JP3857217B2 - Film thickness measuring device - Google Patents

Film thickness measuring device Download PDF

Info

Publication number
JP3857217B2
JP3857217B2 JP2002322453A JP2002322453A JP3857217B2 JP 3857217 B2 JP3857217 B2 JP 3857217B2 JP 2002322453 A JP2002322453 A JP 2002322453A JP 2002322453 A JP2002322453 A JP 2002322453A JP 3857217 B2 JP3857217 B2 JP 3857217B2
Authority
JP
Japan
Prior art keywords
unit
light
film thickness
measurement
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322453A
Other languages
Japanese (ja)
Other versions
JP2004156996A (en
Inventor
成章 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2002322453A priority Critical patent/JP3857217B2/en
Publication of JP2004156996A publication Critical patent/JP2004156996A/en
Application granted granted Critical
Publication of JP3857217B2 publication Critical patent/JP3857217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、対象物上の膜の厚さを測定する膜厚測定装置に関する。
【0002】
【従来の技術】
半導体の基板に光を照射して基板上に形成された膜の厚さを測定する膜厚測定装置において複数の測定部を設けたものが従来より提案されている。例えば、特許文献1では、エリプソメータと干渉計とを同一装置に設け、エリプソメータにより測定される屈折率と干渉計により求められる干渉波形とから基板上の膜厚を特定する手法が開示されている。このような膜厚測定装置では、装置上における各測定部の取り付け位置を精度よく調整することにより、各測定部からの光の基板上の照射位置を一致させ、各測定部による測定が基板上の同一の位置に対して行われる。
【0003】
【特許文献1】
特開昭61−182507号公報
【0004】
【発明が解決しようとする課題】
ところで、膜厚測定装置が使用される製造現場(例えば、半導体部品製造工場等)において、膜厚測定装置のメンテナンスや故障による部品交換等により各測定部の取り外しを伴う作業が行われる場合には、一般的に装置の停止時間が製造コストに大きく影響するため、各測定部の再取り付け後の位置の調整を迅速かつ容易に行うことが要求されている。ところが、取り付け位置の調整は、通常、高度な調整が必要とされるため容易に行うことができず、作業に長時間を要してしまう。
【0005】
本発明は上記課題に鑑みなされたものであり、複数の測定部を有する膜厚測定装置において各測定部の基板上の測定位置(測定用の光の照射位置)を容易に一致させることを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、対象物上に形成された膜の厚さを測定する膜厚測定装置であって、対象物を保持するステージと、前記ステージに保持された参照対象物の画像を取得する撮像部を有するとともに対象物に光を照射して膜の厚さを測定する第1測定部と、前記第1測定部とは別に、対象物に光を照射して膜の厚さを測定する第2測定部と、前記ステージを前記第1測定部および前記第2測定部に対して相対的に移動する移動機構と、前記第1測定部または前記第2測定部が光を照射した状態を前記撮像部にて取得した画像に基づいて、前記第1測定部からの光の照射位置と前記第2測定部からの光の照射位置との位置ずれ量を求める演算部と、前記位置ずれ量を記憶する記憶部と、前記第1測定部と前記第2測定部との間で測定が切り替えられる際に前記位置ずれ量に基づいて前記移動機構を制御する制御部とを備える。
【0008】
請求項に記載の発明は、請求項に記載の膜厚測定装置であって、前記参照対象物が、光を散乱する散乱部を有し、前記位置ずれ量が求められる際に、前記移動機構が前記ステージを移動しつつ前記撮像部にて連続的に複数の画像が取得される。
【0009】
請求項に記載の発明は、請求項に記載の膜厚測定装置であって、前記移動機構が前記ステージを第1の方向および第2の方向に移動しつつ、前記撮像部により連続的に複数の画像が取得され、前記複数の画像に基づいて前記演算部により前記第1測定部または前記第2測定部からの光の照射領域の中心が求められる。
【0010】
請求項に記載の発明は、請求項1ないしのいずれかに記載の膜厚測定装置であって、前記第1測定部が白色光による光干渉方式の測定部であり、前記第2測定部がエリプソメータである。
【0011】
【発明の実施の形態】
図1は、本発明の一の実施の形態に係る膜厚測定装置1の概略構成を示す図である。膜厚測定装置1は、多層膜(単層膜であってもよい。)が形成された半導体基板(以下、「基板」という。)9が載置されるステージ2、基板9上の膜に対して偏光解析を行うための情報を取得するエリプソメータ3、基板9からの光(反射光)の分光強度を取得する光干渉ユニット4、各種演算処理を行うCPUや各種情報を記憶するメモリ等により構成された制御部5、および、エリプソメータ3および光干渉ユニット4に対してステージ2を移動するステージ移動機構21を備える。
【0012】
エリプソメータ3は、偏光した光(以下、「偏光光」という。)を基板9に向けて出射する光源ユニット31、および、基板9からの反射光を受光して反射光の偏光状態を取得する受光ユニット32を有し、取得された偏光状態を示すデータは制御部5へと出力される。
【0013】
光源ユニット31は、光ビームを出射する半導体レーザ(LD)312および半導体レーザ312の出力を制御するLD駆動制御部311を有し、半導体レーザ312からの光ビームは偏光子313に入射する。偏光子313と波長板(以下、「λ/4板」という。)314により円偏光または直線偏光の光が取り出される。λ/4板314からの光はレンズ331を介して所定の入射角(例えば、70〜80度)にてステージ2上の基板9表面へと導かれる。このように、LD駆動制御部311、半導体レーザ312、偏光子313およびλ/4板314により光源ユニット31が構成され、円偏光または直線偏光の光が基板9に向けて出射される。なお、光源ユニット31には(具体的には、半導体レーザ312と偏光子313との間の光路上には)、光ビームを遮断する電磁シャッタ315が設けられ、電磁シャッタ315により基板9への光の照射がON/OFF制御される。
【0014】
基板9からの反射光は、レンズ332を介して回転検光子321へと導かれ、回転検光子321が光軸に平行な軸を中心として回転しつつ透過した光が受光素子322へと導かれ、受光された光の強度を示す信号がADコンバータ34を介して制御部5へと出力される。以上のように、回転検光子321および受光素子322により受光ユニット32が構成され、受光素子322の出力が回転検光子321の回転角に対応付けられることにより反射光の偏光状態が取得される。
【0015】
光干渉ユニット4は、白色光を照明光として出射する光源41、基板9からの反射光を分光する分光器42、基板9上の照明光の照射位置を撮像する撮像部44、および、光学系45を有し、光学系45により光源41からの照明光が基板9へと導かれるとともに基板9からの反射光が分光器42および撮像部44へと導かれる。
【0016】
具体的には、光ファイバ451の一端に光源41からの照明光が導入され、他端に設けられたレンズ452から照明光が導出される。導出された照明光はレンズ群450aによりハーフミラー456へと導かれ、反射された照明光は対物レンズ457を介して基板9の表面に照射される。
【0017】
基板9からの反射光は、対物レンズ457を介してハーフミラー456へと導かれる。ハーフミラー456およびハーフミラー458を透過した光はハーフミラー459へと導かれ、一部の光が反射される。反射された光はレンズ450bを介して撮像部44へと導かれ、受光される。撮像部44により基板9上の照明光の照射位置の像が撮像され、取得された画像データは制御部5へと出力される。
【0018】
ハーフミラー459を透過した光はレンズ450cを介して分光器42へと導かれ、反射光の分光強度が取得される。分光強度のデータは制御部5へと出力される。以上のように、レンズ群450a,レンズ450b,450c,452、光ファイバ451、ハーフミラー456,458,459および対物レンズ457により光学系45が構成される。
【0019】
光干渉ユニット4は、さらに、対物レンズ457と基板9の表面との間の距離を検出するオートフォーカス検出ユニット(以下、「AF検出ユニット」という。)46を有する。AF検出ユニット46は、光ビームを出射する半導体レーザ461、受光する光の位置をPSD素子により検出するAF検出部463を有し、半導体レーザ461から出射された光ビームは光学系45を介して基板9の表面へと照射される。基板9からの光ビームの反射光は光学系45を介してAF検出ユニット46のレンズ462へと導かれ、さらに、AF検出部463へと導かれる。
【0020】
AF検出部463では受光する光の位置により対物レンズ457と基板9の表面との間の距離が検出され、ステージ2に設けられた昇降機構24により対物レンズ457と基板9の表面との間の距離が一定に調整される。このとき、対物レンズ457と基板9の表面との間の距離は、対物レンズ457に入射する平行光が基板9の表面にてほぼ集光する距離(すなわち、焦点距離)とされる。
【0021】
ステージ移動機構21は、ステージ2を図1中のX方向に移動するX方向移動機構22、および、Y方向に移動するY方向移動機構23を有する。X方向移動機構22はモータ221にボールねじ(図示省略)が接続され、モータ221が回転することにより、Y方向移動機構23がガイドレール222に沿って図1中のX方向に移動する。Y方向移動機構23もX方向移動機構22と同様の構成となっており、モータ231が回転するとボールねじ(図示省略)によりステージ2がガイドレール232に沿ってY方向に移動する。
【0022】
制御部5は、各種演算を行う演算部51、および、各種情報を記憶する記憶部52を有し、分光器42、撮像部44および受光ユニット32にて取得された各種情報は演算部51へと入力され、演算部51による演算結果は記憶部52に記憶される。また、光源41、光源ユニット31およびステージ移動機構21も制御部5に接続され、制御部5がこれらの構成を制御することにより、膜厚測定装置1による基板9上の膜厚測定が行われる。
【0023】
図2は膜厚測定装置1が基板9上の膜の厚さを測定する処理の流れを示す図である。以下、図1を参照しながら図2に沿って膜厚測定装置1による膜厚測定について説明を行う。
【0024】
まず、光干渉ユニット4において光源41から照明光が出射され(ステップS11)、光学系45により照明光が基板9へと導かれる。基板9からの反射光の一部は撮像部44へと導かれ、照明光の照射位置を示す画像が取得される。制御部5は、取得された画像に基づいてステージ移動機構21を制御し、照明光の照射位置を基板9上の所望の測定位置へと相対的に移動する。そして、反射光の一部が分光器42へと導かれて分光器42により反射光の分光強度が取得され(ステップS12)、分光強度データが演算部51へと出力される。演算部51では、取得された分光強度から基板9の分光反射率が求められる。このとき、分光反射率が既知である他の基板の分光強度が予め準備されており、この分光強度を用いて基板9の分光反射率が求められる。
【0025】
続いて、膜厚測定装置1では光干渉ユニット4からエリプソメータ3に測定が切り替えられる。すなわち、エリプソメータ3の光源ユニット31から偏光光が基板9へと出射されるとともに(ステップS13)、記憶部52に記憶された位置ずれ量が読み出される(ステップS14)。そして、制御部5が位置ずれ量に基づいてステージ移動機構21を制御し、ステージ2が対応する位置へと移動する(ステップS15)。
【0026】
ここで、位置ずれ量とは基板9上における光干渉ユニット4による照明光の照射位置とエリプソメータ3による偏光光の照射位置との相対的な位置の差であり、後述する位置ずれ量を取得する処理により予め求められる。これにより、基板9上の偏光光の照射位置が直前の照明光の照射位置に移動し(すなわち、ステージ2の位置が偏光光の照射位置に対して補正され)、ステップS12にて分光強度が取得されたのと同一の位置において受光ユニット32により反射光の偏光状態が取得される(ステップS16)。偏光状態を示すデータは演算部51に入力され、取得された分光反射率および偏光状態に基づいて基板9上の所望の位置における膜の厚さが求められる(ステップS17)。例えば、演算部51では、分光反射率から求められる膜厚と偏光状態から求められる膜厚とが比較され、適切な膜厚が特定される。なお、膜厚測定装置1では、エリプソメータ3による測定後に光干渉ユニット4による測定が行われてもよい。
【0027】
次に、上述の位置ずれ量を取得する処理について説明を行う。図3は、膜厚測定装置1が位置ずれ量を求める処理の流れを示す図である。まず、ステージ2上に所定のパターンが形成された参照基板が載置され、光干渉ユニット4の光源41から照明光が出射される(ステップS21)。撮像部44では照明光の照射位置の画像が取得され、演算部51は取得された画像に基づいて照明光の照射位置をステージ移動機構21により参照基板上の特定の位置へと相対的に移動する(ステップS22)。
【0028】
例えば、図4(a)に示すようにY方向に伸びる段差部91(例えば、数100オングストロームの段差となった段差部)が設けられた参照基板9a(平行斜線を付して図示)が使用される場合には、まず、光干渉ユニット4の照明光の照射位置が段差部91のエッジ上に位置する状態とされる。そして、照明光の照射位置が参照基板9aに対して(+X)方向に任意の距離L1だけ相対的に移動し(すなわち、図4(a)中の矢印P1の位置へと移動し、)、図5に示す画像61が撮像部44により取得される。このとき、ステージ2の移動量(すなわち、距離L1)は光干渉ユニット4の照明光の照射位置P1と段差部91との間のX方向に関する距離として記憶部52に記憶される(ステップS23)。
【0029】
また、対物レンズ457と参照基板9aの凹部92側の表面との間の距離がAF検出ユニット46により検出され、一定に調整された後、AF検出ユニット46がOFFとされる。なお、本実施の形態では図5の画像61中の中心点と参照基板9a上における照明光の照射領域の中心とが一致しており、図4(a)中の照明光の照射位置P1と同様に、符号P1を付している。
【0030】
続いて、エリプソメータ3から偏光光が出射される(ステップS24)。このとき、参照基板9a上に照射された偏光光は、受光ユニット32に向かって全反射するため撮像部44による画像からは確認することができない。そこで、ステージ2が(+X)方向へと移動しつつ、ステージ2の移動量に対応付けられた複数の画像が撮像部44により連続的に取得される(ステップS25)。
【0031】
図4(b)は偏光光が照射された直後の状態(または、ステージ2の移動直前の状態)を示す図であり、偏光光の照射位置を矢印P2により示している。また、図5では、偏光光の照射位置を符号P2を付す点により示し、偏光光の照射領域を二点鎖線で示す領域62として図示している。ステージ2の移動により段差部91が図5中の符号91aに示す状態となるときには、段差部91が偏光光の照射領域62の外側に位置するが、符号91bに示す状態になると段差部91が照射領域62内に位置するため偏光光が段差部91のエッジにて散乱する。ステージ2がさらに移動し、段差部91が符号91c,91dに示す状態を経由する間も、段差部91における散乱光が継続して発生し、符号91eに示す状態となると段差部91が照射領域62の外側に位置し、散乱光が消滅する。
【0032】
撮像部44にてステージ2の移動中に連続して取得された複数の画像(図5中の符号91a〜91eに示す状態を含む複数の画像)は演算部51へと出力される。演算部51では、取得された複数の画像から散乱光の発生直後に対応する画像と消滅直後に対応する画像とが特定され、両画像に対応付けられたステージ2の移動量の平均値が、移動直前の状態(すなわち、図4(b)または図5の状態)における段差部91と偏光光の照射領域62の中心(すなわち、照射位置P2)との間のX方向に関する距離L2として求められる(ステップS26)。なお、距離L2は、例えば、散乱光が最大となる画像に対応付けられたステージ2の移動量であってもよい。
【0033】
演算部51では、X方向に関して特定された段差部91と照明光の照射位置P1との距離L1、および、段差部91と偏光光の照射位置P2との距離L2から照明光の照射位置P1と偏光光の照射位置P2とのX方向に関する位置ずれ量が算出され、記憶部52に記憶される(ステップS27)。
【0034】
続いて、ステップS21へと戻って(ステップS28)、照明光が出射されるとともに、参照基板9a上の照明光の照射位置が段差部91とは異なるX方向に伸びる段差部の位置に相対的に移動する(ステップS22)。そして、ステージ2の移動方向をY方向としてステップS23〜S25が同様に繰り返され、Y方向に関する照明光の照射位置P1と偏光光の照射位置P2との位置ずれ量が算出され、記憶部52に記憶される(ステップS27)。膜厚測定装置1では、X方向およびY方向に関する位置ずれ量が求められると位置ずれ量取得処理を終了する(ステップS28)。
【0035】
以上のように、膜厚測定装置1ではステージ2をX方向およびY方向に(すなわち、水平面内で互いに垂直な2方向に)移動しつつ、撮像部44によりエリプソメータ3が偏光光を照射した状態を示す複数の画像が連続的に取得される。そして、演算部51により複数の画像に基づいて偏光光の照射領域の中心が求められ、照明光の照射位置と偏光光の照射位置との位置ずれ量が自動的に求められる。これにより、膜厚測定装置1ではエリプソメータ3と光干渉ユニット4との間で測定が切り替えられる際に、位置ずれ量に基づいて双方の光の基板9上の照射位置を容易に一致させることができ、その結果、基板9上の所望の位置における膜厚を正確に求めることができる。また、膜厚測定装置1における各測定部の取り付け位置の調整を簡略化することができる。
【0036】
なお、照明光が参照基板9a上の凹部92側にて集光するようにAFが行われ、かつ、図4(a)において左上から偏光光が入射する場合は、偏光光の散乱箇所は段差部91の上端となるため、厳密には、正確な位置ずれ量が求められない可能性がある。しかしながら、実際には段差部91の段差が微小であるためこの誤差は無視することが可能である。もちろん、より正確に位置ずれ量を求める必要がある場合には、段差を考慮しつつ偏光光の照射位置が求められてよい。
【0037】
また、膜厚測定装置1では、必ずしもステージ2の移動量に基づいて位置ずれ量が求められる必要はなく、例えば、演算部51により偏光光の散乱光が出現する複数の画像から偏光光の照射位置と照明光の照射位置との画像中の距離を求め、この距離に基づいて位置ずれ量が求められてもよい。また、ステージ2を移動しつつ取得される複数の画像により、光干渉ユニット4の光の照射領域の中心が求められてもよい。
【0038】
以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変形が可能である。
【0039】
参照基板9aに設けられる段差部91は必ずしも一方向に伸びる段差部である必要はなく、例えば、曲線状の段差部や光を散乱する散乱面が参照基板上に形成されてもよい。
【0040】
また、位置特定用のパターンや目盛り等が形成された参照基板を使用し、各測定部(すなわち、エリプソメータ3および光干渉ユニット4のそれぞれ)に設けられた撮像部等により光の照射位置が確認されることにより、位置ずれ量が求められてもよい。
【0041】
基板9は、半導体基板に限定されず、例えば、液晶表示装置やその他のフラットパネル表示装置等に使用されるガラス基板であってもよい。
【0042】
エリプソメータ3および光干渉ユニット4とステージ2とは相対的に移動すればよく、例えば、エリプソメータ3および光干渉ユニット4に移動機構が設けられてもよい。
【0043】
膜厚測定装置に設けられる複数の測定部は必ずしもエリプソメータ3および光干渉方式の光干渉ユニット4である必要はない。また、膜厚測定装置に3つ以上の測定部が設けられるとともに任意の2つに対する位置ずれ量がそれぞれ求められ、各測定部の測定時に対応する位置ずれ量に基づいてステージ位置の補正が行われてもよい。
【0044】
【発明の効果】
請求項1ないしの発明では、第1測定部からの光の照射位置と第2測定部からの光の照射位置との位置ずれ量を自動的に取得し、第1測定部からの光の照射位置と第2測定部からの光の照射位置とを容易に一致させることができる。
【図面の簡単な説明】
【図1】膜厚測定装置の概略構成を示す図である。
【図2】膜厚を測定する処理の流れを示す図である。
【図3】位置ずれ量を求める処理の流れを示す図である。
【図4】(a)は照明光の照射位置を示す図であり、(b)は偏光光の照射位置を示す図である。
【図5】撮像部により取得される画像を示す図である。
【符号の説明】
1 膜厚測定装置
2 ステージ
3 エリプソメータ
4 光干渉ユニット
5 制御部
9 基板
9a 参照基板
21 ステージ移動機構
44 撮像部
51 演算部
52 記憶部
61 画像
91 段差部
P1,P2 照射位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film thickness measuring device that measures the thickness of a film on an object.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a film thickness measuring apparatus that irradiates a semiconductor substrate with light and measures the thickness of a film formed on the substrate is provided with a plurality of measurement units. For example, Patent Document 1 discloses a technique in which an ellipsometer and an interferometer are provided in the same apparatus, and the film thickness on the substrate is specified from the refractive index measured by the ellipsometer and the interference waveform obtained by the interferometer. In such a film thickness measurement device, the mounting position of each measurement unit on the device is adjusted accurately, so that the irradiation position on the substrate of the light from each measurement unit is matched, and the measurement by each measurement unit is performed on the substrate. Of the same position.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 61-182507
[Problems to be solved by the invention]
By the way, in a manufacturing site where a film thickness measuring device is used (for example, a semiconductor parts manufacturing factory), when work involving removal of each measuring unit is performed due to maintenance of the film thickness measuring device or parts replacement due to failure, etc. In general, since the downtime of the apparatus greatly affects the manufacturing cost, it is required to quickly and easily adjust the position after reattaching each measurement unit. However, the adjustment of the mounting position is usually difficult because it requires a high degree of adjustment, and the work takes a long time.
[0005]
The present invention has been made in view of the above problems, and aims to easily match the measurement positions (irradiation positions of light for measurement) on the substrate of each measurement section in a film thickness measurement apparatus having a plurality of measurement sections. And
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a film thickness measuring device for measuring the thickness of a film formed on an object, and a stage for holding the object and an image of a reference object held on the stage. In addition to the first measurement unit that has an imaging unit that acquires the light and measures the thickness of the film by irradiating the object with light, the thickness of the film by irradiating the object with light separately from the first measurement unit a second measuring section for measuring, a moving mechanism for the pre-Symbol stage moves relative to the first measuring section and the second measuring unit, the first measurement unit or the second measurement unit light Based on the image obtained by the imaging unit in the irradiated state, a calculation unit for obtaining a positional deviation amount between the irradiation position of the light from the first measurement unit and the irradiation position of the light from the second measurement unit; a storage unit for storing the positional deviation amount, switching is measured between the second measuring unit and the first measurement section And a control unit that controls the moving mechanism based on the positional deviation amount when being replaced.
[0008]
Invention of Claim 2 is a film thickness measuring apparatus of Claim 1 , Comprising: When the said reference target object has the scattering part which scatters light, and the said positional offset amount is calculated | required, A plurality of images are continuously acquired by the imaging unit while the moving mechanism moves the stage.
[0009]
The invention according to claim 3, a film thickness measuring device according to claim 2, while the moving mechanism moves the stage in a first direction and a second direction, continuously by the image pickup unit A plurality of images are acquired, and a center of an irradiation region of light from the first measurement unit or the second measurement unit is obtained by the calculation unit based on the plurality of images.
[0010]
A fourth aspect of the present invention is the film thickness measuring apparatus according to any one of the first to third aspects, wherein the first measurement unit is a measurement unit of an optical interference method using white light, and the second measurement is performed. The part is an ellipsometer.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a schematic configuration of a film thickness measuring apparatus 1 according to an embodiment of the present invention. The film thickness measuring apparatus 1 includes a stage 2 on which a semiconductor substrate (hereinafter referred to as “substrate”) 9 on which a multilayer film (may be a single layer film) is formed, and a film on the substrate 9. An ellipsometer 3 that acquires information for performing polarization analysis, an optical interference unit 4 that acquires the spectral intensity of light (reflected light) from the substrate 9, a CPU that performs various arithmetic processes, a memory that stores various information, and the like The control part 5 comprised and the stage moving mechanism 21 which moves the stage 2 with respect to the ellipsometer 3 and the optical interference unit 4 are provided.
[0012]
The ellipsometer 3 emits polarized light (hereinafter referred to as “polarized light”) toward the substrate 9, and light reception that receives the reflected light from the substrate 9 and acquires the polarization state of the reflected light. Data having the unit 32 and indicating the obtained polarization state is output to the control unit 5.
[0013]
The light source unit 31 includes a semiconductor laser (LD) 312 that emits a light beam and an LD drive control unit 311 that controls the output of the semiconductor laser 312, and the light beam from the semiconductor laser 312 enters the polarizer 313. Circularly polarized light or linearly polarized light is extracted by a polarizer 313 and a wave plate (hereinafter referred to as “λ / 4 plate”) 314. Light from the λ / 4 plate 314 is guided to the surface of the substrate 9 on the stage 2 through a lens 331 at a predetermined incident angle (for example, 70 to 80 degrees). As described above, the light source unit 31 is configured by the LD drive control unit 311, the semiconductor laser 312, the polarizer 313, and the λ / 4 plate 314, and circularly or linearly polarized light is emitted toward the substrate 9. The light source unit 31 (specifically, on the optical path between the semiconductor laser 312 and the polarizer 313) is provided with an electromagnetic shutter 315 that blocks the light beam. Light irradiation is ON / OFF controlled.
[0014]
The reflected light from the substrate 9 is guided to the rotating analyzer 321 through the lens 332, and the light transmitted while the rotating analyzer 321 rotates about an axis parallel to the optical axis is guided to the light receiving element 322. A signal indicating the intensity of the received light is output to the control unit 5 via the AD converter 34. As described above, the rotation analyzer 321 and the light receiving element 322 constitute the light receiving unit 32, and the polarization state of the reflected light is acquired by associating the output of the light receiving element 322 with the rotation angle of the rotation analyzer 321.
[0015]
The optical interference unit 4 includes a light source 41 that emits white light as illumination light, a spectroscope 42 that separates reflected light from the substrate 9, an imaging unit 44 that captures the irradiation position of the illumination light on the substrate 9, and an optical system. 45, the illumination light from the light source 41 is guided to the substrate 9 by the optical system 45, and the reflected light from the substrate 9 is guided to the spectroscope 42 and the imaging unit 44.
[0016]
Specifically, illumination light from the light source 41 is introduced into one end of the optical fiber 451, and illumination light is derived from a lens 452 provided at the other end. The derived illumination light is guided to the half mirror 456 by the lens group 450a, and the reflected illumination light is applied to the surface of the substrate 9 via the objective lens 457.
[0017]
The reflected light from the substrate 9 is guided to the half mirror 456 through the objective lens 457. The light transmitted through the half mirror 456 and the half mirror 458 is guided to the half mirror 459, and a part of the light is reflected. The reflected light is guided to the imaging unit 44 through the lens 450b and received. An image of the irradiation position of the illumination light on the substrate 9 is captured by the imaging unit 44, and the acquired image data is output to the control unit 5.
[0018]
The light transmitted through the half mirror 459 is guided to the spectroscope 42 through the lens 450c, and the spectral intensity of the reflected light is acquired. The spectral intensity data is output to the control unit 5. As described above, the optical system 45 is configured by the lens group 450a, the lenses 450b, 450c, and 452, the optical fiber 451, the half mirrors 456, 458, and 459, and the objective lens 457.
[0019]
The optical interference unit 4 further includes an autofocus detection unit (hereinafter referred to as “AF detection unit”) 46 that detects the distance between the objective lens 457 and the surface of the substrate 9. The AF detection unit 46 includes a semiconductor laser 461 that emits a light beam, and an AF detection unit 463 that detects the position of the received light using a PSD element. The light beam emitted from the semiconductor laser 461 passes through the optical system 45. The surface of the substrate 9 is irradiated. The reflected light of the light beam from the substrate 9 is guided to the lens 462 of the AF detection unit 46 via the optical system 45 and further to the AF detection unit 463.
[0020]
The AF detection unit 463 detects the distance between the objective lens 457 and the surface of the substrate 9 based on the position of the received light, and the lift mechanism 24 provided on the stage 2 detects the distance between the objective lens 457 and the surface of the substrate 9. The distance is adjusted to be constant. At this time, the distance between the objective lens 457 and the surface of the substrate 9 is a distance (that is, a focal length) at which the parallel light incident on the objective lens 457 is substantially condensed on the surface of the substrate 9.
[0021]
The stage moving mechanism 21 includes an X direction moving mechanism 22 that moves the stage 2 in the X direction in FIG. 1 and a Y direction moving mechanism 23 that moves in the Y direction. In the X-direction moving mechanism 22, a ball screw (not shown) is connected to the motor 221, and when the motor 221 rotates, the Y-direction moving mechanism 23 moves along the guide rail 222 in the X direction in FIG. The Y-direction moving mechanism 23 has the same configuration as the X-direction moving mechanism 22. When the motor 231 rotates, the stage 2 moves along the guide rail 232 in the Y direction by a ball screw (not shown).
[0022]
The control unit 5 includes a calculation unit 51 that performs various calculations and a storage unit 52 that stores various types of information. Various types of information acquired by the spectroscope 42, the imaging unit 44, and the light receiving unit 32 are sent to the calculation unit 51. And the calculation result by the calculation unit 51 is stored in the storage unit 52. The light source 41, the light source unit 31, and the stage moving mechanism 21 are also connected to the control unit 5, and the film thickness measurement on the substrate 9 is performed by the film thickness measurement device 1 by the control unit 5 controlling these configurations. .
[0023]
FIG. 2 is a diagram showing a flow of processing in which the film thickness measuring device 1 measures the thickness of the film on the substrate 9. Hereinafter, the film thickness measurement by the film thickness measuring apparatus 1 will be described with reference to FIG.
[0024]
First, illumination light is emitted from the light source 41 in the optical interference unit 4 (step S11), and the illumination light is guided to the substrate 9 by the optical system 45. Part of the reflected light from the substrate 9 is guided to the imaging unit 44, and an image indicating the irradiation position of the illumination light is acquired. The control unit 5 controls the stage moving mechanism 21 based on the acquired image, and relatively moves the irradiation position of the illumination light to a desired measurement position on the substrate 9. Then, a part of the reflected light is guided to the spectroscope 42, the spectroscopic intensity of the reflected light is acquired by the spectroscope 42 (step S12), and the spectral intensity data is output to the calculation unit 51. In the calculation unit 51, the spectral reflectance of the substrate 9 is obtained from the acquired spectral intensity. At this time, spectral intensities of other substrates with known spectral reflectances are prepared in advance, and the spectral reflectance of the substrate 9 is obtained using the spectral intensities.
[0025]
Subsequently, in the film thickness measuring device 1, the measurement is switched from the optical interference unit 4 to the ellipsometer 3. That is, the polarized light is emitted from the light source unit 31 of the ellipsometer 3 to the substrate 9 (step S13), and the positional deviation amount stored in the storage unit 52 is read (step S14). Then, the control unit 5 controls the stage moving mechanism 21 based on the positional deviation amount, and the stage 2 moves to the corresponding position (step S15).
[0026]
Here, the positional deviation amount is a relative difference between the irradiation position of the illumination light by the light interference unit 4 on the substrate 9 and the irradiation position of the polarized light by the ellipsometer 3, and a positional deviation amount described later is acquired. It is obtained in advance by processing. Thereby, the irradiation position of the polarized light on the substrate 9 moves to the irradiation position of the previous illumination light (that is, the position of the stage 2 is corrected with respect to the irradiation position of the polarized light), and the spectral intensity is increased in step S12. The polarization state of the reflected light is acquired by the light receiving unit 32 at the same position as acquired (step S16). Data indicating the polarization state is input to the calculation unit 51, and the thickness of the film at a desired position on the substrate 9 is obtained based on the acquired spectral reflectance and polarization state (step S17). For example, the computing unit 51 compares the film thickness obtained from the spectral reflectance with the film thickness obtained from the polarization state, and identifies an appropriate film thickness. In the film thickness measuring device 1, the measurement by the optical interference unit 4 may be performed after the measurement by the ellipsometer 3.
[0027]
Next, a process for acquiring the above-described positional deviation amount will be described. FIG. 3 is a diagram showing a flow of processing in which the film thickness measuring device 1 obtains the positional deviation amount. First, a reference substrate on which a predetermined pattern is formed is placed on the stage 2, and illumination light is emitted from the light source 41 of the optical interference unit 4 (step S21). The imaging unit 44 acquires an image of the illumination light irradiation position, and the calculation unit 51 relatively moves the illumination light irradiation position to a specific position on the reference substrate by the stage moving mechanism 21 based on the acquired image. (Step S22).
[0028]
For example, as shown in FIG. 4 (a), a reference substrate 9a (shown with a parallel diagonal line) provided with a step 91 extending in the Y direction (for example, a step having a step of several hundred angstroms) is used. In this case, first, the illumination light irradiation position of the optical interference unit 4 is set on the edge of the step portion 91. Then, the irradiation position of the illumination light moves relative to the reference substrate 9a by an arbitrary distance L1 in the (+ X) direction (that is, moves to the position of the arrow P1 in FIG. 4A), An image 61 illustrated in FIG. 5 is acquired by the imaging unit 44. At this time, the moving amount of the stage 2 (that is, the distance L1) is stored in the storage unit 52 as the distance in the X direction between the illumination light irradiation position P1 of the optical interference unit 4 and the stepped portion 91 (step S23). .
[0029]
Further, the distance between the objective lens 457 and the surface of the reference substrate 9a on the concave portion 92 side is detected by the AF detection unit 46 and adjusted to a constant value, and then the AF detection unit 46 is turned off. In the present embodiment, the center point in the image 61 in FIG. 5 coincides with the center of the illumination light irradiation area on the reference substrate 9a, and the illumination light irradiation position P1 in FIG. Similarly, P1 is attached.
[0030]
Subsequently, polarized light is emitted from the ellipsometer 3 (step S24). At this time, since the polarized light irradiated on the reference substrate 9a is totally reflected toward the light receiving unit 32, it cannot be confirmed from the image by the imaging unit 44. Therefore, while the stage 2 moves in the (+ X) direction, a plurality of images associated with the movement amount of the stage 2 are continuously acquired by the imaging unit 44 (step S25).
[0031]
FIG. 4B is a diagram showing a state immediately after the irradiation with the polarized light (or a state immediately before the movement of the stage 2), and the irradiation position of the polarized light is indicated by an arrow P2. In FIG. 5, the irradiation position of the polarized light is indicated by a point denoted by reference numeral P <b> 2, and the irradiation area of the polarized light is illustrated as an area 62 indicated by a two-dot chain line. When the stepped portion 91 is in the state indicated by reference numeral 91a in FIG. 5 due to the movement of the stage 2, the stepped portion 91 is located outside the irradiation region 62 of the polarized light. Since it is located within the irradiation region 62, the polarized light is scattered at the edge of the step portion 91. While the stage 2 further moves and the stepped portion 91 passes through the state shown by reference numerals 91c and 91d, scattered light in the stepped portion 91 continues to be generated. Located outside 62, the scattered light disappears.
[0032]
A plurality of images (a plurality of images including the states indicated by reference numerals 91 a to 91 e in FIG. 5) continuously acquired by the imaging unit 44 during the movement of the stage 2 are output to the calculation unit 51. In the calculation unit 51, an image corresponding to immediately after the occurrence of scattered light and an image corresponding to immediately after the disappearance are specified from the plurality of acquired images, and the average value of the movement amounts of the stage 2 associated with both images is The distance L2 in the X direction between the stepped portion 91 and the center of the irradiation region 62 of polarized light (that is, the irradiation position P2) in the state immediately before the movement (that is, the state of FIG. 4B or FIG. 5) is obtained. (Step S26). Note that the distance L2 may be, for example, the amount of movement of the stage 2 associated with the image with the largest scattered light.
[0033]
In the calculation unit 51, the illumination light irradiation position P1 and the distance L1 between the stepped portion 91 specified with respect to the X direction and the illumination light irradiation position P1 and the distance L2 between the stepped portion 91 and the polarized light irradiation position P2 A displacement amount in the X direction with respect to the irradiation position P2 of the polarized light is calculated and stored in the storage unit 52 (step S27).
[0034]
Subsequently, returning to step S21 (step S28), the illumination light is emitted, and the irradiation position of the illumination light on the reference substrate 9a is relative to the position of the stepped portion extending in the X direction different from the stepped portion 91. (Step S22). Then, Steps S23 to S25 are similarly repeated with the moving direction of the stage 2 as the Y direction, and the positional deviation amount between the irradiation position P1 of the illumination light and the irradiation position P2 of the polarized light in the Y direction is calculated and stored in the storage unit 52. Stored (step S27). In the film thickness measuring apparatus 1, when the positional deviation amount in the X direction and the Y direction is obtained, the positional deviation amount acquisition process is terminated (step S28).
[0035]
As described above, in the film thickness measuring apparatus 1, the ellipsometer 3 is irradiated with polarized light by the imaging unit 44 while moving the stage 2 in the X direction and the Y direction (that is, in two directions perpendicular to each other in the horizontal plane). A plurality of images showing are continuously acquired. Then, the calculation unit 51 obtains the center of the irradiation area of the polarized light based on the plurality of images, and automatically obtains the positional deviation amount between the irradiation position of the illumination light and the irradiation position of the polarized light. Thereby, in the film thickness measuring apparatus 1, when the measurement is switched between the ellipsometer 3 and the optical interference unit 4, the irradiation positions of both lights on the substrate 9 can be easily matched based on the positional deviation amount. As a result, the film thickness at a desired position on the substrate 9 can be accurately obtained. Moreover, adjustment of the attachment position of each measurement part in the film thickness measuring apparatus 1 can be simplified.
[0036]
In addition, when the AF is performed so that the illumination light is collected on the concave portion 92 side on the reference substrate 9a and the polarized light is incident from the upper left in FIG. Strictly speaking, there is a possibility that an accurate displacement amount is not obtained because it is the upper end of the portion 91. However, this error can be ignored because the step of the step portion 91 is actually very small. Of course, when it is necessary to determine the amount of displacement more accurately, the irradiation position of the polarized light may be determined in consideration of the level difference.
[0037]
Further, in the film thickness measurement apparatus 1, the amount of positional deviation does not necessarily have to be obtained based on the amount of movement of the stage 2. For example, irradiation of polarized light from a plurality of images in which scattered light of polarized light appears by the computing unit 51 The distance in the image between the position and the irradiation position of the illumination light may be obtained, and the amount of positional deviation may be obtained based on this distance. Further, the center of the light irradiation region of the light interference unit 4 may be obtained from a plurality of images acquired while moving the stage 2.
[0038]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.
[0039]
The stepped portion 91 provided on the reference substrate 9a is not necessarily a stepped portion extending in one direction. For example, a curved stepped portion or a scattering surface that scatters light may be formed on the reference substrate.
[0040]
Further, by using a reference substrate patterns and the scale or the like for position determination are formed, the measurement unit (i.e., the ellipsometer 3 and each of the optical interference unit 4) light irradiation position of the imaging section or the like provided in the By confirming, the amount of misalignment may be obtained.
[0041]
The substrate 9 is not limited to a semiconductor substrate, and may be, for example, a glass substrate used for a liquid crystal display device or other flat panel display device.
[0042]
The ellipsometer 3 and the optical interference unit 4 and the stage 2 only need to move relatively. For example, the ellipsometer 3 and the optical interference unit 4 may be provided with a moving mechanism.
[0043]
The plurality of measuring units provided in the film thickness measuring device are not necessarily the ellipsometer 3 and the optical interference unit 4 of the optical interference system. In addition, the film thickness measuring apparatus is provided with three or more measurement units, and displacement amounts for any two of them are obtained, and the stage position is corrected based on the corresponding displacement amounts at the time of measurement of each measurement unit. It may be broken.
[0044]
【The invention's effect】
In the first to fourth aspects of the present invention, the amount of misalignment between the light irradiation position from the first measurement unit and the light irradiation position from the second measurement unit is automatically acquired, and the light from the first measurement unit is obtained . The irradiation position and the irradiation position of the light from the second measurement unit can be easily matched.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a film thickness measuring apparatus.
FIG. 2 is a diagram showing a flow of processing for measuring a film thickness.
FIG. 3 is a diagram showing a flow of processing for obtaining a positional deviation amount;
4A is a diagram illustrating an irradiation position of illumination light, and FIG. 4B is a diagram illustrating an irradiation position of polarized light.
FIG. 5 is a diagram illustrating an image acquired by an imaging unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Film thickness measuring apparatus 2 Stage 3 Ellipsometer 4 Optical interference unit 5 Control part 9 Substrate 9a Reference board 21 Stage moving mechanism 44 Imaging part 51 Calculation part 52 Storage part 61 Image 91 Step part P1, P2 Irradiation position

Claims (4)

対象物上に形成された膜の厚さを測定する膜厚測定装置であって
対象物を保持するステージと、
前記ステージに保持された参照対象物の画像を取得する撮像部を有するとともに対象物に光を照射して膜の厚さを測定する第1測定部と、
前記第1測定部とは別に、対象物に光を照射して膜の厚さを測定する第2測定部と
記ステージを前記第1測定部および前記第2測定部に対して相対的に移動する移動機構と、
前記第1測定部または前記第2測定部が光を照射した状態を前記撮像部にて取得した画像に基づいて、前記第1測定部からの光の照射位置と前記第2測定部からの光の照射位置との位置ずれ量を求める演算部と、
前記位置ずれ量を記憶する記憶部と、
前記第1測定部と前記第2測定部との間で測定が切り替えられる際に前記位置ずれ量に基づいて前記移動機構を制御する制御部と、
を備えることを特徴とする膜厚測定装置。
A film thickness measuring device for measuring the thickness of a film formed on an object ,
A stage for holding the object;
A first measuring unit that has an imaging unit that acquires an image of a reference object held on the stage and that measures the film thickness by irradiating the object with light;
Separately from the first measuring unit, a second measuring unit that measures the thickness of the film by irradiating the object with light ;
A moving mechanism for moving relative to the previous SL stage the first measuring section and the second measuring unit,
Based on the image acquired by the imaging unit that the first measurement unit or the second measurement unit irradiates light, the irradiation position of the light from the first measurement unit and the light from the second measurement unit A calculation unit for obtaining a positional deviation amount from the irradiation position of
A storage unit for storing the positional deviation amount,
A control unit that controls the moving mechanism based on the amount of displacement when measurement is switched between the first measurement unit and the second measurement unit;
A film thickness measuring apparatus comprising:
請求項に記載の膜厚測定装置であって、
前記参照対象物が、光を散乱する散乱部を有し、
前記位置ずれ量が求められる際に、前記移動機構が前記ステージを移動しつつ前記撮像部にて連続的に複数の画像が取得されることを特徴とする膜厚測定装置。
The film thickness measuring device according to claim 1 ,
The reference object has a scattering part for scattering light,
When the amount of positional deviation is obtained, a film thickness measuring apparatus in which a plurality of images are continuously acquired by the imaging unit while the moving mechanism moves the stage.
請求項に記載の膜厚測定装置であって、
前記移動機構が前記ステージを第1の方向および第2の方向に移動しつつ、前記撮像部により連続的に複数の画像が取得され、前記複数の画像に基づいて前記演算部により前記第1測定部または前記第2測定部からの光の照射領域の中心が求められることを特徴とする膜厚測定装置。
The film thickness measuring device according to claim 2 ,
While the moving mechanism moves the stage in the first direction and the second direction, a plurality of images are continuously acquired by the imaging unit, and the first measurement is performed by the arithmetic unit based on the plurality of images. Or a center of an irradiation region of light from the second measurement unit is obtained.
請求項1ないしのいずれかに記載の膜厚測定装置であって、
前記第1測定部が白色光による光干渉方式の測定部であり、前記第2測定部がエリプソメータであることを特徴とする膜厚測定装置。
The film thickness measuring device according to any one of claims 1 to 3 ,
The film thickness measuring apparatus, wherein the first measuring unit is a measuring unit of an optical interference method using white light, and the second measuring unit is an ellipsometer.
JP2002322453A 2002-11-06 2002-11-06 Film thickness measuring device Expired - Fee Related JP3857217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322453A JP3857217B2 (en) 2002-11-06 2002-11-06 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322453A JP3857217B2 (en) 2002-11-06 2002-11-06 Film thickness measuring device

Publications (2)

Publication Number Publication Date
JP2004156996A JP2004156996A (en) 2004-06-03
JP3857217B2 true JP3857217B2 (en) 2006-12-13

Family

ID=32802641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322453A Expired - Fee Related JP3857217B2 (en) 2002-11-06 2002-11-06 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JP3857217B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147320A (en) * 2007-11-21 2009-07-02 Horiba Ltd Inspection apparatus
JP5101312B2 (en) * 2008-01-17 2012-12-19 株式会社ディスコ Thickness measuring device and grinding device provided with the thickness measuring device
JP2010210389A (en) * 2009-03-10 2010-09-24 Omron Corp Spot position measuring method and apparatus
CN110896037A (en) * 2018-09-12 2020-03-20 东泰高科装备科技(北京)有限公司 Membrane thickness detection device, online detection system and method

Also Published As

Publication number Publication date
JP2004156996A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
KR100505088B1 (en) Proxy Meteor Exposure Equipment with Gap Setting Mechanism
TWI564539B (en) Optical system, method for illumination control in the same and non-transitory computer-readable medium
US7929139B2 (en) Spectroscopic ellipsometer, film thickness measuring apparatus, and method of focusing in spectroscopic ellipsometer
JP5459944B2 (en) Surface shape measuring device, stress measuring device, surface shape measuring method and stress measuring method
TW201708984A (en) Alignment system
JP3881125B2 (en) Level difference measuring apparatus and etching monitor apparatus and etching method using the level difference measuring apparatus
US20090066953A1 (en) Spectroscopic ellipsometer and film thickness measuring apparatus
US7612873B2 (en) Surface form measuring apparatus and stress measuring apparatus and surface form measuring method and stress measuring method
JP3857217B2 (en) Film thickness measuring device
KR101036455B1 (en) Ellipsometer using Half Mirror
JP2004069651A (en) Instrument for measuring film thickness
KR100758198B1 (en) Auto-focusing apparatus
KR20090020103A (en) Linnik interferometry having tilt unit
KR20070049061A (en) Substrate measuring apparatus
JP3003694B2 (en) Projection exposure equipment
JPH07142346A (en) Projection aligner
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
JP3604801B2 (en) Exposure apparatus and exposure method
JP3295244B2 (en) Positioning device
JP3880904B2 (en) Alignment detection method, alignment detection apparatus, device manufacturing method, and device manufacturing apparatus
KR102116618B1 (en) Inspection apparatus for surface of optic specimen and controlling method thereof
JP3885576B2 (en) Microscope equipment
JP4493077B2 (en) Image recording apparatus and light beam intensity correction method
JP2004134540A (en) Dry etching apparatus and end point detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Ref document number: 3857217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees