JP3885576B2 - Microscope equipment - Google Patents

Microscope equipment Download PDF

Info

Publication number
JP3885576B2
JP3885576B2 JP2001377430A JP2001377430A JP3885576B2 JP 3885576 B2 JP3885576 B2 JP 3885576B2 JP 2001377430 A JP2001377430 A JP 2001377430A JP 2001377430 A JP2001377430 A JP 2001377430A JP 3885576 B2 JP3885576 B2 JP 3885576B2
Authority
JP
Japan
Prior art keywords
illumination
aperture stop
adjusting
fine movement
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001377430A
Other languages
Japanese (ja)
Other versions
JP2003177322A (en
Inventor
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001377430A priority Critical patent/JP3885576B2/en
Publication of JP2003177322A publication Critical patent/JP2003177322A/en
Application granted granted Critical
Publication of JP3885576B2 publication Critical patent/JP3885576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)
  • Diaphragms For Cameras (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は光学顕微鏡を用いた顕微鏡装置に関する。
【0002】
【従来の技術】
光学顕微鏡を用いた顕微鏡装置では光学系誤差(照明テレセン、結像テレセン及びコマ収差)が測定精度に大きく影響する。
【0003】
従来、測定精度の向上を図るため、例えば光学系誤差に敏感な照明波長の数分の一波長の段差を有する調整パターンを利用していた。
【0004】
この調整パターンを用いることによってフォーカスオフセット量に対する輝度の変化から光学系誤差を推測できるため、輝度の変化に基いて調整機構部(照明開口絞り、結像開口絞り及び収差調整レンズ)を光学系誤差のない最適な位置に調整することができる。
【0005】
【発明が解決しようとする課題】
しかし、上記調整方法においては以下に述べる2つの理由から、照明波長(照明光の波長)の全ての領域において光学誤差を調整することは不可能であるという問題がある。
【0006】
1.実際の調整では調整パターンは所定の波長幅を持つ光で照明される。一方、調整パターンの段差は通常ある特定の波長(特定波長)を想定して決定される。そのため、照明波長が特定波長から離れるにしたがって、調整感度が鈍くなり、全ての波長で誤差を十分に抑えることができない。
【0007】
2.光学系には必ず色収差があるため、照明波長によって調整機構部の調整位置が異なる。そのため、位置が固定された従来の調整機構部では1つの照明波長に焦点を合わせることしかできない。
【0008】
したがって、今後、半導体ウエハや液晶基板等の測定対象パターンが高集積化、微細化したとき、従来の調整方法では要求される測定精度を確保できなくなることが考えられる。
【0009】
この発明はこのような事情に鑑みてなされたもので、その課題は測定対象パターンが高集積化、微細化したときであっても、要求される測定精度を確保することができる顕微鏡装置を提供することである。
【0010】
【課題を解決するための手段】
上記課題を解決するために請求項1記載の発明は、照明開口絞りを有し、光源からの照明光を検査対象物に照射する照明光学系と、前記検査対象物の像を観察するために、結像開口絞り、収差調整レンズ及び対物レンズを有する結像光学系とを備えている顕微鏡装置において、前記照明開口絞りの位置を調整する第1調整手段と、前記結像開口絞りの位置を調整する第2調整手段と、前記収差調整レンズの位置を調整する第3調整手段と、前記両光学系の照明テレセン、結像テレセン、コマ収差を補正するために、前記照明開口絞り、前記結像開口絞り及び前記収差調整レンズの最適な位置を、各波長成分ごとに予め格納したテーブルと、前記検査対象物からの反射光の波長成分を解析し、主要な波長成分を抽出し、前記主要な波長成分に基づいて前記テーブルから最適な位置を決定するカラー分析器を有し、前記カラー分析器の決定に従い、前記第1〜3調整手段を制御する位置決定手段とを備えていることを特徴とする。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
【0015】
図1はこの発明の一実施形態に係る顕微鏡装置の全体構成図である。
【0016】
この顕微鏡装置は、落射照明光学系10と、結像光学系30と、画像処理装置40と、位置決定部(位置決定手段)75と、第1位置調整部(第1調整手段)25と、第2位置調整部(第2調整手段)65と、第3位置調整部(第3調整手段)55とを備えている。
【0017】
落射照明光学系10は光源11からの照明光を検査対象物である測定対象パターン5又は調整パターン6(後述する位置テーブル作成に用いられる)に照射する。
【0018】
光源(例えばハロゲンランプ)11の前方には照明光を伝搬する光ファイバ12が配置され、光ファイバ12の前方には照明開口絞り20が配置されている。
【0019】
照明開口絞り20の周囲にはこの照明開口絞り20をXYZ方向へ移動させるための微動機構21,22,23が設けられている。
【0020】
図1において、微動機構21、微動機構22及び微動機構23は照明開口絞り20をそれぞれX方向、Y方向及びZ方向へ移動させる。
【0021】
微動機構21、微動機構22及び微動機構23は第1駆動部24に接続されている。微動機構21、微動機構22、微動機構23及び第1駆動部24で照明開口絞り20の位置を調整する第1位置調整部25が構成される。
【0022】
照明開口絞り20の前方には第1リレーレンズ13、視野絞り14及び第2リレーレンズ15が配置され、第2リレーレンズ15の前方には照明光を直角に曲げる落射プリズム16が配置されている。
【0023】
結像結像光学系30は測定対象パターン5の像を観察するための対物レンズ17を有する。測定対象パターン5はステージ7上に載置されている。
【0024】
対物レンズ17の後方の光路上には収差調整レンズ50が配置され、収差調整レンズ50はCCDカメラ41の撮像面に像を結ぶ。CCDカメラ41には画像処理部42が接続されている。CCDカメラ41と画像処理部42とで画像処理装置40が構成される。
【0025】
収差調整レンズ50の周囲にはこの収差調整レンズ50をXYZ方向へ移動させるための微動機構51,52,53が設けられている。図1において、微動機構51、微動機構52及び微動機構53は収差調整レンズ50をそれぞれX方向、Y方向及びZ方向へ移動させる。
【0026】
微動機構51、微動機構52及び微動機構53は第3駆動部54に接続されている。微動機構51、微動機構52、微動機構53及び第3駆動部54で収差調整レンズ50の位置を調整する第3位置調整部55が構成される。
【0027】
対物レンズ17と落射プリズム16との間には結像開口絞り60が配置されている。
【0028】
結像開口絞り60の周囲にはこの結像開口絞り60をXYZ方向へ移動させるための微動機構61,62,63が設けられている。図1において、微動機構61、微動機構62及び微動機構63は結像開口絞り60をそれぞれX方向、Y方向及びZ方向へ移動させる。
【0029】
微動機構61、微動機構62及び微動機構63は第2駆動部64に接続されている。微動機構61、微動機構62、微動機構63及び第2駆動部64で結像開口絞り60の位置を調整する第2位置調整部65が構成される。
【0030】
落射プリズム16と収差調整レンズ50との間には反射プリズム31が配置され、この反射プリズム31は落射プリズム16を透過した光の一部を直角に曲げる。
【0031】
その光路上にはリレーレンズ32及びカラーセンサ71が配置されている。カラーセンサ71はカラー分析器72に接続されている。カラーセンサ71とカラー分析器72とで位置調整部25,65、55を制御する位置決定部75が構成される。
【0032】
カラー分析器72は第1駆動部24、第2駆動部64及び第3駆動部54に接続されている。
【0033】
カラー分析器72はカラーセンサ71からの信号に基いて波長分析を行い、測定対象パターン5の反射光の主要な波長成分を抽出する。
【0034】
カラー分析器72にはそれぞれの波長成分に最適な照明開口絞り20、結像開口絞り60及び収差調整レンズ50の位置が予め位置テーブルとして格納されている。この位置テーブルは複数の段差を有する調整パターン6を用いて作成される。
【0035】
次に、この顕微鏡装置の動作を説明する。
【0036】
光源11から射出された照明光は光ファイバ12を伝搬し、照明絞り20に照射される。その後、照明光は、第1リレーレンズ13、視野絞り14及び第2リレーレンズ15を通り、落射プリズム16で直角に曲げられ、対物レンズ17を通って測定対象パターン5に照射される。
【0037】
測定対象パターン5からの反射光は対物レンズ17を通り、結像開口絞り60で一部の回折光が制限される。その後、反射光は落射プリズム16、反射プリズム31を透過し、収差調整レンズ50に到る。収差調整レンズ50はCCDカメラ41に像を結ぶ。
【0038】
測定対象パターン5の反射光の一部は反射プリズム31で直角に曲がり、リレーレンズ32を通してカラーセンサ71に入射する。
【0039】
カラーセンサ71からの出力信号はカラー分析器72に入力され、カラー分析器72で反射光の主要な波長成分が抽出される。
【0040】
カラー分析器72は抽出した主要な波長成分を位置テーブルと照合して光学系誤差(照明テレセン、結像テレセン及びコマ収差)を推測して誤差をなくすように照明開口絞り20、結像開口絞り60及び収差調整レンズ50のそれぞれの最適な位置を決定し、それらの位置に照明開口絞り20、結像開口絞り60及び収差調整レンズ50を移動させる駆動信号を第1位置調整部25、第2位置調整部65及び第3位置調整部55にそれぞれ出力する。
【0041】
第1位置調整部25では、第1駆動部24が駆動信号に基いて、微動機構21、微動機構22及び微動機構23を駆動し、照明開口絞り20が最適な位置に移動する。
【0042】
第2位置調整部65では、第2駆動部64が駆動信号に基いて、微動機構61、微動機構62及び微動機構63を駆動し、結像開口絞り60が最適な位置に移動する。
【0043】
第3位置調整部55では、第3駆動部54が駆動信号に基いて、微動機構51、微動機構52及び微動機構53を駆動し、収差調整レンズ50が最適な位置に移動する。
【0044】
この実施形態によれば、使用している照明波長の全ての領域において照明開口絞り20、結像開口絞り60及び収差調整レンズ50を光学系誤差のない最適な位置に調整することができるので、半導体ウエハや液晶基板等の測定対象パターンが高集積化、微細化したときであっても、要求される測定精度を確保することができる。
【0045】
なお、上記実施形態では画像処理装置40を用いたが、画像処理装置40に代えて、例えば接眼レンズを用いるようにしてもよい。
【0046】
また、請求項1の調整手段は実施形態の第1位置調整部25、第2位置調整部65及び第3位置調整部55にそれぞれ相当する。
【0047】
【発明の効果】
以上に説明したようにこの発明の顕微鏡装置によれば、照明波長の全ての領域において例えば照明開口絞り等の各種の調整手段を光学系誤差のない最適な位置に調整することができるので、測定対象パターンが高集積化、微細化したときであっても、要求される測定精度を確保することができる。
【図面の簡単な説明】
【図1】図1はこの発明の一実施形態に係る顕微鏡装置の全体構成図である。
【符号の説明】
5,6 パターン(検査対象物)
10 落射照明系
11 光源
17 対物レンズ
30 結像光学系
25 第1位置調整部
55 第3位置調整部
65 第2位置調整部
75 位置決定部(位置決定手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microscope apparatus using an optical microscope.
[0002]
[Prior art]
In a microscope apparatus using an optical microscope, optical system errors (illumination telecentricity, imaging telecentricity, and coma aberration) greatly affect measurement accuracy.
[0003]
Conventionally, in order to improve measurement accuracy, for example, an adjustment pattern having a step difference of one-hundred wavelength of an illumination wavelength sensitive to an optical system error has been used.
[0004]
By using this adjustment pattern, the optical system error can be inferred from the change in luminance with respect to the focus offset amount. It can be adjusted to the optimal position without any.
[0005]
[Problems to be solved by the invention]
However, the above adjustment method has a problem that it is impossible to adjust the optical error in all regions of the illumination wavelength (the wavelength of illumination light) for the following two reasons.
[0006]
1. In actual adjustment, the adjustment pattern is illuminated with light having a predetermined wavelength width. On the other hand, the step of the adjustment pattern is usually determined assuming a specific wavelength (specific wavelength). Therefore, as the illumination wavelength goes away from the specific wavelength, the adjustment sensitivity becomes dull, and the error cannot be sufficiently suppressed at all wavelengths.
[0007]
2. Since the optical system always has chromatic aberration, the adjustment position of the adjustment mechanism varies depending on the illumination wavelength. For this reason, the conventional adjustment mechanism having a fixed position can only focus on one illumination wavelength.
[0008]
Therefore, when the measurement target pattern such as a semiconductor wafer or a liquid crystal substrate is highly integrated and miniaturized in the future, it may be impossible to ensure the measurement accuracy required by the conventional adjustment method.
[0009]
The present invention has been made in view of such circumstances, and provides a microscope apparatus capable of ensuring the required measurement accuracy even when the pattern to be measured is highly integrated and miniaturized. It is to be.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 has an illumination aperture stop, an illumination optical system for irradiating an inspection object with illumination light from a light source, and an image of the inspection object , aperture imaging aperture in it has a microscope apparatus and an imaging optical system having an aberration correction lens and the objective lens, a first adjusting means for adjusting the position of the aperture the illumination aperture, the position of the aperture the imaging aperture A second adjusting means for adjusting; a third adjusting means for adjusting the position of the aberration adjusting lens ; and for correcting the illumination telecentration, imaging telecentricity, and coma aberration of both optical systems, A table in which the optimum positions of the image aperture stop and the aberration adjustment lens are stored in advance for each wavelength component, and the wavelength component of the reflected light from the inspection object is analyzed, and the main wavelength component is extracted, and the main wavelength component is extracted. Based on various wavelength components Has a color analyzer to determine the optimum position from the table it had, in accordance with the determination of the color analyzer, characterized in that it includes a position determining means for controlling said first to third adjustment means.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is an overall configuration diagram of a microscope apparatus according to an embodiment of the present invention.
[0016]
The microscope apparatus includes an epi-illumination optical system 10, an imaging optical system 30, an image processing apparatus 40, a position determination unit (position determination unit) 75, a first position adjustment unit (first adjustment unit) 25, A second position adjusting unit (second adjusting unit) 65 and a third position adjusting unit (third adjusting unit) 55 are provided.
[0017]
The epi-illumination optical system 10 irradiates illumination light from the light source 11 to the measurement target pattern 5 or the adjustment pattern 6 (used for creating a position table described later) that is an inspection target.
[0018]
An optical fiber 12 that propagates illumination light is disposed in front of the light source (for example, a halogen lamp) 11, and an illumination aperture stop 20 is disposed in front of the optical fiber 12.
[0019]
Around the illumination aperture stop 20, fine movement mechanisms 21, 22, and 23 are provided for moving the illumination aperture stop 20 in the XYZ directions.
[0020]
In FIG. 1, a fine movement mechanism 21, a fine movement mechanism 22, and a fine movement mechanism 23 move the illumination aperture stop 20 in the X direction, the Y direction, and the Z direction, respectively.
[0021]
The fine movement mechanism 21, the fine movement mechanism 22, and the fine movement mechanism 23 are connected to the first drive unit 24. The fine movement mechanism 21, the fine movement mechanism 22, the fine movement mechanism 23, and the first drive unit 24 constitute a first position adjustment unit 25 that adjusts the position of the illumination aperture stop 20.
[0022]
A first relay lens 13, a field stop 14, and a second relay lens 15 are disposed in front of the illumination aperture stop 20, and an epi-illumination prism 16 that bends illumination light at a right angle is disposed in front of the second relay lens 15. .
[0023]
The imaging imaging optical system 30 has an objective lens 17 for observing an image of the measurement target pattern 5. The measurement target pattern 5 is placed on the stage 7.
[0024]
An aberration adjustment lens 50 is disposed on the optical path behind the objective lens 17, and the aberration adjustment lens 50 forms an image on the imaging surface of the CCD camera 41. An image processing unit 42 is connected to the CCD camera 41. The CCD camera 41 and the image processing unit 42 constitute an image processing device 40.
[0025]
Around the aberration adjustment lens 50, fine movement mechanisms 51, 52, and 53 for moving the aberration adjustment lens 50 in the XYZ directions are provided. In FIG. 1, a fine movement mechanism 51, a fine movement mechanism 52, and a fine movement mechanism 53 move the aberration adjustment lens 50 in the X direction, the Y direction, and the Z direction, respectively.
[0026]
The fine movement mechanism 51, the fine movement mechanism 52, and the fine movement mechanism 53 are connected to the third drive unit 54. The fine movement mechanism 51, the fine movement mechanism 52, the fine movement mechanism 53, and the third driving section 54 constitute a third position adjustment section 55 that adjusts the position of the aberration adjustment lens 50.
[0027]
An imaging aperture stop 60 is disposed between the objective lens 17 and the incident prism 16.
[0028]
Around the image forming aperture stop 60, fine movement mechanisms 61, 62, and 63 are provided for moving the image forming aperture stop 60 in the XYZ directions. In FIG. 1, a fine movement mechanism 61, a fine movement mechanism 62, and a fine movement mechanism 63 move the imaging aperture stop 60 in the X direction, the Y direction, and the Z direction, respectively.
[0029]
The fine movement mechanism 61, the fine movement mechanism 62, and the fine movement mechanism 63 are connected to the second drive unit 64. The fine movement mechanism 61, the fine movement mechanism 62, the fine movement mechanism 63, and the second drive section 64 constitute a second position adjustment section 65 that adjusts the position of the imaging aperture stop 60.
[0030]
A reflecting prism 31 is disposed between the reflecting prism 16 and the aberration adjusting lens 50. The reflecting prism 31 bends a part of the light transmitted through the reflecting prism 16 at a right angle.
[0031]
A relay lens 32 and a color sensor 71 are disposed on the optical path. The color sensor 71 is connected to the color analyzer 72. The color sensor 71 and the color analyzer 72 constitute a position determining unit 75 that controls the position adjusting units 25, 65, and 55.
[0032]
The color analyzer 72 is connected to the first drive unit 24, the second drive unit 64, and the third drive unit 54.
[0033]
The color analyzer 72 performs wavelength analysis based on the signal from the color sensor 71 and extracts main wavelength components of the reflected light of the measurement target pattern 5.
[0034]
In the color analyzer 72, positions of the illumination aperture stop 20, the image forming aperture stop 60, and the aberration adjustment lens 50 that are optimum for each wavelength component are stored in advance as a position table. This position table is created using an adjustment pattern 6 having a plurality of steps.
[0035]
Next, the operation of this microscope apparatus will be described.
[0036]
The illumination light emitted from the light source 11 propagates through the optical fiber 12 and irradiates the illumination stop 20. Thereafter, the illumination light passes through the first relay lens 13, the field stop 14, and the second relay lens 15, is bent at a right angle by the incident light prism 16, and irradiates the measurement target pattern 5 through the objective lens 17.
[0037]
Reflected light from the measurement target pattern 5 passes through the objective lens 17, and part of the diffracted light is limited by the imaging aperture stop 60. Thereafter, the reflected light passes through the epi-illumination prism 16 and the reflection prism 31 and reaches the aberration adjustment lens 50. The aberration adjustment lens 50 forms an image on the CCD camera 41.
[0038]
A part of the reflected light of the measurement target pattern 5 is bent at a right angle by the reflecting prism 31 and enters the color sensor 71 through the relay lens 32.
[0039]
The output signal from the color sensor 71 is input to the color analyzer 72, and the main wavelength component of the reflected light is extracted by the color analyzer 72.
[0040]
The color analyzer 72 compares the extracted main wavelength components with the position table to estimate optical system errors (illumination telecentricity, imaging telecentricity and coma aberration), and eliminate the errors so as to eliminate the errors. 60 and the aberration adjustment lens 50 are respectively determined in optimum positions, and driving signals for moving the illumination aperture stop 20, the imaging aperture stop 60 and the aberration adjustment lens 50 to those positions are sent to the first position adjustment unit 25 and the second position adjustment unit 25, respectively. The data is output to the position adjustment unit 65 and the third position adjustment unit 55, respectively.
[0041]
In the first position adjusting unit 25, the first driving unit 24 drives the fine movement mechanism 21, the fine movement mechanism 22, and the fine movement mechanism 23 based on the drive signal, and the illumination aperture stop 20 moves to an optimal position.
[0042]
In the second position adjustment unit 65, the second drive unit 64 drives the fine movement mechanism 61, the fine movement mechanism 62, and the fine movement mechanism 63 based on the drive signal, and the imaging aperture stop 60 moves to an optimal position.
[0043]
In the third position adjustment unit 55, the third drive unit 54 drives the fine movement mechanism 51, the fine movement mechanism 52, and the fine movement mechanism 53 based on the drive signal, and the aberration adjustment lens 50 moves to an optimal position.
[0044]
According to this embodiment, the illumination aperture stop 20, the imaging aperture stop 60, and the aberration adjustment lens 50 can be adjusted to optimal positions without an optical system error in all regions of the illumination wavelength used. Even when a measurement target pattern such as a semiconductor wafer or a liquid crystal substrate is highly integrated and miniaturized, the required measurement accuracy can be ensured.
[0045]
In the above embodiment, the image processing apparatus 40 is used. However, instead of the image processing apparatus 40, for example, an eyepiece may be used.
[0046]
The adjusting means of claim 1 corresponds to the first position adjusting unit 25, the second position adjusting unit 65, and the third position adjusting unit 55 of the embodiment.
[0047]
【The invention's effect】
As described above, according to the microscope apparatus of the present invention, various adjustment means such as an illumination aperture stop can be adjusted to an optimal position without an optical system error in all regions of the illumination wavelength. Even when the target pattern is highly integrated and miniaturized, the required measurement accuracy can be ensured.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a microscope apparatus according to an embodiment of the present invention.
[Explanation of symbols]
5,6 pattern (inspection object)
DESCRIPTION OF SYMBOLS 10 Epi-illumination system 11 Light source 17 Objective lens 30 Imaging optical system 25 1st position adjustment part 55 3rd position adjustment part 65 2nd position adjustment part 75 Position determination part (position determination means)

Claims (1)

照明開口絞りを有し、光源からの照明光を検査対象物に照射する照明光学系と、
前記検査対象物の像を観察するために、結像開口絞り、収差調整レンズ及び対物レンズを有する結像光学系とを備えている顕微鏡装置において、
前記照明開口絞りの位置を調整する第1調整手段と、
前記結像開口絞りの位置を調整する第2調整手段と、
前記収差調整レンズの位置を調整する第3調整手段と、
前記両光学系の照明テレセン、結像テレセン、コマ収差を補正するために、前記照明開口絞り、前記結像開口絞り及び前記収差調整レンズの最適な位置を、各波長成分ごとに予め格納したテーブルと、
前記検査対象物からの反射光の波長成分を解析し、主要な波長成分を抽出し、前記主要な波長成分に基づいて前記テーブルから最適な位置を決定するカラー分析器を有し、前記カラー分析器の決定に従い、前記第1〜3調整手段を制御する位置決定手段と
を備えていることを特徴とする顕微鏡装置。
An illumination optical system having an illumination aperture stop and irradiating an inspection object with illumination light from a light source;
In order to observe an image of the inspection object, a microscope apparatus including an imaging optical system having an imaging aperture stop, an aberration adjustment lens, and an objective lens,
First adjusting means for adjusting the position of the illumination aperture stop;
Second adjusting means for adjusting the position of the imaging aperture stop;
Third adjusting means for adjusting the position of the aberration adjusting lens ;
A table in which optimal positions of the illumination aperture stop, the imaging aperture stop, and the aberration adjustment lens are stored in advance for each wavelength component in order to correct illumination telecentration, imaging telecentricity, and coma aberration of both optical systems. When,
A color analyzer that analyzes a wavelength component of reflected light from the inspection object, extracts a main wavelength component, and determines an optimum position from the table based on the main wavelength component; And a position determining means for controlling the first to third adjusting means according to the determination of the instrument.
JP2001377430A 2001-12-11 2001-12-11 Microscope equipment Expired - Lifetime JP3885576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377430A JP3885576B2 (en) 2001-12-11 2001-12-11 Microscope equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377430A JP3885576B2 (en) 2001-12-11 2001-12-11 Microscope equipment

Publications (2)

Publication Number Publication Date
JP2003177322A JP2003177322A (en) 2003-06-27
JP3885576B2 true JP3885576B2 (en) 2007-02-21

Family

ID=19185392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377430A Expired - Lifetime JP3885576B2 (en) 2001-12-11 2001-12-11 Microscope equipment

Country Status (1)

Country Link
JP (1) JP3885576B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134186A (en) * 1991-11-13 1993-05-28 Olympus Optical Co Ltd Confocal optical system
JP3022670B2 (en) * 1991-12-16 2000-03-21 オリンパス光学工業株式会社 Microscope photography equipment
JPH0792392A (en) * 1993-09-27 1995-04-07 Nikon Corp Scanning optical microscope
JPH10268204A (en) * 1997-03-28 1998-10-09 Nikon Corp Downward lighting device for microscope
JP4097761B2 (en) * 1998-03-02 2008-06-11 オリンパス株式会社 Autofocus microscope and autofocus detection device
JPH11271638A (en) * 1998-03-20 1999-10-08 Olympus Optical Co Ltd Pointer device

Also Published As

Publication number Publication date
JP2003177322A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
EP2724361B1 (en) Illumination control
US20080204723A1 (en) Mask defect inspection apparatus
JPH10172898A (en) Observation apparatus position sensor and exposure apparatus with the position sensor
JP3994209B2 (en) Optical system inspection apparatus and inspection method, and alignment apparatus and projection exposure apparatus provided with the inspection apparatus
US7760349B2 (en) Mask-defect inspecting apparatus with movable focusing lens
JPH10239037A (en) Observation device
JP3885576B2 (en) Microscope equipment
JP2007093431A (en) Defect inspection apparatus
JP2569563B2 (en) Projection exposure equipment
JP2004125411A (en) Method of adjusting height position of test piece face
JP2003124104A (en) Position detecting device, aligner, and exposure method
JPH11264800A (en) Inspecting device
JPH11167060A (en) Focusing detecting device and method therefor
JPH0762604B2 (en) Alignment device
JP3273409B2 (en) Projection exposure equipment
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
JP4269378B2 (en) Observation method and observation apparatus
JP2002122412A (en) Position detection device, exposure device and manufacturing method of microdevice
JP2006078283A (en) Position measuring device, aligner provided with the position-measuring device and aligning method using the position-measuring device
JP2000228345A (en) Position detecting apparatus and method and exposing apparatus
JP2010129796A (en) Exposure apparatus and device manufacturing method
JP2002208545A (en) Optical characteristic detection method and exposure method
KR20050018186A (en) The measuring apparatus of patterns and overlay on semiconductor wafer
JP4774817B2 (en) Position detection device
JPH11304422A (en) Device and method for detecting position, and exposing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Ref document number: 3885576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20221201

Year of fee payment: 16

EXPY Cancellation because of completion of term