできるため、完全燃焼が十分可能になる。
【0015】
【発明の実施の形態】
以下、本発明に係る廃棄物ガス化溶融の低負荷運転方法を具体化した実施の形態について、図面を参照して説明する。なお、以下の形態はあくまで一例に過ぎず、本発明の技術的範囲を限定する性格のものではないことを明記しておく。
図1は、本発明の廃棄物ガス化溶融の低負荷運転方法を実施する装置の構成の第1の例を示す概略図であり、本発明の廃棄物ガス化溶融方式の基本フローを示す。
一般都市ごみ等の廃棄物aは、流動層ガス化炉1に供給された後に流動層中にて部分酸化すなわち熱分解ガス化され、固形状物すなわち微細化した固形炭素分を同伴した生成ガスcが流動層ガス化炉1から排出される。
ここで用いる内部旋回式の流動層ガス化炉1は、流動層の中央部で下降し、周辺部で上昇するといった流動媒体の旋回流を積極的に行わせるもので、450〜850℃、好ましくは450〜650℃、より好ましくは500〜600℃に層温を維持することにより、下記に列挙するような特徴を持たせることができる。
【0016】
1)廃棄物aは粗破砕程度で供給でき、このために生ずる大きなサイズの不燃物dの流動層からの排出もスムーズに行える。
2)層温を低く保つことにより熱分解ガス化の反応が比較的緩慢となるため、ガス発生の変動が抑えられる。
3)固形炭素分の層内酸化が良好であるため、固形炭素分の微粉化並びに酸化に伴って発生する熱の有効利用が効率的に行える。
4)層内での熱の拡散が良好であるため、アグロメ(塊状化)の発生が防止でき、鉄、銅、アルミニウム等の有価金属を未酸化状態で回収できる。
【0017】
流動層の層温に関して説明すると、層温を450℃以下とすると、熱分解ガス化の反応が極端に遅くなることから、未分解物の層内への堆積が懸念される。
一方、層温を650℃以上とすると、アルミニウムの回収ができないばかりか、熱分解ガス化の反応が速くなるため、廃棄物aを供給する際の量の変動の影響をまともに受けてガス発生が大きく変動する、いわゆる「暴れる」という現象が起こる。850℃以上ではアグロメ発生の危険も増す。このため、流動層の温度範囲は450〜850℃、好ましくは450〜650℃、より好ましくは500〜600℃としている。
【0018】
本発明において、低負荷時には、廃棄物aは流動層ガス化炉1に供給される。流動層ガス化炉1からの微粉状の固形炭素分を同伴した生成ガスcは、溶融炉3に供給され、垂直の1次燃焼室4及び傾斜した2次燃焼室5、さらに垂直の3次燃焼室6にて、予熱された空気と旋回流中で混合しながら、800〜950℃の中温で完全燃焼される。
【0019】
固形炭素分中の灰分は、中温燃焼のため溶融スラグ化しないで焼却灰になる。前記焼却灰は燃焼排ガスに同伴し、2次燃焼室5及び3次燃焼室6を通り、下流の図示しない集塵器で捕集される。この時、焼却灰の一部は2次燃焼室5と3次燃焼室6の間にある排出口7より排出され捕集される。捕集された灰は高負荷時に溶融処理するために灰ホッパ18に貯留される。前記燃焼灰ガスは3次燃焼室6の下流の図示しない集塵器を含む排ガス処理設備で処理される。
【0020】
一方、高負荷時には、低負荷運転時に捕集・貯留されていた焼却灰e及び廃棄物aは流動層ガス化炉1に供給される。流動層ガス化炉1に供給された焼却灰eは、流動層で加熱され微粉状になるため流動層ガス化炉1で生成した可燃ガスcに同伴して溶融炉3に供給される。溶融炉3に供給された前記可燃ガスcは垂直の1次燃焼室4及び傾斜した2次燃焼室5にて、予熱された空気と旋回流中で混合しながら、1200〜1600℃、好ましくは1300〜1400℃の高温で部分酸化される。
【0021】
この時、固形炭素分中の灰分及び焼却灰eは、高温のためスラグミストとなり、このスラグミストの大部分は旋回流による遠心力の作用により、1次燃焼室4及び2次燃焼室5の炉壁上の溶融スラグ層に捕捉される。そして、この炉壁面を流れ下った溶融スラグは、2次燃焼室5と3次燃焼室6の間にある排出口7より排出され、直接又は間接的に冷却された後にスラグ粒として回収される。
【0022】
従って、低負荷時の廃棄物の灰分も油などの助燃材を用いないで廃棄物の自己燃焼熱のみにより溶融処理することが可能になる。なお、低負荷運転時に捕集・貯留されていた焼却灰eが乾灰で粉状であれば焼却灰eを溶融炉3へ直接供給することも可能である。
【0023】
図2は、廃棄物ガス化溶融システムの低負荷運転を伴う場合の運転方法を実施する装置の構成の第2の例を示す概略図である。
本実施の形態においては、廃棄物ガス化溶融システムにより廃棄物発電を行うものである。廃棄物発電は、廃棄物の燃焼による熱エネルギーを発電に利用するものであり、廃棄物の燃焼熱を廃熱ボイラで蒸気回収し、蒸気タービン・発電機で発電する方式が一般的である。斯かる廃棄物発電方式のうち燃焼炉としてガス化溶融炉を用いる本実施形態の一例を図2に示す。
【0024】
従来の技術の項において説明したように、電力会社は、廃棄物発電が行われ自家消費された後の余剰電力を、朝8時頃から夜10時頃までのいわゆる「昼間」には電力需要が多いので高い購入電力単価で、逆に、夜10時頃から朝8時頃までのいわゆる「夜間」には電力需要が少ないため安い購入電力単価で、購入する制度を設けている。電力会社によっては、昼間の電力購入単価が夜間の余剰電力購入単価の4〜5倍になっているものもある。
そこで、限られた量の廃棄物を利用して廃棄物発電を行うという観点からは、電力会社の購入単価の高い昼間に高負荷燃焼し発電電力量を最大限多くし、購入単価の安い夜間に低負荷燃焼運転にして廃棄物の消費を抑制するという運転方法が求められる。
【0025】
さらに、売電電力量の最大化という観点からは、焼却灰の溶融処理に電力を大量に消費する電気式灰溶融方式よりも、売電電力量がさほど低下しない廃棄物の自己熱溶融の可能な溶融方法が求められている。
一方、廃棄物処理という観点からは、最終処分量の最小化、灰分の有効利用化、排ガス中及び焼却灰中のダイオキシン類の最小化のためには、廃棄物中の灰分を溶融スラグ化する運転方法が求められている。
【0026】
従って、本実施形態は、このような廃棄物発電による売電収入の最大化の観点からの要求と廃棄物処理の観点からの要求の両者を満足する廃棄物ガス化溶融発電システムの低負荷運転を伴う運転方法である。
低負荷時には、廃棄物aは流動層ガス化炉1に供給される。流動層ガス化炉1からの微粉状の固形炭素分を同伴した生成ガスcは溶融炉3に供給され、垂直の1次燃焼室4及び傾斜した2次燃焼室5、さらに垂直の3次燃焼室6にて、予熱された空気と旋回流中で混合しながら、800〜950℃の中温で完全燃焼される。
【0027】
つぎに、燃焼排ガスは廃熱ボイラ13に供給され、前記燃焼排ガスの保有する熱エネルギーは熱回収されて過熱蒸気または飽和蒸気を生成する。廃熱ボイラ13を出た燃焼排ガスは、エコノマイザ等の予熱器16、排ガス処理機能を有する集塵器17を通り、低温のクリーンガスとして煙突から大気へ放出される。
【0028】
固形炭素分中の灰分は、溶融炉3において中温燃焼のため溶融スラグ化しないで焼却灰になる。前記焼却灰は、燃焼排ガスに同伴し、2次燃焼室5及び3次燃焼室6を通り下流の廃熱ボイラ13、予熱器16、集塵器17で捕集される。この時、焼却灰の一部は、2次燃焼室5と3次燃焼室6の間にある排出口7より排出され、また廃熱ボイラ13、予熱器16でも捕集され排出される。捕集された灰は高負荷時に溶融処理するために灰ホッパ18に貯留される。
一方、前記過熱蒸気又は飽和蒸気は蒸気タービン及び発電機からなる発電設備15へ供給され、電力エネルギーとしてエネルギー回収が行われる。発電された電力は場内で消費されるほか電力会社に売電される。
【0029】
高負荷時には、廃棄物a及び低負荷運転時に捕集・貯留されていた焼却灰eは流動層ガス化炉1に供給される。
流動層ガス化炉1に供給された焼却灰eは流動層で加熱され微粉状となるため、流動層ガス化炉1で生成した可燃ガスcに同伴して溶融炉3に供給される。溶融炉3に供給された前記可燃ガスcは垂直の1次燃焼室4及び傾斜した2次燃焼室5にて、予熱された空気と旋回流中で混合しながら、1200〜1600℃、好ましくは1300〜1400℃の高温で部分酸化される。
【0030】
この時、固形炭素分中の灰分及び焼却灰eは、高温のためスラグミストとなり、このスラグミストの大部分は旋回流による遠心力の作用により1次燃焼室4及び2次燃焼室5の炉壁上の溶融スラグ層に捕捉される。そして、この炉壁面を流れ下った溶融スラグは、2次燃焼室5と3次燃焼室6の間にある排出口7より排出され、直接又は間接的に冷却された後にスラグ粒として回収される。
【0031】
次に、燃焼排ガスは廃熱ボイラ13に供給され、前記燃焼排ガスの保有する熱エネルギーは熱回収されて過熱蒸気または飽和蒸気を生成する。廃熱ボイラ13を出た燃焼排ガスは、エコノマイザ等の予熱器16、排ガス処理機能を有する集塵器17を通り、低温のクリーンガスとして煙突から大気へ放出される。
一方、前記過熱蒸気又は飽和蒸気は蒸気タービン及び発電機からなる発電設備15へ供給され、電力エネルギーとしてエネルギー回収が行われる。発電された電力は場内で消費されるほか電力会社に売電される。
【0032】
【発明の効果】
以上説明したように、本発明によれば、以下に列挙する効果を奏する。
(1)廃棄物のガス化溶融システムにおいて、低負荷運転を伴う場合でも、廃棄物の灰分を自己熱溶融スラグ化することができる。
(2)廃棄物ガス化溶融発電システムにおいて、売電単価の低い時間帯に低負荷運転を行い、売電単価の高い時間帯に高負荷運転を行うことにより売電収入の最大化が図られると同時に廃棄物処理としての廃棄物の自己熱溶融スラグ化が図られる。
(3)低負荷運転時には、燃焼ガス温度が高負荷運転時に比べ低くなるが、燃焼ガス滞留時間が2.8倍程度になり、ダイオキシン等は完全分解する。
【図面の簡単な説明】
【図1】本発明の固形廃棄物の溶融処理方法を実施する装置の構成の第1の例を示す概略図である。
【図2】本発明の固形廃棄物の溶融処理方法を実施する装置の構成の第2の例を示す概略図である。
【符号の説明】
1 流動層ガス化炉
2 定量供給装置
3 溶融炉
4 1次燃焼室
5 2次燃焼室
6 3次燃焼室
7 排出口
8 流動層
9 フリーボード
13 廃熱ボイラ
15 発電設備
16 予熱器
17 集塵器
18 灰ホッパ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to melt processing of various wastes, in particular those concerning the solid waste to how to process and molten slag the ash in the waste by a high-temperature combustion after gasification. Here, various types of waste include general municipal waste, industrial waste, or solid waste fuel (solidified from waste as a raw material).
The present invention particularly relates to daytime and nighttime load (power generation amount) adjustment in waste power generation.
[0002]
[Prior art]
A method is known in which a gasification step in a gasification furnace and a high-temperature combustion step in a melting furnace are combined, and after the waste is gasified, the ash in the waste is melted into slag by high-temperature combustion.
This method makes it difficult to generate harmful organic compounds such as dioxins when incinerating solid waste containing ash, and can reduce and stabilize the ash by melting slag, This is a gasification melt combustion method combining a gasification step and a high temperature combustion step. In this case, since the melting temperature of ash is 1200 ° C. or higher, it is necessary to burn at a higher temperature in the high-temperature combustion process.
[0003]
In general, the melting furnace takes into account the amount of combustion heat generated when the combustible gas and combustible fine particles gasified in the gasifier burn at a high temperature in the melting furnace and the amount of heat released from the surface of the melting furnace. Is planned to be about 1200 to 1500 °.
However, even in a gasification and melting furnace designed so that high-temperature combustion with a melting furnace temperature of 1250 ° C. or higher is possible at a high load of about 75 to 100% of the rated throughput, the rated throughput is 50 to 75%. When the load is less than about%, the amount of waste supplied decreases, so the combustion heat amount decreases only with the combustible gas and the combustible fine particles supplied to the melting furnace. A supplementary flame retardant may be required. On the other hand, when an auxiliary combustor such as oil is not used, the combustion heat in the melting furnace is insufficient, so that high-temperature combustion cannot be performed and the ash content cannot be melted.
In other words, when the conventional gasification melt combustion method is accompanied by low load operation, the problem is solved when the ash content in the waste is melted only by the self-combustion heat of the waste without using an auxiliary combustion material such as oil. There are problems to be solved.
[0004]
In addition, waste combustion power generation is generally performed in which energy is recovered from the combustion heat of waste as electric power that has the highest degree of utilization during waste combustion.
In waste power generation, heat energy generated by combustion of waste is used for power generation. Generally, a waste heat boiler recovers steam with a waste heat boiler and generates power with a steam turbine / generator. The electric power generated by such waste power generation is consumed in the field, and the surplus is sold to an electric power company.
[0005]
Electricity companies use surplus electricity after waste power generation and self-consumption for so-called “daytime” from around 8:00 am to around 10:00 pm, because there is a lot of demand for electricity. In the so-called “nighttime” from about 10 o'clock to about 8 o'clock in the morning, since there is little power demand, a system for purchasing at a low unit price of purchased electricity is provided. Some electric power companies have a unit price for purchasing power in the daytime that is four to five times the unit price for purchasing surplus power at night.
[0006]
Therefore, from the viewpoint of generating waste power using a limited amount of waste, the power company burns at high load during the daytime when the purchase price is high, maximizes the amount of generated power, and the nighttime where the purchase price is cheap. In addition, there is a demand for an operation method that suppresses the consumption of waste by using a low-load combustion operation.
However, in the case of low load operation, there has been the above-mentioned problem that the ash cannot be melted only by the self-combustion heat.
[0007]
Furthermore, as a conventional waste-burning ash melting method, an electric melting method such as an arc method, an electric resistance method, or a plasma method is often used. In this case, the generated power recovered from the waste combustion power generation is not only consumed in the field, but also consumed as an energy source for the melting treatment of the waste combustion ash. There was a problem that it was.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and in the case of low load operation, no auxiliary combustor such as oil is used, and the ash in the waste is melted by the self-combustion heat of the waste. It is to provide a way to slagging.
In addition, in the waste gasification and fusion power generation method, from the viewpoint of performing waste power generation using a limited amount of waste, the amount of generated power is set to high load combustion operation in the daytime when the purchase price of power companies is high. Is to provide a driving method that suppresses the consumption of waste by performing low-load combustion operation at night when the purchase unit price is low.
Furthermore, in the waste gasification melting power generation method, from the viewpoint of maximizing the amount of electric power sold, the amount of electric power sold is not much, without using an electric ash melting method that consumes a large amount of electric power in the melting treatment of combustion ash. An object of the present invention is to provide a melting method capable of self-thermal melting of waste that does not decrease.
[0009]
[Means for Solving the Problems]
To solve the above problems, a method of operating waste gasification melting system of the present invention, waste in solid waste after gasification in the bed temperature of four hundred and fifty to eight hundred fifty ° C. in a fluidized bed gasification furnace the ash content per the method of combustion or slugging in a melting furnace, rated throughput of 50 to 75% of the low load gas, tar and char at a temperature of 800 to 950 ° C. use as a combustion chamber melting furnace in such of combustibles burning, this time leave the reservoir to discharge combustion ash not slag generated from the discharge port of the melting furnace, the ash is in the high load of 75% to 100% of the rated throughput It is supplied to a fluidized bed gasification furnace or a melting furnace, and melted slag is formed at a temperature of 1200 to 1600 ° C. together with ash content of combustion waste at high load.
According to a preferred aspect of the present invention, the ash collected from the combustion exhaust gas discharged from the melting furnace is added to the combustion ash and supplied to the melting furnace at a high load.
According to a preferred aspect of the present invention, superheated steam is generated by heat recovery of the combustion exhaust gas discharged from the melting furnace, and the superheated steam is supplied to a power generation facility including a steam turbine and a generator to generate power.
According to a preferred aspect of the present invention, the daytime is a high load operation and the night is a low load operation .
[0010]
The present invention relates to a method for melting slag of ash in waste by high-temperature combustion after gasification of solid waste, and in a low load, the melting furnace is used as a combustion chamber, and combustible gas gasified in the gasification furnace and Combustible fine particles are burned at 800 to 950 ° C., and the generated combustion ash is collected and stored, and the stored combustion ash is supplied to a gasification furnace or a melting furnace at a high load, and the treatment waste at the high load is It is made to melt into slag with ash.
[0011]
The present invention operates a gasification melting furnace as a combustion chamber corresponding to a free board of a conventional fluidized bed incinerator at low load, collects and stores ash that cannot be melted in the form of incinerated ash, It is sometimes operated as a conventional gasification melting furnace, and at this time, ash content at low load is also melted.
[0012]
The present invention only requires that the waste is completely combusted at low load and that dioxins can be suppressed, and the incinerated ash collected and stored at low load is melted by the self-combustion heat of the waste at high load. Take advantage of what can be processed.
That is, the amount of heat required to melt dry ash at room temperature is about 100 to 150 kcal / kg, which is very small compared to the lower heating value of waste, and even if the treated waste and incinerated ash are mixed and burned The average calorific value is utilized so that self-heat melting can be maintained.
[0013]
Generally, the calorific value of waste necessary for self-heating melting is about 1500 to 2000 kcal / kg depending on the scale of the furnace. Therefore, for a waste having a lower calorific value of about 2000 kcal / kg or more, about 30 The incineration ash can be additionally melted up to about 40%. When the load is low, the combustion temperature in the melting furnace (free board) used as a combustion chamber corresponding to the free board of the fluidized bed incinerator is 850 to 950 ° C. (about 1120 to 1220 K), and the combustion temperature at the high load is 1300 Since it is 1400 degreeC (about 1570-1670K), the combustion temperature ratio in absolute temperature will be about 0.7, and a combustion gas volume will reduce to about 70% by temperature fall.
Therefore, as an example, when the load is about 50%, the combustion gas volume is 50% × 0.7 and is about 35%, so the residence time is about 2.8 times.
[0014]
That is, when the combustion load is reduced, the combustion exhaust gas amount is reduced by the reduction of the combustion amount itself, and further, the combustion gas amount is reduced by burning at a temperature lower than the melting combustion temperature using the melting furnace as a combustion chamber. In other words, since the residence time can be significantly increased by this double combustion gas amount reduction effect, complete combustion is sufficiently possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying a low load operation method for waste gasification and melting according to the present invention will be described with reference to the drawings. It should be noted that the following form is merely an example and does not limit the technical scope of the present invention.
FIG. 1 is a schematic diagram showing a first example of the configuration of an apparatus for carrying out the waste gasification melting low load operation method of the present invention, and shows the basic flow of the waste gasification melting method of the present invention.
Waste a such as municipal waste is supplied to the fluidized bed gasification furnace 1 and then partially oxidized, that is, pyrolyzed and gasified in the fluidized bed, and is accompanied by a solid substance, that is, a refined solid carbon content. c is discharged from the fluidized bed gasification furnace 1.
The internal swirl type fluidized bed gasification furnace 1 used here positively causes the swirling flow of the fluid medium to descend at the center of the fluidized bed and to rise at the periphery, and is preferably 450 to 850 ° C., preferably By maintaining the layer temperature at 450 to 650 ° C., more preferably 500 to 600 ° C., the following characteristics can be obtained.
[0016]
1) The waste a can be supplied in a roughly crushed state, and the large-sized incombustible material d generated for this purpose can be smoothly discharged from the fluidized bed.
2) By keeping the bed temperature low, the reaction of pyrolysis gasification becomes relatively slow, so that fluctuations in gas generation can be suppressed.
3) Since the in-layer oxidation of the solid carbon content is good, effective utilization of the heat generated with the pulverization and oxidation of the solid carbon content can be performed efficiently.
4) Since heat diffusion in the layer is good, generation of agglomerates (agglomeration) can be prevented, and valuable metals such as iron, copper, and aluminum can be recovered in an unoxidized state.
[0017]
Describing the layer temperature of the fluidized bed, if the layer temperature is 450 ° C. or lower, the reaction of pyrolysis gasification becomes extremely slow, so there is a concern about the deposition of undecomposed products in the layer.
On the other hand, if the layer temperature is 650 ° C. or higher, not only aluminum cannot be recovered, but the reaction of pyrolysis gasification becomes faster, so gas is generated by the influence of fluctuations in the amount of waste a supplied. The phenomenon of so-called “rage” occurs. Above 850 ° C, the risk of agglomeration increases. For this reason, the temperature range of a fluidized bed is 450-850 degreeC, Preferably it is 450-650 degreeC, More preferably, it is 500-600 degreeC.
[0018]
In the present invention, the waste a is supplied to the fluidized bed gasifier 1 at a low load. The product gas c accompanied by the finely divided solid carbon content from the fluidized bed gasification furnace 1 is supplied to the melting furnace 3, where the vertical primary combustion chamber 4, the inclined secondary combustion chamber 5, and the vertical tertiary gas are supplied. In the combustion chamber 6, complete combustion is performed at a medium temperature of 800 to 950 ° C. while mixing with preheated air in a swirling flow.
[0019]
The ash content in the solid carbon is incinerated ash without melting into slag due to the medium temperature combustion. The incineration ash accompanies the combustion exhaust gas, passes through the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is collected by a dust collector (not shown) downstream. At this time, a part of the incineration ash is discharged and collected from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6. The collected ash is stored in the ash hopper 18 to be melted at a high load. The combustion ash gas is processed in an exhaust gas treatment facility including a dust collector (not shown) downstream of the tertiary combustion chamber 6.
[0020]
On the other hand, when the load is high, the incinerated ash e and the waste a collected and stored during the low load operation are supplied to the fluidized bed gasification furnace 1. The incineration ash e supplied to the fluidized bed gasification furnace 1 is heated in the fluidized bed and becomes fine powder, and is supplied to the melting furnace 3 along with the combustible gas c generated in the fluidized bed gasification furnace 1. While the combustible gas c supplied to the melting furnace 3 is mixed in the swirling flow with preheated air in the vertical primary combustion chamber 4 and the inclined secondary combustion chamber 5, preferably 1200 to 1600 ° C., preferably Partial oxidation is performed at a high temperature of 1300 to 1400 ° C.
[0021]
At this time, the ash in the solid carbon and the incinerated ash e become slag mist due to the high temperature, and most of the slag mist is generated in the primary combustion chamber 4 and the secondary combustion chamber 5 by the action of centrifugal force due to the swirling flow. It is trapped in the molten slag layer on the furnace wall. And the molten slag which flowed down this furnace wall surface is discharged | emitted from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is collect | recovered as slag grain after being cooled directly or indirectly. .
[0022]
Accordingly, the ash content of the waste at low load can be melted only by the self-combustion heat of the waste without using an auxiliary combustor such as oil. Note that if the incinerated ash e collected and stored during low-load operation is dry ash and powdered, the incinerated ash e can be directly supplied to the melting furnace 3.
[0023]
FIG. 2 is a schematic diagram showing a second example of the configuration of an apparatus for carrying out an operation method in a case where the waste gasification and melting system is accompanied by a low load operation.
In the present embodiment, waste power generation is performed by a waste gasification and melting system. In waste power generation, heat energy generated by combustion of waste is used for power generation. Generally, a waste heat boiler recovers steam with a waste heat boiler and generates power with a steam turbine / generator. An example of this embodiment using a gasification melting furnace as a combustion furnace among such waste power generation systems is shown in FIG.
[0024]
As explained in the section of the prior art, the electric power company uses the surplus power after waste power generation and self-consumption as the power demand in the so-called “daytime” from around 8 am to around 10 am Since there are many, there is a high purchase power unit price, and conversely, a so-called “nighttime” from about 10 o'clock to about 8 o'clock in the morning is a system for purchasing at a low purchase power unit price because there is little power demand. Some electric power companies have a unit price for purchasing power in the daytime that is four to five times the unit price for purchasing surplus power at night.
Therefore, from the viewpoint of generating waste power using a limited amount of waste, the power company burns at high load during the daytime when the purchase price is high, maximizes the amount of generated power, and the nighttime where the purchase price is cheap. In addition, there is a demand for an operation method that suppresses waste consumption by performing low-load combustion operation.
[0025]
Furthermore, from the viewpoint of maximizing the amount of electric power sold, it is possible to achieve self-heating melting of waste that does not significantly reduce the amount of electric power sold, compared to the electric ash melting method that consumes a large amount of electric power for melting incinerated ash. There is a need for a method.
On the other hand, from the viewpoint of waste treatment, in order to minimize the final disposal amount, to effectively use ash, and to minimize dioxins in exhaust gas and incineration ash, the ash in waste is melted into slag. There is a need for driving methods.
[0026]
Therefore, the present embodiment is a low-load operation of the waste gasification melting power generation system that satisfies both the demand from the viewpoint of maximizing the power sales revenue by waste power generation and the demand from the viewpoint of waste treatment. It is a driving method involving.
When the load is low, the waste a is supplied to the fluidized bed gasification furnace 1. The product gas c accompanied by finely divided solid carbon content from the fluidized bed gasification furnace 1 is supplied to the melting furnace 3, and the vertical primary combustion chamber 4, the inclined secondary combustion chamber 5, and the vertical tertiary combustion. In the chamber 6, complete combustion is performed at a medium temperature of 800 to 950 ° C. while mixing with preheated air in a swirling flow.
[0027]
Next, the combustion exhaust gas is supplied to the waste heat boiler 13, and the thermal energy held by the combustion exhaust gas is recovered by heat to generate superheated steam or saturated steam. The combustion exhaust gas exiting the waste heat boiler 13 passes through a preheater 16 such as an economizer and a dust collector 17 having an exhaust gas treatment function, and is released from the chimney to the atmosphere as a low-temperature clean gas.
[0028]
The ash in the solid carbon is incinerated ash without melting into slag due to intermediate temperature combustion in the melting furnace 3. The incinerated ash accompanies the combustion exhaust gas, passes through the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is collected by the downstream waste heat boiler 13, the preheater 16, and the dust collector 17. At this time, a part of the incineration ash is discharged from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is also collected and discharged by the waste heat boiler 13 and the preheater 16. The collected ash is stored in the ash hopper 18 to be melted at a high load.
On the other hand, the superheated steam or saturated steam is supplied to a power generation facility 15 including a steam turbine and a generator, and energy recovery is performed as power energy. The generated power is consumed on site and sold to a power company.
[0029]
At the time of high load, the waste a and the incinerated ash e collected and stored at the time of low load operation are supplied to the fluidized bed gasification furnace 1.
The incinerated ash e supplied to the fluidized bed gasification furnace 1 is heated in the fluidized bed to become fine powder, and is supplied to the melting furnace 3 along with the combustible gas c generated in the fluidized bed gasification furnace 1. While the combustible gas c supplied to the melting furnace 3 is mixed in the swirling flow with preheated air in the vertical primary combustion chamber 4 and the inclined secondary combustion chamber 5, preferably 1200 to 1600 ° C., preferably Partial oxidation is performed at a high temperature of 1300 to 1400 ° C.
[0030]
At this time, the ash content in the solid carbon content and the incineration ash e become slag mist due to high temperature, and most of the slag mist is the furnace of the primary combustion chamber 4 and the secondary combustion chamber 5 by the action of centrifugal force due to the swirling flow. It is trapped in the molten slag layer on the wall. And the molten slag which flowed down this furnace wall surface is discharged | emitted from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is collect | recovered as slag grain after being cooled directly or indirectly. .
[0031]
Next, the combustion exhaust gas is supplied to the waste heat boiler 13, and the thermal energy held by the combustion exhaust gas is recovered by heat to generate superheated steam or saturated steam. The combustion exhaust gas exiting the waste heat boiler 13 passes through a preheater 16 such as an economizer and a dust collector 17 having an exhaust gas treatment function, and is discharged from the chimney to the atmosphere as a low-temperature clean gas.
On the other hand, the superheated steam or saturated steam is supplied to a power generation facility 15 including a steam turbine and a generator, and energy is recovered as electric energy. The generated power is consumed on site and sold to a power company.
[0032]
【The invention's effect】
As described above, according to the present invention, the following effects are obtained.
(1) In a waste gasification and melting system, even when a low load operation is involved, the ash content of the waste can be converted into a self-heated melting slag.
(2) In the waste gasification and fusion power generation system, the power revenue can be maximized by performing low-load operation during the low power selling unit time and high-load operation during the high power unit selling time. At the same time, the waste is converted into self-heated molten slag as waste treatment.
(3) During low-load operation, the combustion gas temperature is lower than during high-load operation, but the combustion gas residence time is about 2.8 times, and dioxins and the like are completely decomposed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first example of the configuration of an apparatus for carrying out the solid waste melting method according to the present invention.
FIG. 2 is a schematic diagram showing a second example of the configuration of an apparatus for carrying out the solid waste melting method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed gasification furnace 2 Fixed supply apparatus 3 Melting furnace 4 Primary combustion chamber 5 Secondary combustion chamber 6 Tertiary combustion chamber 7 Outlet 8 Fluidized bed 9 Free board 13 Waste heat boiler 15 Power generation equipment 16 Preheater 17 Dust collection 18 ash hopper

Claims (4)

固形廃棄物を流動層ガス化炉にて450〜850℃の層温でガス化した後に廃棄物中の灰分を溶融炉で燃焼またはスラグ化する方法にあたり定格処理量の50〜75%の低負荷時に溶融炉を燃焼室として使用して800〜950℃の温度でガスやタールやチャー等の可燃物を燃焼し、その際発生したスラグ化していない燃焼灰を前記溶融炉の排出口から排出して貯留しておき、定格処理量の75〜100%の高負荷時に前記燃焼灰を流動層ガス化炉または溶融炉に供給し、高負荷時の燃焼廃棄物の灰分とともに1200〜1600℃の温度で溶融スラグ化することを特徴とする廃棄物ガス化溶融システムの運転方法。 Per solid waste to a method of combustion or slugging in a melting furnace to ash in waste after gasification in the bed temperature of four hundred and fifty to eight hundred and fifty ° C. in a fluidized bed gasification furnace, 50 to 75 of the rated processing volume % of low load, such as gas, tar and char at a temperature of 800 to 950 ° C. using a melting furnace as the combustion chamber in combustibles burning, of the melting furnace burning ash not slag generated during the leave reservoir is discharged from the discharge port, at the time of high load 75-100% of the rated processing volume was supplied to the fluidized bed gasification furnace or melting furnace the combustion ash, together with the ash of the combustion waste at the time of high load A method for operating a waste gasification and melting system, wherein the molten slag is formed at a temperature of 1200 to 1600 ° C. 前記燃焼灰に前記溶融炉から排出される燃焼排ガスから捕集される灰を加えて高負荷時に前記溶融炉に供給することを特徴とする請求項1に記載の廃棄物ガス化溶融システムの運転方法。The operation of the waste gasification and melting system according to claim 1, wherein ash collected from the combustion exhaust gas discharged from the melting furnace is added to the combustion ash and supplied to the melting furnace at a high load. Method. 前記溶融炉から排出された燃焼排ガスの熱回収により過熱蒸気を生成し、該過熱蒸気を蒸気タービン及び発電機からなる発電設備に供給し発電することを特徴とする請求項1又は2に記載の廃棄物ガス化溶融システムの運転方法。The generated superheated steam by heat recovery of the discharged flue gas from the melting furnace, according to superheated steam to claim 1 or 2, characterized in that to supply the power plant comprising a steam turbine and generator power Operation method of waste gasification and melting system. 昼間を高負荷運転とし、夜間を低負荷運転とすることを特徴とする請求項1乃至3のいずれかに記載の廃棄物ガス化溶融システムの運転方法。The operating method of the waste gasification and melting system according to any one of claims 1 to 3, wherein the daytime is a high load operation and the night is a low load operation.
JP13194099A 1999-05-12 1999-05-12 Operation method of waste gasification and melting system Expired - Fee Related JP3859390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13194099A JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13194099A JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Publications (3)

Publication Number Publication Date
JP2000320825A JP2000320825A (en) 2000-11-24
JP2000320825A5 JP2000320825A5 (en) 2004-12-24
JP3859390B2 true JP3859390B2 (en) 2006-12-20

Family

ID=15069774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13194099A Expired - Fee Related JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Country Status (1)

Country Link
JP (1) JP3859390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176322A (en) * 2019-05-13 2019-08-27 江苏天楹环保能源成套设备有限公司 A kind of middle low-activity solid waste volume reduction processing system and its method
CN112628754B (en) * 2020-12-16 2023-06-13 中广核研究院有限公司 Waste gasification melting treatment system and waste gasification melting treatment method

Also Published As

Publication number Publication date
JP2000320825A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
US6286443B1 (en) Method for treating combustibles by slagging combustion
JP3964043B2 (en) Waste disposal method
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3859390B2 (en) Operation method of waste gasification and melting system
Gandhi Plasma gasification: from a dirty city to a heavenly place and from waste solids to clean fuel
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JP2977784B2 (en) Power generation method using waste plastic gasification and ash melting
JPH10281411A (en) Combustion of emulsion oxygen
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JPH09112863A (en) Power generating apparatus combined with incinerator
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP3054595B2 (en) Pyrolysis melting gasification of waste
JPH11182211A (en) Waste disposal and power generation combined device
JPH11173518A (en) Device and method for treating waste
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP3046309B1 (en) Method and apparatus for reducing dioxins in a garbage gasifier for char separation
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP2519523B2 (en) Method and apparatus for burning end-of-life dust of oil coke
JPH1130411A (en) Waste incinerator
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP2004264017A (en) Municipal waste gasification furnace and method
JP2003294205A (en) Coal burning boiler, organic waste gasification furnace, and coal ash treatment plant
JP2004264018A (en) Processing method, and gasifying and melting device for waste

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees