JP2000320825A - Operation of waste gasifying melting system - Google Patents

Operation of waste gasifying melting system

Info

Publication number
JP2000320825A
JP2000320825A JP11131940A JP13194099A JP2000320825A JP 2000320825 A JP2000320825 A JP 2000320825A JP 11131940 A JP11131940 A JP 11131940A JP 13194099 A JP13194099 A JP 13194099A JP 2000320825 A JP2000320825 A JP 2000320825A
Authority
JP
Japan
Prior art keywords
waste
combustion
ash
melting
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11131940A
Other languages
Japanese (ja)
Other versions
JP2000320825A5 (en
JP3859390B2 (en
Inventor
Tsutomu Hiramoto
努 平本
Tetsuhisa Hirose
哲久 広勢
Takahiro Oshita
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP13194099A priority Critical patent/JP3859390B2/en
Publication of JP2000320825A publication Critical patent/JP2000320825A/en
Publication of JP2000320825A5 publication Critical patent/JP2000320825A5/ja
Application granted granted Critical
Publication of JP3859390B2 publication Critical patent/JP3859390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of converting ash components in waste into melted slags by self combustion heat of the waste without using a combustion promotor such as oil when associated with a low load operation. SOLUTION: In a method wherein solid waste is gasified by a gasifying furnace 1 and then, ash components in the waste are converted to melted slags by high temperature combustion in a melting furnace 3, combustibles such as gas, tar or charcoal are burned using the melting furnace 1 as a combustion chamber during a low load operation, and the combustion ash yet to be converted to slags then generated is trapped and stored. During a high load operation, the combustion ash thus stored is supplied to the gasifying furnace 1 or the melting furnace 3 to be converted to melted slags together with ash components of the burned waste under the high load operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種廃棄物の溶融処
理に係り、特に固形廃棄物をガス化した後に高温燃焼に
より廃棄物中の灰分を溶融スラグ化して処理する方法に
関するものである。ここで、各種廃棄物とは一般都市ご
み、産業廃棄物、あるいは、ごみ固形燃料(ごみを原料
として固形化したもの)等である。また、本発明は特に
廃棄物発電における昼夜の負荷(発電量)調整に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting various kinds of wastes, and more particularly to a method for converting solid wastes into gasified slags by subjecting the ash to waste slag by high-temperature combustion. Here, the various wastes are general municipal waste, industrial waste, solid waste fuel (solidified using waste as a raw material), and the like. In addition, the present invention particularly relates to day and night load (power generation) adjustment in waste power generation.

【0002】[0002]

【従来の技術】ガス化炉におけるガス化工程と溶融炉に
おける高温燃焼工程とを組合せ、廃棄物をガス化した後
に高温燃焼により廃棄物中の灰分を溶融スラグ化して処
理する方法が知られている。この方法は、灰分を含む固
形廃棄物を焼却処理するに際し、ダイオキシン類のよう
な有害な有機化合物を発生させにくくし、かつ灰分を溶
融スラグ化して減量化し安定化させることができるもの
であり、ガス化工程と高温燃焼工程を組合せたガス化溶
融燃焼方法である。この場合、灰分の溶融温度は120
0℃以上であるため、高温燃焼工程ではこれ以上の温度
で燃焼させる必要がある。
2. Description of the Related Art A method is known in which a gasification process in a gasification furnace and a high-temperature combustion process in a melting furnace are combined, and the waste is gasified and then the ash in the waste is melted and slag-treated by high-temperature combustion. I have. This method makes it difficult to generate harmful organic compounds such as dioxins when incinerating solid waste containing ash, and can reduce and stabilize ash by melting it into slag, This is a gasification melting combustion method combining a gasification step and a high temperature combustion step. In this case, the melting temperature of the ash is 120
Since the temperature is 0 ° C. or higher, it is necessary to burn at a higher temperature in the high-temperature combustion step.

【0003】一般に、溶融炉は、ガス化炉でガス化され
た可燃ガス及び可燃微粒子が前記溶融炉内で高温燃焼す
る際に発生する燃焼熱量と溶融炉表面からの放熱量を考
慮し、溶融炉内温度が1200〜1500°程度になる
ように計画される。しかしながら、定格処理量の75〜
100%程度の高負荷時に溶融炉内温度が1250℃以
上の高温燃焼が可能であるよう計画されたガス化溶融炉
であっても、定格処理量の50〜75%程度以下の低負
荷時には、廃棄物供給量が低下するため溶融炉に供給さ
れる可燃ガス及び可燃微粒子だけでは燃焼熱量が低下し
て、前記溶融炉で高温燃焼を行うためには油などの助燃
材を必要とする場合がある。一方、油などの助燃材を用
いない場合は、溶融炉内での燃焼熱が不足するため高温
燃焼ができなく灰分の溶融処理ができなくなることがあ
る。すなわち、従来のガス化溶融燃焼方法で低負荷運転
を伴う場合において、廃棄物を油などの助燃材を用いな
いで廃棄物の自己燃焼熱のみにより廃棄物中の灰分を溶
融処理する時には解決すべき問題点がある。
[0003] In general, a melting furnace takes into account the amount of combustion heat generated when combustible gas and combustible particles gasified in a gasification furnace are burned at a high temperature in the melting furnace and the amount of heat released from the surface of the melting furnace. It is planned that the furnace temperature is about 1200 to 1500 °. However, the rated throughput of 75-
Even if the gasification and melting furnace is designed to be capable of high-temperature combustion at a melting furnace temperature of 1250 ° C. or more at a high load of about 100%, at a low load of about 50 to 75% or less of the rated treatment amount, Since the amount of waste supplied is reduced, the amount of combustion heat is reduced only by the combustible gas and combustible fine particles supplied to the melting furnace. In order to perform high-temperature combustion in the melting furnace, an auxiliary material such as oil may be required. is there. On the other hand, when an auxiliary material such as oil is not used, the heat of combustion in the melting furnace is insufficient, so that high-temperature combustion cannot be performed and ash melting processing may not be performed. In other words, when the conventional gasification melting combustion method involves low-load operation, the problem is solved when the ash in the waste is melted only by the self-combustion heat of the waste without using a combustion aid such as oil. There are issues to be addressed.

【0004】また、廃棄物燃焼時に、廃棄物の燃焼熱か
ら最も利用度の高いエネルギーである電力としてエネル
ギー回収を行う廃棄物燃焼発電が一般に行われている。
廃棄物発電は、廃棄物の燃焼による熱エネルギーを発電
に利用するものであり、廃棄物の燃焼熱を廃熱ボイラで
蒸気回収し、蒸気タービン・発電機で発電する方式が一
般的である。斯かる廃棄物発電により発電された電力は
場内で消費されるほか余剰分は電力会社に売電される。
[0004] In addition, waste combustion power generation is generally performed in which energy is recovered from combustion heat of the waste as electric power which is the most widely used energy during the combustion of the waste.
In waste power generation, heat energy generated by combustion of waste is used for power generation, and a method of recovering steam from waste combustion heat with a waste heat boiler and generating power with a steam turbine / generator is generally used. The power generated by such waste power generation is consumed in the plant and the surplus is sold to a power company.

【0005】電力会社は、廃棄物発電が行われ自家消費
された後の余剰電力を、朝8時頃から夜10時頃までの
いわゆる「昼間」には電力需要が多いので高い購入電力
単価で、逆に、夜10時頃から朝8時頃までのいわゆる
「夜間」には電力需要が少ないため安い購入電力単価
で、購入する制度を設けている。電力会社によっては、
昼間の電力購入単価が夜間の余剰電力購入単価の4〜5
倍になっているものもある。
[0005] Electric power companies use surplus electric power after waste power generation and self-consumption by so-called "daytime" from about 8 o'clock in the morning to about 10 o'clock in the night, so that the electric power company has a high purchase power unit price because of the high power demand. Conversely, in the so-called "nighttime" from about 10 o'clock in the evening to about 8 o'clock in the morning, since there is little power demand, a system is provided for purchasing at a low unit price of purchased power. Depending on the power company,
Daytime power purchase unit price is 4 to 5 of nighttime surplus power purchase unit price
Some have doubled.

【0006】そこで、限られた量の廃棄物を利用して廃
棄物発電を行うという観点からは、電力会社の購入単価
の高い昼間に高負荷燃焼し発電電力量を最大限多くし、
購入単価の安い夜間に低負荷燃焼運転にして廃棄物量の
消費を抑制するという運転方法が求められる。しかしな
がら、低負荷運転を行う場合には自己燃焼熱のみによる
灰分の溶融処理ができなくなるという上述のような問題
点があった。
Therefore, from the viewpoint of generating waste by using a limited amount of waste, high-load combustion is performed during the daytime when the purchase price of the power company is high, and the amount of generated power is maximized.
There is a demand for an operation method in which low-load combustion operation is performed during the night when the purchase unit price is low to suppress consumption of waste. However, when the low-load operation is performed, there is a problem as described above that the ash melting process cannot be performed only by the self-combustion heat.

【0007】さらに、従来の廃棄物燃焼灰の溶融処理方
式は、アーク式、電気抵抗式、プラズマ式等の電気溶融
方式が用いられることが多い。この場合、廃棄物燃焼発
電によりエネルギー回収された発電電力が場内で消費さ
れるだけでなく廃棄物燃焼灰の溶融処理のためのエネル
ギー源としても費消されるため、売電電力量が大幅に低
下してしまうという問題点があった。
Further, as a conventional method of melting waste combustion ash, an electric melting method such as an arc method, an electric resistance method, or a plasma method is often used. In this case, the power generated by the waste combustion power generation is consumed not only in the plant but also as an energy source for the melting treatment of the waste combustion ash. There was a problem that would.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前記問題点を解決することにあり、低負荷運転を
伴う場合において油などの助燃材を使用せず、廃棄物中
の灰分を廃棄物の自己燃焼熱により溶融スラグ化する方
法を提供することにある。また、廃棄物ガス化溶融発電
方法において、限られた量の廃棄物を利用して廃棄物発
電を行うという観点からは、電力会社の購入単価の高い
昼間に高負荷燃焼運転にして発電電力量を最大限多く
し、購入単価の安い夜間に低負荷燃焼運転にして廃棄物
量の消費を抑制するという運転方法を提供することにあ
る。さらに、廃棄物ガス化溶融発電方法において、売電
電力量の最大化という観点からは、燃焼灰の溶融処理に
電力を大量に消費する電気式灰溶融方式を使用すること
なく、売電電力量がさほど低下しない廃棄物の自己熱溶
融の可能な溶融方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and does not use an auxiliary material such as oil when operating under a low load, and reduces ash content in waste. A method for converting slag into molten slag by the heat of self-combustion of waste. In addition, in the waste gasification and fusion power generation method, from the viewpoint of using only a limited amount of waste to generate waste, it is necessary to use high-load combustion operation during the daytime when the purchase price of the electric power company is high, and to generate power. It is an object of the present invention to provide an operation method of maximizing the amount of waste, and performing low-load combustion operation at night when the purchase unit price is low to suppress consumption of waste. Furthermore, in the waste gasification and fusion power generation method, from the viewpoint of maximizing the amount of power sold, from the viewpoint of maximizing the amount of power sold, without using an electric ash melting method that consumes a large amount of power in the melting process of combustion ash, the amount of power sold is not so large. An object of the present invention is to provide a melting method capable of self-heating melting of waste which does not decrease.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ため、本発明は、固形廃棄物をガス化炉にてガス化した
後に溶融炉にて高温燃焼により廃棄物中の灰分を溶融ス
ラグ化する方法において、低負荷時に溶融炉を燃焼室と
して使用してガスやタールやチャー等の可燃物を燃焼
し、その際発生したスラグ化していない燃焼灰を捕集・
貯留しておき、高負荷時に前記燃焼灰をガス化炉または
溶融炉に供給し、高負荷時の燃焼廃棄物の灰分とともに
溶融スラグ化することを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for converting ash in waste into molten slag by high-temperature combustion in a melting furnace after gasifying solid waste in a gasification furnace. The method uses a melting furnace as a combustion chamber at low load to burn gas, tar, char, and other combustible materials, and collects and generates slag-free combustion ash.
The combustion ash is stored and supplied to a gasification furnace or a melting furnace at a high load, and is converted into a molten slag together with the ash of the combustion waste at a high load.

【0010】本発明は、固形廃棄物をガス化した後に高
温燃焼により廃棄物中の灰分を溶融スラグ化する方法に
おいて、低負荷時には溶融炉を燃焼室として使用しガス
化炉でガス化された可燃ガス及び可燃微粒子を800〜
950℃で燃焼し、発生した燃焼灰を捕集・貯留してお
き、高負荷時に前記貯留燃焼灰をガス化炉または溶融炉
に供給し、高負荷時の処理廃棄物の灰分とともに溶融ス
ラグ化するようにしたものである。
The present invention relates to a method for converting ash in waste into molten slag by high-temperature combustion after gasifying solid waste, wherein the gas is gasified by a gasification furnace using a melting furnace as a combustion chamber at a low load. Combustible gas and combustible fine particles 800 ~
The combustion ash generated by burning at 950 ° C. is collected and stored, and the stored combustion ash is supplied to a gasification furnace or a melting furnace at a high load, and is converted into a molten slag together with the ash of the processing waste at a high load. It is something to do.

【0011】本発明は、低負荷時にガス化溶融炉を従来
の流動床焼却炉のフリーボードに相当する燃焼室として
運転し、溶融処理できない灰分を焼却灰の形態で捕集・
貯留しておき、高負荷時に従来のガス化溶融炉として運
転し、この際に低負荷時の灰分も溶融処理するようにし
たものである。
The present invention operates a gasification and melting furnace at a low load as a combustion chamber corresponding to a free board of a conventional fluidized bed incinerator, and collects and collects ash that cannot be melted in the form of incineration ash.
It is stored and operated as a conventional gasification and melting furnace at high load, and at this time, ash at low load is also melted.

【0012】本発明は、低負荷時には廃棄物が完全燃焼
されダイオキシン類の発生抑制が達成できれば良いこと
と、低負荷時に捕集・貯留しておいた焼却灰を高負荷時
に廃棄物の自己燃焼熱により溶融処理できることを利用
する。すなわち、常温の乾灰を溶融するのに必要な熱量
は約100〜150kcal/kg程度であり、廃棄物の低位
発熱量に比べて非常に小さく、処理廃棄物と焼却灰を混
合燃焼してもその平均発熱量は自己熱溶融を維持できる
ものであることを利用する。
According to the present invention, it is only required that the waste can be completely burned at low load and the generation of dioxins can be suppressed, and the incinerated ash collected and stored at low load can be self-burned at high load. Utilizes the fact that it can be melted by heat. That is, the amount of heat required to melt the dry ash at room temperature is about 100 to 150 kcal / kg, which is very small compared to the lower calorific value of the waste. The average calorific value utilizes the fact that self-thermal melting can be maintained.

【0013】一般に自己熱溶融に必要な廃棄物の発熱量
は炉の規模により異なるが約1500〜2000kcal/
kgであるので、廃棄物の低位発熱量が2000kcal/kg
程度以上のものに対しては、約30〜40%程度まで焼
却灰を追加溶融処理できる。低負荷時には流動床焼却炉
のフリーボードに相当する燃焼室として利用される溶融
炉(フリーボード)での燃焼温度は850〜950℃
(約1120〜1220K)、高負荷時の燃焼温度は1
300〜1400℃(約1570〜1670K)である
ので、絶対温度での燃焼温度比は約0.7となり、燃焼
ガス体積は温度低下により約70%程度に低減する。し
たがって、一例として約50%負荷時には、燃焼ガス体
積が50%×0.7で約35%になるので、滞留時間は
約2.8倍となる。
In general, the calorific value of the waste required for self-heating melting depends on the scale of the furnace, but it is about 1500 to 2000 kcal /
kg, the lower calorific value of waste is 2000kcal / kg
In the case of more than about 30%, incineration ash can be additionally melted to about 30 to 40%. At low load, the combustion temperature in a melting furnace (freeboard) used as a combustion chamber corresponding to the freeboard of a fluidized bed incinerator is 850 to 950 ° C.
(About 1120 to 1220K), the combustion temperature under high load is 1
Since the temperature is 300 to 1400 ° C. (about 1570 to 1670 K), the combustion temperature ratio in absolute temperature is about 0.7, and the combustion gas volume is reduced to about 70% due to the temperature decrease. Therefore, as an example, when the load is about 50%, the combustion gas volume is 50% × 0.7, which is about 35%, so that the residence time is about 2.8 times.

【0014】すなわち、燃焼負荷が低下する場合は、燃
焼量が低下すること自体により燃焼排ガス量が低減する
こと、さらに溶融炉を燃焼室として用い溶融燃焼温度よ
り低温で燃焼することにより燃焼ガス量が低減するこ
と、すなわち、この二重の燃焼ガス量低減効果により著
しく滞留時間が長くできるため、完全燃焼が十分可能に
なる。
That is, when the combustion load is reduced, the amount of combustion exhaust gas is reduced by reducing the amount of combustion itself, and the amount of combustion gas is reduced by using a melting furnace as a combustion chamber and burning at a temperature lower than the melting combustion temperature. That is, since the residence time can be remarkably prolonged due to the double combustion gas amount reduction effect, complete combustion can be sufficiently performed.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る廃棄物ガス化
溶融の低負荷運転方法を具体化した実施の形態につい
て、図面を参照して説明する。なお、以下の形態はあく
まで一例に過ぎず、本発明の技術的範囲を限定する性格
のものではないことを明記しておく。図1は、本発明の
廃棄物ガス化溶融の低負荷運転方法を実施する装置の構
成の第1の例を示す概略図であり、本発明の廃棄物ガス
化溶融方式の基本フローを示す。一般都市ごみ等の廃棄
物aは、流動層ガス化炉1に供給された後に流動層中に
て部分酸化すなわち熱分解ガス化され、固形状物すなわ
ち微細化した固形炭素分を同伴した生成ガスcが流動層
ガス化炉1から排出される。ここで用いる内部旋回式の
流動層ガス化炉1は、流動層の中央部で下降し、周辺部
で上昇するといった流動媒体の旋回流を積極的に行わせ
るもので、450〜850℃、好ましくは450〜65
0℃、より好ましくは500〜600℃に層温を維持す
ることにより、下記に列挙するような特徴を持たせるこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying a low-load operation method for waste gasification and melting according to the present invention will be described below with reference to the drawings. It should be noted that the following embodiments are merely examples, and do not limit the technical scope of the present invention. FIG. 1 is a schematic diagram showing a first example of a configuration of an apparatus for performing a low-load operation method for waste gasification and melting according to the present invention, and shows a basic flow of a waste gasification and melting method according to the present invention. Waste a such as general municipal solid waste is supplied to the fluidized bed gasification furnace 1 and then partially oxidized in the fluidized bed, that is, pyrolyzed into gas, and is a solid gas, that is, a product gas accompanied by fine solid carbon. c is discharged from the fluidized bed gasifier 1. The internal swirling type fluidized bed gasification furnace 1 used here actively performs the swirling flow of the fluidized medium such that it descends at the center of the fluidized bed and rises at the periphery thereof, and is preferably at 450 to 850 ° C. Is 450-65
By maintaining the layer temperature at 0 ° C., more preferably at 500 to 600 ° C., the following features can be provided.

【0016】1)廃棄物aは粗破砕程度で供給でき、こ
のために生ずる大きなサイズの不燃物dの流動層からの
排出もスムーズに行える。 2)層温を低く保つことにより熱分解ガス化の反応が比
較的緩慢となるため、ガス発生の変動が抑えられる。 3)固形炭素分の層内酸化が良好であるため、固形炭素
分の微粉化並びに酸化に伴って発生する熱の有効利用が
効率的に行える。 4)層内での熱の拡散が良好であるため、アグロメ(塊
状化)の発生が防止でき、鉄、銅、アルミニウム等の有
価金属を未酸化状態で回収できる。
1) The waste a can be supplied in a degree of coarse crushing, and the large-sized incombustibles d generated from the waste can be smoothly discharged from the fluidized bed. 2) Since the reaction of pyrolysis gasification becomes relatively slow by keeping the bed temperature low, fluctuations in gas generation can be suppressed. 3) Since the solid carbon content in the layer is well oxidized, the solid carbon content can be finely divided and the heat generated by the oxidation can be effectively used. 4) Good heat diffusion in the layer prevents agglomeration (agglomeration) and allows recovery of valuable metals such as iron, copper and aluminum in an unoxidized state.

【0017】流動層の層温に関して説明すると、層温を
450℃以下とすると、熱分解ガス化の反応が極端に遅
くなることから、未分解物の層内への堆積が懸念され
る。一方、層温を650℃以上とすると、アルミニウム
の回収ができないばかりか、熱分解ガス化の反応が速く
なるため、廃棄物aを供給する際の量の変動の影響をま
ともに受けてガス発生が大きく変動する、いわゆる「暴
れる」という現象が起こる。850℃以上ではアグロメ
発生の危険も増す。このため、流動層の温度範囲は45
0〜850℃、好ましくは450〜650℃、より好ま
しくは500〜600℃としている。
As for the bed temperature of the fluidized bed, if the bed temperature is 450 ° C. or lower, the reaction of pyrolysis gasification becomes extremely slow, and there is a concern that undecomposed products may be deposited in the bed. On the other hand, if the bed temperature is 650 ° C. or higher, not only can aluminum not be recovered, but also the reaction of pyrolysis gasification becomes faster, and the gas generation is directly affected by the fluctuation of the amount when the waste a is supplied. A phenomenon that the so-called "rumble" occurs. Above 850 ° C, the risk of agglomeration increases. Therefore, the temperature range of the fluidized bed is 45
The temperature is 0 to 850 ° C, preferably 450 to 650 ° C, and more preferably 500 to 600 ° C.

【0018】本発明において、低負荷時には、廃棄物a
は流動層ガス化炉1に供給される。流動層ガス化炉1か
らの微粉状の固形炭素分を同伴した生成ガスcは、溶融
炉3に供給され、垂直の1次燃焼室4及び傾斜した2次
燃焼室5、さらに垂直の3次燃焼室6にて、予熱された
空気と旋回流中で混合しながら、800〜950℃の中
温で完全燃焼される。
In the present invention, when the load is low, the waste a
Is supplied to the fluidized bed gasifier 1. The product gas c accompanied by the finely divided solid carbon content from the fluidized-bed gasification furnace 1 is supplied to the melting furnace 3, where the vertical primary combustion chamber 4, the inclined secondary combustion chamber 5, and the vertical tertiary In the combustion chamber 6, the mixture is completely burned at a medium temperature of 800 to 950 ° C while being mixed with the preheated air in a swirling flow.

【0019】固形炭素分中の灰分は、中温燃焼のため溶
融スラグ化しないで焼却灰になる。前記焼却灰は燃焼排
ガスに同伴し、2次燃焼室5及び3次燃焼室6を通り、
下流の図示しない集塵器で捕集される。この時、焼却灰
の一部は2次燃焼室5と3次燃焼室6の間にある排出口
7より排出され捕集される。捕集された灰は高負荷時に
溶融処理するために灰ホッパ18に貯留される。前記燃
焼灰ガスは3次燃焼室6の下流の図示しない集塵器を含
む排ガス処理設備で処理される。
The ash content in the solid carbon content becomes incinerated ash without being turned into molten slag due to medium temperature combustion. The incineration ash accompanies the combustion exhaust gas, passes through the secondary combustion chamber 5 and the tertiary combustion chamber 6,
It is collected by a dust collector (not shown) downstream. At this time, part of the incinerated ash is discharged from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6 and collected. The collected ash is stored in an ash hopper 18 for melting at a high load. The combustion ash gas is processed in an exhaust gas treatment facility including a dust collector (not shown) downstream of the tertiary combustion chamber 6.

【0020】一方、高負荷時には、低負荷運転時に捕集
・貯留されていた焼却灰e及び廃棄物aは流動層ガス化
炉1に供給される。流動層ガス化炉1に供給された焼却
灰eは、流動層で加熱され微粉状になるため流動層ガス
化炉1で生成した可燃ガスcに同伴して溶融炉3に供給
される。溶融炉3に供給された前記可燃ガスcは垂直の
1次燃焼室4及び傾斜した2次燃焼室5にて、予熱され
た空気と旋回流中で混合しながら、1200〜1600
℃、好ましくは1300〜1400℃の高温で部分酸化
される。
On the other hand, when the load is high, the incinerated ash e and the waste a that have been collected and stored during the low load operation are supplied to the fluidized bed gasifier 1. The incineration ash e supplied to the fluidized-bed gasification furnace 1 is heated in the fluidized bed and becomes a fine powder, and is supplied to the melting furnace 3 along with the combustible gas c generated in the fluidized-bed gasification furnace 1. The combustible gas c supplied to the melting furnace 3 is mixed with the preheated air in a vertical primary combustion chamber 4 and an inclined secondary combustion chamber 5 in a swirling flow, and while being mixed, 1200 to 1600.
C., preferably at a high temperature of 1300-1400.degree.

【0021】この時、固形炭素分中の灰分及び焼却灰e
は、高温のためスラグミストとなり、このスラグミスト
の大部分は旋回流による遠心力の作用により、1次燃焼
室4及び2次燃焼室5の炉壁上の溶融スラグ層に捕捉さ
れる。そして、この炉壁面を流れ下った溶融スラグは、
2次燃焼室5と3次燃焼室6の間にある排出口7より排
出され、直接又は間接的に冷却された後にスラグ粒とし
て回収される。
At this time, the ash in the solid carbon and the incineration ash e
Becomes a slag mist due to the high temperature, and most of the slag mist is trapped in the molten slag layer on the furnace walls of the primary combustion chamber 4 and the secondary combustion chamber 5 by the action of centrifugal force due to the swirling flow. And the molten slag flowing down the furnace wall is
It is discharged from the discharge port 7 located between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is directly or indirectly cooled and recovered as slag particles.

【0022】従って、低負荷時の廃棄物の灰分も油など
の助燃材を用いないで廃棄物の自己燃焼熱のみにより溶
融処理することが可能になる。なお、低負荷運転時に捕
集・貯留されていた焼却灰eが乾灰で粉状であれば焼却
灰eを溶融炉3へ直接供給することも可能である。
Therefore, the ash of the waste at low load can be melted only by the self-combustion heat of the waste without using an auxiliary material such as oil. If the incinerated ash e collected and stored during the low-load operation is dry ash and powdery, the incinerated ash e can be directly supplied to the melting furnace 3.

【0023】図2は、廃棄物ガス化溶融システムの低負
荷運転を伴う場合の運転方法を実施する装置の構成の第
2の例を示す概略図である。本実施の形態においては、
廃棄物ガス化溶融システムにより廃棄物発電を行うもの
である。廃棄物発電は、廃棄物の燃焼による熱エネルギ
ーを発電に利用するものであり、廃棄物の燃焼熱を廃熱
ボイラで蒸気回収し、蒸気タービン・発電機で発電する
方式が一般的である。斯かる廃棄物発電方式のうち燃焼
炉としてガス化溶融炉を用いる本実施形態の一例を図2
に示す。
FIG. 2 is a schematic diagram showing a second example of the configuration of an apparatus for implementing an operation method when the waste gasification / melting system involves low-load operation. In the present embodiment,
Waste power generation is performed by the waste gasification and melting system. In waste power generation, heat energy generated by combustion of waste is used for power generation, and a method of recovering steam from waste combustion heat with a waste heat boiler and generating power with a steam turbine / generator is generally used. FIG. 2 shows an example of the present embodiment using a gasification and melting furnace as a combustion furnace in such a waste power generation system.
Shown in

【0024】従来の技術の項において説明したように、
電力会社は、廃棄物発電が行われ自家消費された後の余
剰電力を、朝8時頃から夜10時頃までのいわゆる「昼
間」には電力需要が多いので高い購入電力単価で、逆
に、夜10時頃から朝8時頃までのいわゆる「夜間」に
は電力需要が少ないため安い購入電力単価で、購入する
制度を設けている。電力会社によっては、昼間の電力購
入単価が夜間の余剰電力購入単価の4〜5倍になってい
るものもある。そこで、限られた量の廃棄物を利用して
廃棄物発電を行うという観点からは、電力会社の購入単
価の高い昼間に高負荷燃焼し発電電力量を最大限多く
し、購入単価の安い夜間に低負荷燃焼運転にして廃棄物
の消費を抑制するという運転方法が求められる。
As explained in the section of the prior art,
The electric power company has to pay surplus power after waste power generation and self-consumption at high so-called “daytime” from around 8:00 am to around 10:00 pm, because of high power demand, In the so-called "nighttime" from about 10 o'clock to about 8 o'clock in the morning, there is a system for purchasing electricity at a low unit price because of low power demand. In some power companies, the unit price for purchasing power in the daytime is four to five times the unit price for purchasing surplus power in the nighttime. Therefore, from the viewpoint of generating waste by using a limited amount of waste, high-load combustion is performed during the daytime when the purchase price of the power company is high, and the amount of generated power is maximized. In addition, there is a demand for an operation method in which low-load combustion operation is performed to suppress waste consumption.

【0025】さらに、売電電力量の最大化という観点か
らは、焼却灰の溶融処理に電力を大量に消費する電気式
灰溶融方式よりも、売電電力量がさほど低下しない廃棄
物の自己熱溶融の可能な溶融方法が求められている。一
方、廃棄物処理という観点からは、最終処分量の最小
化、灰分の有効利用化、排ガス中及び焼却灰中のダイオ
キシン類の最小化のためには、廃棄物中の灰分を溶融ス
ラグ化する運転方法が求められている。
Further, from the viewpoint of maximizing the amount of electric power sold, compared to the electric ash melting method in which a large amount of electric power is consumed in the melting processing of incinerated ash, the self-heating melting of waste which does not decrease the amount of electric power sold much is considered. There is a need for a possible melting method. On the other hand, from the viewpoint of waste treatment, in order to minimize the amount of final disposal, make effective use of ash, and minimize dioxins in exhaust gas and incinerated ash, ash in waste is converted into molten slag. There is a need for a driving method.

【0026】従って、本実施形態は、このような廃棄物
発電による売電収入の最大化の観点からの要求と廃棄物
処理の観点からの要求の両者を満足する廃棄物ガス化溶
融発電システムの低負荷運転を伴う運転方法である。低
負荷時には、廃棄物aは流動層ガス化炉1に供給され
る。流動層ガス化炉1からの微粉状の固形炭素分を同伴
した生成ガスcは溶融炉3に供給され、垂直の1次燃焼
室4及び傾斜した2次燃焼室5、さらに垂直の3次燃焼
室6にて、予熱された空気と旋回流中で混合しながら、
800〜950℃の中温で完全燃焼される。
Accordingly, the present embodiment is directed to a waste gasification and fusion power generation system that satisfies both the requirements from the viewpoint of maximizing the revenue from selling electricity through waste power generation and the requirements from the viewpoint of waste treatment. This is an operation method involving low-load operation. At a low load, the waste a is supplied to the fluidized-bed gasifier 1. The product gas c accompanied by the fine powdery solid carbon content from the fluidized bed gasification furnace 1 is supplied to the melting furnace 3 and is provided with a vertical primary combustion chamber 4, an inclined secondary combustion chamber 5, and a vertical tertiary combustion chamber. In chamber 6, mixing with preheated air in a swirling flow,
It is completely burned at a medium temperature of 800 to 950 ° C.

【0027】つぎに、燃焼排ガスは廃熱ボイラ13に供
給され、前記燃焼排ガスの保有する熱エネルギーは熱回
収されて過熱蒸気または飽和蒸気を生成する。廃熱ボイ
ラ13を出た燃焼排ガスは、エコノマイザ等の予熱器1
6、排ガス処理機能を有する集塵器17を通り、低温の
クリーンガスとして煙突から大気へ放出される。
Next, the combustion exhaust gas is supplied to the waste heat boiler 13, and the thermal energy possessed by the combustion exhaust gas is recovered to generate superheated steam or saturated steam. The flue gas discharged from the waste heat boiler 13 is supplied to a preheater 1 such as an economizer.
6. The gas passes through a dust collector 17 having an exhaust gas treatment function and is discharged from the chimney to the atmosphere as a low-temperature clean gas.

【0028】固形炭素分中の灰分は、溶融炉3において
中温燃焼のため溶融スラグ化しないで焼却灰になる。前
記焼却灰は、燃焼排ガスに同伴し、2次燃焼室5及び3
次燃焼室6を通り下流の廃熱ボイラ13、予熱器16、
集塵器17で捕集される。この時、焼却灰の一部は、2
次燃焼室5と3次燃焼室6の間にある排出口7より排出
され、また廃熱ボイラ13、予熱器16でも捕集され排
出される。捕集された灰は高負荷時に溶融処理するため
に灰ホッパ18に貯留される。一方、前記過熱蒸気又は
飽和蒸気は蒸気タービン及び発電機からなる発電設備1
5へ供給され、電力エネルギーとしてエネルギー回収が
行われる。発電された電力は場内で消費されるほか電力
会社に売電される。
The ash in the solid carbon is converted into incinerated ash without being turned into molten slag because of the intermediate temperature combustion in the melting furnace 3. The incineration ash accompanies the combustion exhaust gas, and the secondary combustion chambers 5 and 3
A waste heat boiler 13, a preheater 16,
The dust is collected by the dust collector 17. At this time, part of the incineration ash was 2
The waste gas is discharged from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is also collected and discharged by the waste heat boiler 13 and the preheater 16. The collected ash is stored in an ash hopper 18 for melting at a high load. On the other hand, the superheated steam or the saturated steam is generated by a power generation facility 1 comprising a steam turbine and a generator.
5, and energy recovery is performed as electric power energy. The generated power is consumed on site and sold to power companies.

【0029】高負荷時には、廃棄物a及び低負荷運転時
に捕集・貯留されていた焼却灰eは流動層ガス化炉1に
供給される。流動層ガス化炉1に供給された焼却灰eは
流動層で加熱され微粉状となるため、流動層ガス化炉1
で生成した可燃ガスcに同伴して溶融炉3に供給され
る。溶融炉3に供給された前記可燃ガスcは垂直の1次
燃焼室4及び傾斜した2次燃焼室5にて、予熱された空
気と旋回流中で混合しながら、1200〜1600℃、
好ましくは1300〜1400℃の高温で部分酸化され
る。
At a high load, the waste a and the incinerated ash e collected and stored during the low load operation are supplied to the fluidized bed gasifier 1. Since the incineration ash e supplied to the fluidized-bed gasification furnace 1 is heated in the fluidized-bed and becomes a fine powder, the fluidized-bed gasification furnace 1
Is supplied to the melting furnace 3 along with the combustible gas c generated in the above. The combustible gas c supplied to the melting furnace 3 is mixed with the preheated air in a vertical primary combustion chamber 4 and an inclined secondary combustion chamber 5 in a swirling flow, at 1200 to 1600 ° C.
Preferably, it is partially oxidized at a high temperature of 1300 to 1400 ° C.

【0030】この時、固形炭素分中の灰分及び焼却灰e
は、高温のためスラグミストとなり、このスラグミスト
の大部分は旋回流による遠心力の作用により1次燃焼室
4及び2次燃焼室5の炉壁上の溶融スラグ層に捕捉され
る。そして、この炉壁面を流れ下った溶融スラグは、2
次燃焼室5と3次燃焼室6の間にある排出口7より排出
され、直接又は間接的に冷却された後にスラグ粒として
回収される。
At this time, the ash in the solid carbon and the incinerated ash e
Becomes a slag mist due to high temperature, and most of the slag mist is captured by the molten slag layer on the furnace walls of the primary combustion chamber 4 and the secondary combustion chamber 5 by the action of centrifugal force due to the swirling flow. The molten slag flowing down the furnace wall is 2
It is discharged from the discharge port 7 between the secondary combustion chamber 5 and the tertiary combustion chamber 6, and is cooled directly or indirectly and then collected as slag particles.

【0031】次に、燃焼排ガスは廃熱ボイラ13に供給
され、前記燃焼排ガスの保有する熱エネルギーは熱回収
されて過熱蒸気または飽和蒸気を生成する。廃熱ボイラ
13を出た燃焼排ガスは、エコノマイザ等の予熱器1
6、排ガス処理機能を有する集塵器17を通り、低温の
クリーンガスとして煙突から大気へ放出される。一方、
前記過熱蒸気又は飽和蒸気は蒸気タービン及び発電機か
らなる発電設備15へ供給され、電力エネルギーとして
エネルギー回収が行われる。発電された電力は場内で消
費されるほか電力会社に売電される。
Next, the flue gas is supplied to the waste heat boiler 13, and the thermal energy possessed by the flue gas is recovered to generate superheated steam or saturated steam. The flue gas discharged from the waste heat boiler 13 is supplied to a preheater 1 such as an economizer.
6. The gas passes through a dust collector 17 having an exhaust gas treatment function and is discharged from the chimney to the atmosphere as a low-temperature clean gas. on the other hand,
The superheated steam or the saturated steam is supplied to a power generation facility 15 including a steam turbine and a generator, and energy recovery is performed as power energy. The generated power is consumed on site and sold to power companies.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
以下に列挙する効果を奏する。 (1)廃棄物のガス化溶融システムにおいて、低負荷運
転を伴う場合でも、廃棄物の灰分を自己熱溶融スラグ化
することができる。 (2)廃棄物ガス化溶融発電システムにおいて、売電単
価の低い時間帯に低負荷運転を行い、売電単価の高い時
間帯に高負荷運転を行うことにより売電収入の最大化が
図られると同時に廃棄物処理としての廃棄物の自己熱溶
融スラグ化が図られる。 (3)低負荷運転時には、燃焼ガス温度が高負荷運転時
に比べ低くなるが、燃焼ガス滞留時間が2.8倍程度に
なり、ダイオキシン等は完全分解する。
As described above, according to the present invention,
The following effects are obtained. (1) In the waste gasification and melting system, even when low-load operation is involved, the ash of the waste can be made into a self-heating molten slag. (2) In the waste gasification / melting power generation system, low-load operation is performed during a time period when the unit price of electric power is low, and high-load operation is performed during a time period when the unit price of electric power is high, thereby maximizing the income from electric power sales. At the same time, self-melting slag of waste is treated as waste. (3) During low load operation, the combustion gas temperature becomes lower than during high load operation, but the combustion gas residence time becomes about 2.8 times, and dioxin and the like are completely decomposed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固形廃棄物の溶融処理方法を実施する
装置の構成の第1の例を示す概略図である。
FIG. 1 is a schematic view showing a first example of a configuration of an apparatus for performing a solid waste melting treatment method of the present invention.

【図2】本発明の固形廃棄物の溶融処理方法を実施する
装置の構成の第2の例を示す概略図である。
FIG. 2 is a schematic view showing a second example of the configuration of an apparatus for performing the solid waste melting treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 流動層ガス化炉 2 定量供給装置 3 溶融炉 4 1次燃焼室 5 2次燃焼室 6 3次燃焼室 7 排出口 8 流動層 9 フリーボード 13 廃熱ボイラ 15 発電設備 16 予熱器 17 集塵器 18 灰ホッパ DESCRIPTION OF SYMBOLS 1 Fluidized bed gasifier 2 Quantitative feeder 3 Melting furnace 4 Primary combustion chamber 5 Secondary combustion chamber 6 Tertiary combustion chamber 7 Outlet 8 Fluidized bed 9 Free board 13 Waste heat boiler 15 Power generation equipment 16 Preheater 17 Dust collection Vessel 18 Ash Hopper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大下 孝裕 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3G081 BA02 BB00 BC11 DA12 3K061 AA23 AB03 AC01 AC03 BA03 BA05 DA14 3K065 AA23 AB03 AC03 BA05 JA03 JA13 3K078 AA05 BA03 CA03 CA21  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takahiro Ohshita 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation 3G081 BA02 BB00 BC11 DA12 3K061 AA23 AB03 AC01 AC03 BA03 BA05 DA14 3K065 AA23 AB03 AC03 BA05 JA03 JA13 3K078 AA05 BA03 CA03 CA21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固形廃棄物をガス化炉にてガス化した後
に溶融炉にて高温燃焼により廃棄物中の灰分を溶融スラ
グ化する方法において、低負荷時に溶融炉を燃焼室とし
て使用してガスやタールやチャー等の可燃物を燃焼し、
その際発生したスラグ化していない燃焼灰を捕集・貯留
しておき、高負荷時に前記燃焼灰をガス化炉または溶融
炉に供給し、高負荷時の燃焼廃棄物の灰分とともに溶融
スラグ化することを特徴とする廃棄物ガス化溶融システ
ムの運転方法。
1. A method of gasifying solid waste in a gasification furnace and then melting the ash in the waste by high-temperature combustion in a melting furnace, wherein the melting furnace is used as a combustion chamber at a low load. Burns combustibles such as gas, tar and char,
The combustion ash generated at that time is collected and stored, and when the load is high, the combustion ash is supplied to a gasification furnace or a melting furnace, and is converted into a molten slag together with the ash content of the combustion waste at a high load. A method for operating a waste gasification and melting system, comprising:
【請求項2】 前記溶融炉から排出された燃焼排ガスの
熱回収により過熱蒸気を生成し、該過熱蒸気を蒸気ター
ビン及び発電機からなる発電設備に供給し発電すること
を特徴とする請求項1記載の廃棄物ガス化溶融システム
の運転方法。
2. A superheated steam is generated by heat recovery of the combustion exhaust gas discharged from the melting furnace, and the superheated steam is supplied to a power generation facility including a steam turbine and a generator to generate power. A method for operating the waste gasification and melting system according to the above.
【請求項3】 昼間を高負荷運転とし、夜間を低負荷運
転とすることを特徴とする請求項1又は2に記載の廃棄
物ガス化溶融システムの運転方法。
3. The method for operating a waste gasification and melting system according to claim 1, wherein the high load operation is performed in the daytime and the low load operation is performed in the nighttime.
JP13194099A 1999-05-12 1999-05-12 Operation method of waste gasification and melting system Expired - Fee Related JP3859390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13194099A JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13194099A JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Publications (3)

Publication Number Publication Date
JP2000320825A true JP2000320825A (en) 2000-11-24
JP2000320825A5 JP2000320825A5 (en) 2004-12-24
JP3859390B2 JP3859390B2 (en) 2006-12-20

Family

ID=15069774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13194099A Expired - Fee Related JP3859390B2 (en) 1999-05-12 1999-05-12 Operation method of waste gasification and melting system

Country Status (1)

Country Link
JP (1) JP3859390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176322A (en) * 2019-05-13 2019-08-27 江苏天楹环保能源成套设备有限公司 A kind of middle low-activity solid waste volume reduction processing system and its method
CN112628754A (en) * 2020-12-16 2021-04-09 中广核研究院有限公司 Waste gasification melting treatment system and waste gasification melting treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176322A (en) * 2019-05-13 2019-08-27 江苏天楹环保能源成套设备有限公司 A kind of middle low-activity solid waste volume reduction processing system and its method
CN112628754A (en) * 2020-12-16 2021-04-09 中广核研究院有限公司 Waste gasification melting treatment system and waste gasification melting treatment method

Also Published As

Publication number Publication date
JP3859390B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
US6286443B1 (en) Method for treating combustibles by slagging combustion
JP2005272530A (en) Biomass power generation system
JP3964043B2 (en) Waste disposal method
JP3859390B2 (en) Operation method of waste gasification and melting system
JP3048968B2 (en) Waste treatment method using waste plastic gasification and ash melting
JP2977784B2 (en) Power generation method using waste plastic gasification and ash melting
JP2007002825A (en) Waste power generation method
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JP3054595B2 (en) Pyrolysis melting gasification of waste
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP3046309B1 (en) Method and apparatus for reducing dioxins in a garbage gasifier for char separation
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JPH09112863A (en) Power generating apparatus combined with incinerator
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JPH11173518A (en) Device and method for treating waste
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JPH1130411A (en) Waste incinerator
JP2004264017A (en) Municipal waste gasification furnace and method
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JP2000074335A (en) Method and apparatus for treating waste
JP3270452B2 (en) Waste treatment method and gasification and melting equipment
JP2004264018A (en) Processing method, and gasifying and melting device for waste
JP2001165416A (en) Method of processing waste, gasifying and melting combustion apparatus and gasifying furnace of waste

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees