JP3857056B2 - Thermally divided composite fiber and fiber assembly - Google Patents

Thermally divided composite fiber and fiber assembly Download PDF

Info

Publication number
JP3857056B2
JP3857056B2 JP2001013840A JP2001013840A JP3857056B2 JP 3857056 B2 JP3857056 B2 JP 3857056B2 JP 2001013840 A JP2001013840 A JP 2001013840A JP 2001013840 A JP2001013840 A JP 2001013840A JP 3857056 B2 JP3857056 B2 JP 3857056B2
Authority
JP
Japan
Prior art keywords
heat
component
fiber
composite fiber
splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001013840A
Other languages
Japanese (ja)
Other versions
JP2001279530A (en
Inventor
義治 薄井
洋志 岡屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP2001013840A priority Critical patent/JP3857056B2/en
Publication of JP2001279530A publication Critical patent/JP2001279530A/en
Application granted granted Critical
Publication of JP3857056B2 publication Critical patent/JP3857056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
熱処理により容易に、かつ瞬時に分割可能であり、熱加工性(熱加工速度、工程性)に優れた分割型複合繊維に関するものであり、衛生材料、ワイパー、フィルターなど親水性能を要求する分野にも好適である熱分割型複合繊維およびこれを用いた不織布に関する。
【0002】
【従来の技術】
従来から、優れた柔軟性、触感、拭き取り性などを得るために、分割型複合繊維を分割させて極細繊維を発現させた不織布などが使用されている。高圧流体流処理やニードルパンチ処理の物理的衝撃によって分割させる分割型複合繊維としては、例えば、特開平8−311717号公報には、ポリオレフィン系樹脂の少なくとも1成分に脂肪酸グリセライド(モノグリセリン脂肪酸エステル)、アルコキシ化アルキルフェノール、ポリオキシアルキレン脂肪酸エステルから選ばれた親水成分を練り込み添加したポリオレフィン系分割型複合繊維が開示されている。本出願人においても、特公平6−63129号公報にロックウェル硬度60以上、各成分の炭素数差Δn>0.9からなるポリオレフィン系樹脂の組み合わせからなるポリオレフィン系分割型複合繊維を提案している。また、2成分の熱収縮率の差を利用して分割させる熱分割型複合繊維としては、例えば、特開平2−169720号公報および特開平4−316608号公報には、熱収縮率の大きいポリオレフィン系成分とポリオレフィン系成分とは非相溶性の成分からなる熱分割型複合繊維が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記分割型複合繊維には、以下の問題点がある。特開平8−311717号公報および特公平6−63129号公報では、いずれも高圧流体流処理やニードルパンチ処理の物理的衝撃によって高度に分割させようと試みてなされたものであり、生産工程数が多く、生産速度も遅くなり、多くのエネルギーを必要とし、コスト高になるだけでなく、物理的衝撃によって得られる不織布は、比容積が5cm3/g以下の高密度な絡合不織布しか得られないため、その用途が制限されているのが現状である。一方、特開平2−169720号公報および特開平4−316608号公報では、物理的衝撃ではなく、熱収縮を利用して分割させるため、比容積の大きな不織布を得ることができるが、単に熱収縮率差を設けただけでは分割性が不十分であり、特開平9−49160号公報では、加熱空気によるエアースルー処理後、機械的絡合処理を施し、分割性を向上させており、特開平9−31755号公報では、熱収縮率の大きい低融点成分に石油樹脂を添加した熱分割型複合繊維を熱的手段を施した後、石油樹脂可溶性溶剤に浸漬し(溶剤処理)、プレス処理を施して分割性を向上させている。このため、生産工程数が多くなり、コスト高となるだけでなく、高密度な不織布しか得られないのが現状である。
したがって、物理的衝撃を用いずとも高度に分割する分割型複合繊維が未だ得られていないのが実情である。
【0004】
【課題を解決するための手段】
本発明はかかる実情を鑑みてなされたものであり、すなわち、異なる2成分からなり、熱収縮性を有する熱可塑性樹脂を第一成分とし、他方を第二成分とした熱により2成分の分割が可能な熱分割型複合繊維であって、該2成分のうちのいずれか1成分に親水化剤0.1〜5mass%含有することを特徴とするものである。かかる構成を採ることにより、熱処理のみでも高度に、かつ瞬時に分割し、極細繊維を発現させることができ、熱加工性(熱加工速度、工程性)に優れ、比容積の大きい不織布を得ることができる。同時に、本発明の熱分割型複合繊維およびこれを用いた不織布は、高度で、永続的な親水性を有するので、衛生材料、ワイパー、フィルターなど親水性能を要求する分野にも使用することができる。
【0005】
本発明において、前記複合繊維は、融点がT(℃)からなり、熱収縮率が40%以上となる温度T(℃)(但し、 −13≦T(℃)<T ))を有する熱可塑性樹脂、又は温度T(℃)にて(但し、−13≦T(℃)<T)熱収縮率が40%以上である熱可塑性樹脂を第一成分とし、150≦T2<300を満たす (℃)を有し、かつ温度Tにおいて実質的に熱収縮を有しない熱可塑性樹脂を第二成分とした2成分からなる熱分割型複合繊維であることが望ましい。また、第一成分の熱可塑性樹脂は、融点 1 (℃)が、0≦T1≦145を満たす、エチレン-プロピレン共重合体およびエチレン-プロピレン-ブテン−1三元共重合体から選ばれた少なくとも1種であり、親水化剤を0.1〜5mass%含有することが望ましい。
【0006】
また、本発明に用いられる親水化剤は、重合度(n)2〜10のポリグリセリンと炭素数8〜22の飽和もしくは不飽和脂肪酸(Rは飽和もしくは不飽和炭化水素)とのエステル化合物(ポリグリセリン脂肪酸エステル)である。
【0007】
そして、本発明の熱分割型複合繊維を20mass%以上含有する繊維ウェブが熱処理されてなる繊維集合物は、高度に分割し、極細繊維を発現されており、様々な用途に使用することができる。
以下、本発明の内容を具体的に説明する。
【0008】
【発明の実施の形態】
本発明の熱分割型複合繊維は、異なる2成分からなり、熱収縮性を有する熱可塑性樹脂を第一成分とし、他方を第二成分とした熱により2成分の分割が可能な熱分割型複合繊維である。本発明でいう熱収縮性を有する成分とは、一方の成分と他方の成分とを同じ熱処理条件で処理をしたとき、熱収縮する力の大きい方の成分のことをいう。本発明の熱分割型複合繊維は、繊維断面において複数成分のうちの少なくとも1成分は2個以上に区分されており、各成分は各々が繊維断面の構成単位となっており、各構成単位は互いに異なる成分の構成単位と隣接し、且つ全ての各構成単位はその一部を繊維表面に露出した構造からなり、その形状も円形、異形、中空のいずれであってもよく、例えば、図1および図2に示すような繊維形態を有するものである。そして、本発明の熱分割型複合繊維は、融点1(℃)であり熱収縮率が40%以上となる温度T(℃)(但し、T 1 −13≦T(℃)<T 1 )を有する熱可塑性樹脂、又は温度T(℃)にて(但し、1−13≦T(℃)<T1)、熱収縮率が40%以上である熱可塑性樹脂を第一成分とし、T1より20℃以上高く、150℃≦T <300℃を満たす、融点T (℃)を有しかつ温度T(℃)において実質的に熱収縮を有しない熱可塑性樹脂を第二成分とした、2成分からなることが好ましい。本発明でいう融点とは、JIS−K−7122に準じ、DSC法により測定したものをいう。また、本発明でいう熱収縮率とは、第1成分、第2成分を個別に単一成分で220〜300℃の温度範囲で溶融紡糸し、70℃以上の温水、熱風、あるいは熱媒中にて3倍以上に延伸して、最終繊度が2.2〜11dtexになるように試料を作製し、JIS−L−1013 7.16.2(熱収縮温度)に準じ、試料長を10cm、初荷重を2mg/dtexとして所定の温度における試料長を測定し、収縮前の試料長(10cm)から収縮後の試料長を差し引いた値を収縮前の試料長で除して、100を乗じたものをいう。本発明において、温度Tにおける第一成分の熱収縮率は40%以上であり、より好ましくは50%以上である。第一成分の熱収縮率が40%未満であると、第二成分との収縮剥離が不十分で、不織布等の加工時に分割し難い繊維となってしまうからである。
【0009】
上記範囲を満たす熱可塑性樹脂としては、エチレン-プロピレン共重合体(以下、EPという)、あるいはエチレン-プロピレン-ブテン−1三元共重合体(以下、EPBという)などのプロピレン系共重合体、エチレン−ブテン−1共重合体(以下、EBという)、イソフタル酸成分または金属化スルホン酸基含有ポリエステル系共重合体などが挙げられる。なかでも、融点が120≦T1≦145の範囲にあるEP、EPB、およびEBから選ばれた少なくとも1種であることが、加工性、コストの点で好ましい。上記EP、EPBとしては、エチレン含有量が2〜8mass%のプロピレン系ランダム共重合体、あるいはブロック共重合体が挙げられる。熱収縮率の点においては、EPが最も優れており、次いでEPB、EBの順であり、EPを用いるのが熱分割性において最も好ましい。
【0010】
一方、第二成分としては、T1より20℃以上高く、150℃≦T <300℃を満たす、融点T (℃)を有しかつ温度T(℃)において実質的に熱収縮を有しない熱可塑性樹脂であることが好ましい。第一成分との融点差は50℃以上であることがより好ましい。融点差が20℃未満であると、熱加工機の温度制御が困難であったり、熱風加工などでは風量によっては軟化温度付近で接着が生じたりして、加工温度において制約を受けたり、あるいは第一成分の熱収縮が阻害されたりするからである。また、ここでいう実質的に熱収縮を有しないとは、温度Tにおける熱収縮率が4%未満、好ましくは1%未満のものである。温度Tにおいて熱収縮を有するものでは、熱分割性に劣るだけでなく、不織布化したときに多大な熱収縮を引き起こして、地合斑となるからである。上記を満たす熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12などのポリアミド系樹脂、ポリメチルペンテン、ポリプロピレン、エチレンビニルアルコール共重合体などのポリオレフィン系樹脂などを使用することができる。なかでも、本発明の熱分割型複合繊維は、第二成分としてポリエステル、ポリアミド、あるいはポリメチルペンテンを使用すると、第一成分のEPあるいはEPBとの繊維製造における工程安定性や熱分割性の観点で好ましい。
【0011】
そして、本発明においては、熱処理のみによる瞬間分割性を向上させるため、前記2成分のうちのいずれか1成分に親水化剤が0.1〜5mass%含有させる。より好ましい含有率は、0.3〜3mass%である。親水化剤を含有させることにより、分割性だけでなく、同時に高度で、永続的な親水性能を得ることができる。親水化剤の含有量が0.1mass%未満であると、分割性が不十分であるとともに親水性能も得ることができなくなり、含有量が5mass%を超えると、紡糸時の糸切れが増加して品質低下と工程性の低下を引き起こすので好ましくない。また、前記2成分のうち熱収縮成分である第一成分に親水化剤を含有させた方が、収縮に伴う成分間の剥離性が向上するため、分割性に優れ、特に好ましい。
【0012】
前記親水化剤としては、水酸基、カルボニル基、カルボキシル基、スルホン基などの親水基を有する化合物であればいずれであってもよく、例えば、脂肪酸グリセライド(モノグリセリン脂肪酸エステル)、アルコキシ化アルキルフェノール、ポリオキシアルキレン脂肪酸エステル、脂肪酸ジエタノールアミドなどが挙げられるが、できるだけ親水性能の持続するもの(親水持続性)、あるいは繊維表面へのブリード速度の遅いもの(親水遅効性)が好ましく、例えば、両者を満たすものとしては、下記式(化2)に示す重合度(n)2〜10のポリグリセリンと炭素数8〜22の飽和もしくは不飽和脂肪酸(Rは飽和もしくは不飽和炭化水素)とのエステル化合物(以下、単に「ポリグリセリン脂肪酸エステル」ともいう)が挙げられ、親水性能だけでなく、分割性にも優れ、特に好ましい。
【0013】
【化2】

Figure 0003857056
【0014】
次に、本発明の熱分割型複合繊維の製造方法について説明する。まず、前記範囲を満たす熱可塑性樹脂を準備し、2成分のうちいずれか1成分に前記親水化剤を含有させる。含有させる方法としては、溶融紡糸時に構成樹脂ペレットとともに押出機に所定の割合で親水化剤を供給する方法や、公知の混合装置を用いて混合し、公知の単軸または2軸押出機等で溶融混合して、あらかじめマスターバッチ化しておく方法などが挙げられるが、後者の方が親水化剤が成分中に均一に分散するので好ましい。
【0015】
そして、前記2成分は公知の溶融紡糸機で、分割型複合ノズルを用い、繊維断面において複数成分のうち第一成分と第二成分が隣接し、互いに分割された構造となるように、紡糸温度220〜300℃で樹脂を押し出して溶融紡糸し、繊度5〜50dtexの紡糸フィラメントを作製する。このとき、2成分の複合比(容積比)は、紡糸性、分割性を考慮し、80:20〜20:80であることが好ましい。次いで、紡糸フィラメントは、必要に応じて延伸される。延伸は、温水、熱風、あるいは熱媒中にて延伸温度70℃以上、EPあるいはEPBを用いる場合は70〜130℃で、延伸倍率3倍以上で処理すると、繊維強力が向上するので好ましい。また、延伸倍率を破断点に近づけるほど第一成分、特にEPあるいはEPBの熱収縮率は大きくなり、反対に第二成分にポリエチレンテレフタレートなどの汎用の樹脂であれば熱収縮率が0に近づき瞬間分割性が向上し、好ましい。得られた延伸フィラメントには、繊維処理剤を付着させてもよい。そして、必要に応じて、捲縮付与装置で捲縮を与え、所定の長さに切断されて本発明の熱分割型複合繊維を得る。
【0016】
得られた熱分割型複合繊維の繊度は、分割後の極細繊維の繊度が1dtex未満となるように適宜設定すればよいが、0.5〜20dtexとすることが好ましい。複合繊維の繊度が0.5dtex未満であると、繊維化が困難となり、20dtexを超えると、分割後の繊度1dtex未満の極細繊維を得るのが困難となるからである。また、分割後発生する極細繊維の繊度は、1dtex未満であることが好ましい。より好ましくは、0.5dtex未満であり、さらに好ましくは、0.3dtex未満である。また、繊維形態も有端のステープル繊維や抄紙用短繊維の形状、あるいはマルチフィラメントのような長繊維いずれであってもよいが、特に、有端のステープル繊維や抄紙用短繊維が、熱処理によって第二成分が収縮して繊維の分割が促進され易い点で好ましい。
【0017】
得られた熱分割型複合繊維は、不織布、フェルト、紙、織物、編物、フロッキー加工品などの繊維集合物に加工することができる。このとき熱分割型複合繊維の含有量は20mass%以上であることが好ましい。より好ましくは、30mass%である。含有量が20mass%未満であると、極細繊維独特の良質な風合いや機能性を発揮できないからである。本発明の熱分割型複合繊維以外に混合する他の素材としては、特に限定はされないが、コットン、パルプ、麻、レーヨンなどのセルロース系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系繊維、ナイロン6、ナイロン66などのポリアミド系繊維、アクリル系繊維、あるいはポリオレフィン系繊維などから任意に一あるいは二以上選択して使用することができる。また繊維形状においても特に限定されず、単一繊維、鞘芯型複合繊維、偏心鞘芯型複合繊維、並列型複合繊維、海島型複合繊維、分割型複合繊維等の断面が円状、異形状等いずれであってもよい。
【0018】
前記繊維集合物の形態としては、特に不織布形態が有用である。不織布の形態としては、サーマルボンド不織布、ケミカルボンド不織布、スパンレース不織布、ニードルパンチ不織布等の主としてステープル繊維からなる不織布、スパンボンド不織布等の長繊維からなる不織布、湿式抄造法による湿式不織布、エアレイ不織布等の短繊維からなる不織布、あるいはこれらの積層体をその目的、用途に応じて決定するとよいが、なかでもエアースルー不織布、あるいはエンボス不織布からなるサーマルボンド不織布が本発明の熱分割性を発揮する上において最も効果的な形態である。
【0019】
前記サーマルボンド不織布は、以下のように製造するとよい。熱処理温度は1成分の熱収縮率が40%以上となる温度、すなわちT(℃)以上で熱処理することが好ましく、さらに、第一成分の融点以上、すなわちT1(℃)以上の温度で熱処理すると、高度に熱収縮し分割性が向上するとともに、構成繊維間を熱融着させることができる点でより好ましい。熱処理温度がT1未満であっても、例えば、高密度ポリエチレン/ポリプロピレン、高密度ポリエチレン/ポリエステル、低密度ポリエチレン/ポリプロピレン、エチレン−酢酸ビニル共重合体/ポリプロピレンなどの1成分がT1より低融点からなる複合繊維を含有させて熱融着させてもよい。
【0020】
【実施例】
以下、本発明について実施例にてさらに詳しく説明する。なお、繊維強伸度、不織布の厚み、分割率、親水性は以下のようにして測定した。
【0021】
[繊維強伸度]
JIS−L−1015に準じ、測定した。
【0022】
[厚み]
厚み測定機(商品名:THICKNESS GAUGE モデル CR-60A 株式会社大栄科学精器製作所製)を用い、試料1cm2 あたり20gの荷重を加えた状態で測定した。
【0023】
[分割率]
不織布の観察部分を電子顕微鏡にて500倍に拡大して任意に3箇所撮影し、撮影写真の分割している部分の面積比率にて分割率を算出した。
【0024】
[親水性]
特開平9−322911号公報に記載された通液試験法に準じて行った。すなわち、60mm×60mmの寸法に切り出した不織布の上に、アドバンテック東洋(株)製「トーヨーNo.2濾紙」を重ねシリコンパッキングを介してこれらを上下部からなる一対の通液用ガラス器具(高さ75mm、内径36mm、肉厚3mmの円筒状)間に挟持固定した。そして、通液用ガラス器具の両端には、外径60mmのフランジ部分を設け、下部の通液用ガラス器具の下方には液受けが載置された電子天秤を配置した。次いで、上部の通液用ガラス器具に40mlのイオン交換水を注入し、通液量が20mlになるまでの時間を測定する。20ml通液後、上記不織布を取り出し、2枚の濾紙の間に挟み込み、その上に重さ1kgの重りを載せて1分間放置し、これを1サイクルとして通液時間(秒)の測定を1サイクル目(1回)、3サイクル目(3回)、5サイクル目(5回)で行った。なお、通液時間が180秒を超えるものの評価は、×とした。
【0025】
[実施例1]
第一成分を融点138℃、エチレン含有量4mass%、125℃における熱収縮率50%のエチレン-プロピレン共重合体(EP、宇部興産(株)製:商品名Y−2045GP)90mass%に、親水化剤として重合度4のポリグリセリンと炭素数6の不飽和脂肪酸からなるポリグリセリン脂肪酸エステルが8mass%含有するマスターバッチを10mass%混合した熱可塑性樹脂(親水化剤含有量0.8mass%)とし、第二成分を融点265℃、138℃における熱収縮率0%のポリエチレンテレフタレート(PET、東レ(株)製:商品名T−200E)とを8分割型ノズルを用いて、第一成分/第二成分の複合比50/50、紡糸温度240℃/300℃、引取速度1000m/分で溶融紡糸し、繊度6.7dtexの図1に示す歯車型の断面を持つ8分割複合紡糸フィラメントを得た。次いで、紡糸フィラメントを80℃の温水中で3倍に湿式延伸を行い、親水性油剤を0.3mass%付着させ、スタッファボックスを通して機械捲縮を付与し、110℃でコンベア式の熱風貫通型乾燥機で乾燥を行って、切断して、繊度2.2dtex、繊維長38mmの熱分割型複合繊維を得た。なお、EPおよびPETの熱収縮率は、各々単一成分で上記紡糸温度(EPは240℃、PETは300℃)、引取速度(1000m/min)、延伸条件(80℃温水中での3倍延伸)で処理して得た単繊維(繊度2.2dtex)を評価した。
【0026】
得られた繊維をローラーカードにて目付30g/m2のカードウエブを作製し、エンボス面積0.785mm2/個、エンボス率19.6%のエンボスロールを用いて、ロール温度130℃、ロール速度4m/min、線圧30kg/cmでエンボス加工を行い、極細繊維不織布を得た。
【0027】
[実施例2]
実施例1のエチレン-プロピレン共重合体90mass%に、親水化剤として重合度4のポリグリセリンとオレイン酸(炭素数17の不飽和脂肪酸)からなるポリグリセリン脂肪酸エステルが8mass%含有するマスターバッチを10mass%混合した熱可塑性樹脂(親水化剤含有量0.8mass%)とした以外は、実施例1と同様の方法で繊度2.2dtex、繊維長38mmの熱分割型複合繊維および極細繊維不織布を得た。
【0028】
[実施例3]
実施例1のエチレン-プロピレン共重合体80mass%に、実施例2のポリグリセリン脂肪酸エステルが8mass%含有するマスターバッチを20mass%混合した熱可塑性樹脂(親水化剤含有量1.6mass%)とした以外は、実施例1と同様の方法で繊度2.2dtex、繊維長38mmの熱分割型複合繊維および極細繊維不織布を得た。
【0029】
比較例1
親水化剤として、下記式(化3)で示すRが炭素数17のアルキル基を有するモノグリセリン脂肪酸エステルを使用した以外は、実施例1と同様の方法で繊度2.2dtex、繊維長38mmの熱分割型複合繊維および極細繊維不織布を得た。
Figure 0003857056
【0030】
[比較例
第一成分に親水化剤を添加しなかった以外は、実施例1と同様の方法で熱分割型複合繊維および不織布を得た。
【0031】
[比較例
比較例の不織布に、表裏面より6MPaの圧力で高圧柱状水流を裏表各2回噴射して熱分割型複合繊維を分割させるとともに繊維間を交絡させ、110℃で乾燥して絡合不織布を得た。
【0032】
[比較例
実施例1のエチレン-プロピレン共重合体99mass%に、実施例2のポリグリセリン脂肪酸エステルが8mass%含有するマスターバッチを1mass%混合した熱可塑性樹脂(親水化剤含有量0.08mass%)とした以外は、実施例1と同様の方法で熱分割型複合繊維および不織布を得た。
実施例1〜および比較例1〜の物性を表1に示す。
【0033】
【表1】
Figure 0003857056
【0034】
実施例1〜の熱分割型複合繊維は、エンボスロールによる熱処理のみで0%以上分割しており、親水化剤として化2に示すポリグリセリン脂肪酸エステルを用いると、高度に分割するとともに耐久親水性にも優れていた。一方、比較例は熱処理だけでは十分に分割しておらず、ほとんどの繊維を分割させるのに、比較例の高圧柱状流処理を併用しなければならず、比容積の小さい高密度な不織布しか得られなかった。また、親水化剤が付与されていないので耐久親水性は得られなかった。比較例では親水化剤の含有量が少ないため、分割性が十分ではなかった。
【0035】
【発明の効果】
本発明の熱分割型複合繊維は、熱収縮性を有する熱可塑性樹脂と、実質的に熱収縮を有しない熱可塑性樹脂の2成分のうちのいずれか1成分に親水化剤として重合度(n)2〜10のポリグリセリンと炭素数8〜22の飽和もしくは不飽和脂肪酸(Rは飽和もしくは不飽和炭化水素)からなるポリグリセリン脂肪酸エステルを含有させることにより、熱処理のみでも高度に、かつ瞬時に分割し、極細繊維を発現させることができ、比容積の大きい不織布を得ることができる。同時に、本発明の熱分割型複合繊維およびその繊維集合物は、高度で、永続的な親水性を有することができる。さらに、第一成分の熱可塑性樹脂、10≦T1≦145を満たす融点 1 (℃)を有する、エチレン-プロピレン共重合体およびエチレン-プロピレン-ブテン−1三元共重合体から選ばれた少なくとも1種とし、これに親水化剤を含有させると、高度な熱収縮率が得られ、瞬間分割性に優れるだけでなく、熱加工温度、熱加工速度、工程性に優れ、低コストな熱分割型複合繊維および繊維集合物を得ることができる。
本発明の熱分割型複合繊維を用いた繊維集合物は、衛生材料、ワイパー、フィルターなど親水性能を要求する分野に好適に使用することができる。
【図面の簡単な説明】
【図1】本発明に使用する分割型複合繊維の繊維断面図の一例を示す。
【図2】本発明に使用する分割型複合繊維の繊維断面図の別の一例を示す。
【符号の説明】
1.第一成分
2.第二成分[0001]
BACKGROUND OF THE INVENTION
It is related to split-type composite fibers that can be easily and instantly divided by heat treatment and has excellent thermal processability (thermal processing speed, processability), and in fields that require hydrophilic performance such as sanitary materials, wipers, and filters. And a non-woven fabric using the same.
[0002]
[Prior art]
Conventionally, in order to obtain excellent flexibility, tactile sensation, wiping property, and the like, a nonwoven fabric obtained by dividing a split-type composite fiber to express ultrafine fibers has been used. As a split type composite fiber to be split by physical impact of high-pressure fluid flow processing or needle punch processing, for example, JP-A-8-311717 discloses fatty acid glyceride (monoglycerin fatty acid ester) as at least one component of polyolefin resin. In addition, there is disclosed a polyolefin-based split type composite fiber in which a hydrophilic component selected from an alkoxylated alkylphenol and a polyoxyalkylene fatty acid ester is kneaded and added. The present applicant also proposes a polyolefin-based split composite fiber composed of a combination of polyolefin resins having a Rockwell hardness of 60 or more and a carbon number difference of each component Δn> 0.9 in Japanese Patent Publication No. 6-63129. Yes. Further, as a heat splitting composite fiber that is split using a difference in heat shrinkage rate between two components, for example, JP-A-2-169720 and JP-A-4-316608 disclose a polyolefin having a high heat shrinkage rate. There is disclosed a heat splitting composite fiber in which a system component and a polyolefin system component are incompatible components.
[0003]
[Problems to be solved by the invention]
However, the split composite fibers have the following problems. In Japanese Patent Application Laid-Open No. 8-31717 and Japanese Patent Publication No. 6-63129, both attempts were made to divide highly by the physical impact of high-pressure fluid flow processing or needle punch processing, and the number of production steps was reduced. Not only is the production speed slow, requires a lot of energy, and the cost is high, but the nonwoven fabric obtained by physical impact can only obtain a high density entangled nonwoven fabric with a specific volume of 5 cm 3 / g or less. Therefore, its use is limited at present. On the other hand, in JP-A-2-169720 and JP-A-4-316608, a non-woven fabric having a large specific volume can be obtained because it is divided not by physical impact but by thermal contraction. Dividing performance is insufficient only by providing a rate difference. In Japanese Patent Laid-Open No. 9-49160, after air-through treatment with heated air, mechanical entanglement processing is performed to improve dividing performance. In Japanese Patent No. 9-31755, a thermal partitioning composite fiber obtained by adding a petroleum resin to a low melting point component having a large thermal shrinkage rate is subjected to thermal means, and then immersed in a petroleum resin-soluble solvent (solvent treatment), followed by press treatment. To improve the splitting performance. For this reason, not only the number of production processes is increased and the cost is increased, but also only a high density nonwoven fabric can be obtained.
Therefore, the actual situation is that a split-type composite fiber that can be highly divided without using physical impact has not yet been obtained.
[0004]
[Means for Solving the Problems]
The present invention has been made in view of such a situation. That is, the two components are divided by heat, which is composed of two different components, the heat-shrinkable thermoplastic resin as the first component, and the other as the second component. A heat-splitting composite fiber that is capable of containing 0.1 to 5 mass% of a hydrophilizing agent in any one of the two components. By adopting such a configuration, even with heat treatment alone, it is possible to divide highly and instantly to express ultrafine fibers, and to obtain a nonwoven fabric with excellent thermal processability (thermal processing speed, processability) and a large specific volume. Can do. At the same time, the heat-splitting composite fiber of the present invention and the non-woven fabric using the same have high and permanent hydrophilicity, and therefore can be used in fields that require hydrophilic performance such as sanitary materials, wipers, and filters. .
[0005]
In the present invention, the composite fibers, the melting point is from T 1 (° C.), the temperature T of the thermal shrinkage of 40% or more (° C.) (where, T 1 -13 ≦ T (℃ ) <T 1)) Or a thermoplastic resin having a thermal shrinkage of 40% or more at a temperature T (° C.) (where T 1 −13 ≦ T (° C.) <T 1 ), and 150 ≦ satisfy T 2 <300 it has a T 2 C.), and a substantially thermally splittable conjugate fiber comprising two components having no thermoplastic resin and the second component of heat-shrinkable at a temperature T Is desirable. Further, the thermoplastic resin of the first component is an ethylene-propylene copolymer and an ethylene-propylene-butene-1 terpolymer having a melting point T 1 (° C.) satisfying 1 2 0 ≦ T 1 ≦ 145. It is at least one selected and preferably contains 0.1 to 5 mass% of a hydrophilizing agent.
[0006]
In addition, the hydrophilizing agent used in the present invention is an ester compound of a polyglycerin having a polymerization degree (n) of 2 to 10 and a saturated or unsaturated fatty acid having 8 to 22 carbon atoms (R is a saturated or unsaturated hydrocarbon). polyglycerol fatty acid ester) Ru der.
[0007]
And the fiber assembly formed by heat-treating the fiber web containing 20 mass% or more of the heat splitting composite fiber of the present invention is highly divided to express ultrafine fibers and can be used for various applications. .
The contents of the present invention will be specifically described below.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The heat splitting composite fiber of the present invention is composed of two different components, and a heat splitting composite capable of splitting two components by heat using a heat-shrinkable thermoplastic resin as the first component and the other as the second component. Fiber. The component having heat shrinkability in the present invention refers to a component having a larger heat shrinking force when one component and the other component are treated under the same heat treatment conditions. In the heat-splitting conjugate fiber of the present invention, at least one component of the plurality of components in the fiber cross section is divided into two or more, and each component is a structural unit of the fiber cross section, and each structural unit is Each structural unit is adjacent to structural units of different components, and a part of each structural unit is exposed on the fiber surface, and the shape may be any of circular, irregular, and hollow. For example, FIG. And it has a fiber form as shown in FIG. The heat splitting composite fiber of the present invention has a melting point of T 1 (° C.) and a temperature T (° C.) at which the heat shrinkage rate is 40% or more (provided that T 1 −13 ≦ T (° C.) <T 1 ) or at a temperature T (° C.) (where T 1 −13 ≦ T (° C.) <T 1 ) , T 1 than 20 ° C. or higher rather high, satisfy 150 ℃ ≦ T 2 <300 ℃ , melting point T 2 (° C.) has, and the temperature T (° C.) substantially free thermoplastic shrinkable in It is preferable that it consists of 2 components which used as the 2nd component. The melting point as used in the field of this invention means what was measured by DSC method according to JIS-K-7122. Further, the had will heat shrinkage in the present invention, the first component, separately second component melt-spun at a temperature range of 220 to 300 ° C. in a single-component, 70 ° C. or more hot water, hot air or heating medium, The sample was drawn 3 times or more inside to prepare a sample having a final fineness of 2.2 to 11 dtex, and the sample length was 10 cm in accordance with JIS-L-1013 7.16.2 (heat shrink temperature). Measure the sample length at a predetermined temperature with an initial load of 2 mg / dtex, divide the sample length after shrinkage by 10 (cm) before shrinkage, and multiply by 100. say what was. In the present invention, the thermal contraction rate of the first component at the temperature T is 40% or more, more preferably 50% or more. This is because if the heat shrinkage rate of the first component is less than 40%, shrinkage peeling from the second component is insufficient, and the fiber becomes difficult to be divided during processing of a nonwoven fabric or the like.
[0009]
Examples of the thermoplastic resin that satisfies the above range include propylene-based copolymers such as ethylene-propylene copolymer (hereinafter referred to as EP) or ethylene-propylene-butene-1 terpolymer (hereinafter referred to as EPB), Examples thereof include an ethylene-butene-1 copolymer (hereinafter referred to as EB), an isophthalic acid component or a polyester copolymer containing a metallized sulfonic acid group. Among these, at least one selected from EP, EPB, and EB having a melting point in the range of 120 ≦ T 1 ≦ 145 is preferable in terms of workability and cost. Examples of the EP and EPB include a propylene random copolymer or a block copolymer having an ethylene content of 2 to 8 mass%. In terms of the heat shrinkage rate, EP is the most excellent, followed by EPB and EB in this order, and the use of EP is most preferable in terms of thermal partitioning.
[0010]
On the other hand, as the second component, T 1 than 20 ° C. or higher rather high, 0.99 ° C. ≦ T 2 satisfying the <300 ° C., a melting point T 2 (° C.), and substantially heat-shrinkable at a temperature T (° C.) it is preferably no thermoplastic sex. The difference in melting point from the first component is more preferably 50 ° C. or higher. If the difference in melting point is less than 20 ° C., it is difficult to control the temperature of the heat processing machine, or in hot air processing, etc., adhesion may occur near the softening temperature depending on the air volume, and the processing temperature may be restricted, This is because heat shrinkage of one component is inhibited. Further, the substantially no heat-shrinkable here, the thermal shrinkage is less than 4% at a temperature T, preferably of less than 1%. Is one having a heat shrinkable at temperature T, as well as poor thermal splitting property, causing great thermal contraction when a nonwoven fabric, because the formation plaques. Examples of the thermoplastic resin that satisfies the above conditions include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66, nylon 610, nylon 11, and nylon 12, polymethylpentene, polypropylene, and ethylene vinyl alcohol. Polyolefin resins such as copolymers can be used. Among them, the heat-splitting composite fiber of the present invention, when polyester, polyamide, or polymethylpentene is used as the second component, is a viewpoint of process stability and heat-splitting property in fiber production with the first component EP or EPB. Is preferable.
[0011]
And in this invention, in order to improve the instantaneous partition property only by heat processing, a hydrophilizing agent is made to contain 0.1-5 mass% in any one of said 2 components. A more preferable content rate is 0.3 to 3 mass%. By including a hydrophilizing agent, not only the splitting property but also high and permanent hydrophilic performance can be obtained at the same time. When the content of the hydrophilizing agent is less than 0.1 mass%, the splitting property is insufficient and hydrophilic performance cannot be obtained. When the content exceeds 5 mass%, yarn breakage during spinning increases. This is not preferable because it causes deterioration of quality and processability. In addition, it is particularly preferable to add a hydrophilizing agent to the first component, which is a heat-shrinkable component, of the two components, because the releasability between the components accompanying shrinkage is improved and the splitting property is excellent.
[0012]
The hydrophilic agent may be any compound having a hydrophilic group such as a hydroxyl group, a carbonyl group, a carboxyl group, or a sulfone group. For example, fatty acid glyceride (monoglycerin fatty acid ester), alkoxylated alkylphenol, Oxyalkylene fatty acid esters, fatty acid diethanolamides and the like can be mentioned, but those having as long a hydrophilic performance as possible (hydrophilic persistence) or those having a slow bleed speed to the fiber surface (hydrophilic slow-acting property) are preferable. As an example, an ester compound of a polyglycerin having a polymerization degree (n) of 2 to 10 and a saturated or unsaturated fatty acid having 8 to 22 carbon atoms (R is saturated or unsaturated hydrocarbon) represented by the following formula (Chemical Formula 2) (Hereinafter also referred to as “polyglycerin fatty acid ester”) Performance not only excellent split resistance, particularly preferred.
[0013]
[Chemical 2]
Figure 0003857056
[0014]
Next, the manufacturing method of the heat | fever division type composite fiber of this invention is demonstrated. First, a thermoplastic resin that satisfies the above range is prepared, and one of the two components contains the hydrophilizing agent. As a method of inclusion, a method of supplying a hydrophilizing agent to the extruder at a predetermined ratio together with the constituent resin pellets at the time of melt spinning, mixing using a known mixing device, and using a known single-screw or twin-screw extruder, etc. Although the method of melt-mixing and making a masterbatch beforehand is mentioned, the latter is preferable because the hydrophilizing agent is uniformly dispersed in the components.
[0015]
The two components are known melt spinning machines using a split type composite nozzle, and the spinning temperature is set so that the first component and the second component are adjacent to each other and divided from each other in the fiber cross section. The resin is extruded at 220 to 300 ° C. and melt-spun to produce a spinning filament having a fineness of 5 to 50 dtex. At this time, the composite ratio (volume ratio) of the two components is preferably 80:20 to 20:80 in consideration of spinnability and splitting property. The spun filament is then drawn as needed. Stretching is preferably performed in warm water, hot air, or a heat medium at a stretching temperature of 70 ° C. or higher, and in the case of using EP or EPB at 70 to 130 ° C., and at a stretching ratio of 3 times or higher, the fiber strength is improved. In addition, the closer the draw ratio is to the breaking point, the greater the heat shrinkage rate of the first component, particularly EP or EPB. On the other hand, if the second component is a general-purpose resin such as polyethylene terephthalate, the heat shrinkage rate approaches 0 and the moment. Dividability is improved, which is preferable. A fiber treating agent may be adhered to the obtained drawn filament. And if necessary, it is crimped by a crimping device and cut into a predetermined length to obtain the heat splitting composite fiber of the present invention.
[0016]
The fineness of the obtained heat-splitting composite fiber may be appropriately set so that the fineness of the ultrafine fiber after splitting is less than 1 dtex, but is preferably 0.5 to 20 dtex. This is because if the fineness of the composite fiber is less than 0.5 dtex, fiberization becomes difficult, and if it exceeds 20 dtex, it becomes difficult to obtain ultrafine fibers having a fineness of less than 1 dtex after division. Moreover, it is preferable that the fineness of the ultrafine fibers generated after the division is less than 1 dtex. More preferably, it is less than 0.5 dtex, and still more preferably less than 0.3 dtex. In addition, the fiber form may be any shape of end staple fibers or papermaking short fibers, or long fibers such as multifilaments. This is preferable in that the second component shrinks and fiber division is easily promoted.
[0017]
The obtained heat-splitting composite fiber can be processed into a fiber assembly such as a nonwoven fabric, felt, paper, woven fabric, knitted fabric, and flocked product. At this time, the content of the heat splitting composite fiber is preferably 20 mass% or more. More preferably, it is 30 mass%. This is because if the content is less than 20 mass%, the fine texture and functionality unique to ultrafine fibers cannot be exhibited. Other materials to be mixed in addition to the heat splitting composite fiber of the present invention are not particularly limited, but cellulose fibers such as cotton, pulp, hemp and rayon, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, nylon 6. One or two or more can be arbitrarily selected from polyamide fibers such as nylon 66, acrylic fibers, or polyolefin fibers. Also, the fiber shape is not particularly limited, and the cross section of a single fiber, a sheath-core composite fiber, an eccentric sheath-core composite fiber, a parallel composite fiber, a sea-island composite fiber, a split composite fiber, etc. is circular, irregularly shaped Any of these may be used.
[0018]
As the form of the fiber aggregate, a nonwoven fabric form is particularly useful. Nonwoven fabrics include thermal bond nonwoven fabrics, chemical bond nonwoven fabrics, spunlace nonwoven fabrics, nonwoven fabrics mainly composed of staple fibers such as needle punched nonwoven fabrics, nonwoven fabrics composed of long fibers such as spunbond nonwoven fabrics, wet nonwoven fabrics produced by wet papermaking, and airlaid nonwoven fabrics. It is preferable to determine the nonwoven fabric made of short fibers such as these, or a laminate of these according to the purpose and application, and among them, the thermal bond nonwoven fabric made of an air-through nonwoven fabric or an embossed nonwoven fabric exhibits the heat splitting property of the present invention. This is the most effective form above.
[0019]
The thermal bond nonwoven fabric may be manufactured as follows. The heat treatment is preferably performed at a temperature at which the thermal shrinkage rate of one component is 40% or higher, that is, T (° C.) or higher, and further at a temperature higher than the melting point of the first component, that is, T 1 (° C.) or higher. Then, it is more preferable in that it is highly heat-shrinkable and the splitting property is improved, and the constituent fibers can be heat-sealed. Also the heat treatment temperature is less than T 1, for example, high density polyethylene / polypropylene, high density polyethylene / polyester, low density polyethylene / polypropylene, ethylene - low-melting first component is from T 1 of the vinyl acetate copolymer / polypropylene A composite fiber made of the above may be contained and heat-sealed.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The fiber strength, the nonwoven fabric thickness, the split ratio, and the hydrophilicity were measured as follows.
[0021]
[Fiber strength]
It measured according to JIS-L-1015.
[0022]
[Thickness]
Using a thickness measuring machine (trade name: THICKNESS GAUGE model CR-60A manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.), measurement was performed with a load of 20 g per 1 cm 2 of the sample.
[0023]
[Split rate]
The observed portion of the nonwoven fabric was magnified 500 times with an electron microscope and arbitrarily photographed at three locations, and the division ratio was calculated by the area ratio of the divided portion of the photograph.
[0024]
[Hydrophilic]
The test was conducted according to the liquid permeation test method described in JP-A-9-322911. That is, “Toyo No. 2 filter paper” manufactured by Advantech Toyo Co., Ltd. is stacked on a non-woven fabric cut to a size of 60 mm × 60 mm, and a pair of glass instruments for liquid passage (high height) are formed through silicon packing. And a cylindrical shape having a thickness of 75 mm, an inner diameter of 36 mm, and a thickness of 3 mm. And the flange part with an outer diameter of 60 mm was provided in the both ends of the glass apparatus for liquid flow, and the electronic balance by which the liquid receiver was mounted was arrange | positioned under the glass apparatus for liquid flow of the lower part. Next, 40 ml of ion exchange water is injected into the upper glass apparatus for liquid flow, and the time until the liquid flow volume reaches 20 ml is measured. After passing 20 ml, the nonwoven fabric is taken out and sandwiched between two filter papers. A weight of 1 kg is placed on the non-woven fabric and left for 1 minute. The cycle (1 time), the 3rd cycle (3 times), and the 5th cycle (5 times) were performed. In addition, the evaluation of the liquid passing time exceeding 180 seconds was x.
[0025]
[Example 1]
The first component has a melting point of 138 ° C., an ethylene content of 4 mass%, and an ethylene-propylene copolymer (EP, manufactured by Ube Industries, Ltd .: trade name Y-2045GP) having a heat shrinkage of 50% at 125 ° C. 10 mass% of a master batch containing 8 mass% of a polyglycerin fatty acid ester composed of polyglycerin having a polymerization degree of 4 and an unsaturated fatty acid having 6 carbon atoms is used as a solubilizing agent. The second component is polyethylene terephthalate (PET, manufactured by Toray Industries, Inc .: trade name T-200E) having a heat shrinkage of 0% at a melting point of 265 ° C. and 138 ° C., using an eight-part nozzle. 8-split composite with melt ratio of 50/50, spinning temperature of 240 ° C / 300 ° C, take-up speed of 1000m / min and gear size of 6.7dtex. To give the yarn filaments. Next, the spinning filament is wet-stretched three times in warm water at 80 ° C., 0.3 mass% of the hydrophilic oil agent is adhered, mechanical crimping is imparted through a stuffer box, and a conveyor-type hot air penetration type at 110 ° C. Drying was performed with a dryer and cut to obtain a heat-splitting composite fiber having a fineness of 2.2 dtex and a fiber length of 38 mm. The thermal shrinkage ratios of EP and PET are each a single component, and the above spinning temperature (EP is 240 ° C., PET is 300 ° C.), take-up speed (1000 m / min), stretching conditions (3 times in 80 ° C. warm water) A single fiber (fineness: 2.2 dtex) obtained by treatment in the drawing was evaluated.
[0026]
A card web having a basis weight of 30 g / m 2 is produced from the obtained fiber with a roller card, and an embossing roll having an embossing area of 0.785 mm 2 / piece and an embossing ratio of 19.6% is used. Embossing was performed at 4 m / min and a linear pressure of 30 kg / cm to obtain an ultrafine fiber nonwoven fabric.
[0027]
[Example 2]
A master batch containing 90 mass% of the ethylene-propylene copolymer of Example 1 and 8 mass% of a polyglycerin fatty acid ester composed of polyglycerin having a polymerization degree of 4 and oleic acid (unsaturated fatty acid having 17 carbon atoms) as a hydrophilizing agent. A heat-splitting composite fiber and an ultrafine fiber nonwoven fabric having a fineness of 2.2 dtex and a fiber length of 38 mm were produced in the same manner as in Example 1 except that 10 mass% of the mixed thermoplastic resin (hydrophilic agent content 0.8 mass%) was used. Obtained.
[0028]
[Example 3]
A thermoplastic resin (hydrophilizing agent content 1.6 mass%) in which 80 mass% of the ethylene-propylene copolymer of Example 1 was mixed with 20 mass% of a master batch containing 8 mass% of the polyglycerol fatty acid ester of Example 2 was used. Except for the above, heat-splitting composite fibers and ultrafine fiber nonwoven fabrics having a fineness of 2.2 dtex and a fiber length of 38 mm were obtained in the same manner as in Example 1.
[0029]
[ Comparative Example 1 ]
As the hydrophilizing agent, a fine glycerin fatty acid ester having a fineness of 2.2 dtex and a fiber length of 38 mm was used in the same manner as in Example 1 except that R represented by the following formula (Chemical Formula 3) was a monoglycerin fatty acid ester having an alkyl group having 17 carbon atoms. Thermally divided composite fibers and ultrafine fiber nonwoven fabrics were obtained.
Figure 0003857056
[0030]
[Comparative Example 2 ]
A heat-splitting conjugate fiber and a nonwoven fabric were obtained in the same manner as in Example 1 except that the hydrophilizing agent was not added to the first component.
[0031]
[Comparative Example 3 ]
The nonwoven fabric of Comparative Example 2 is sprayed with a high-pressure columnar water flow from the front and back surfaces at a pressure of 6 MPa twice each on the front and back sides to divide the heat splitting composite fibers and entangle the fibers, and dry at 110 ° C. Obtained.
[0032]
[Comparative Example 4 ]
A thermoplastic resin (hydrophilizing agent content: 0.08 mass%) was prepared by mixing 1 mass% of the master batch containing 8 mass% of the polyglycerin fatty acid ester of Example 2 with 99 mass% of the ethylene-propylene copolymer of Example 1. Except for the above, heat-splitting conjugate fibers and nonwoven fabrics were obtained in the same manner as in Example 1.
Table 1 shows the physical properties of Examples 1 to 3 and Comparative Examples 1 to 4 .
[0033]
[Table 1]
Figure 0003857056
[0034]
Heat splittable conjugate fiber of Examples 1 3, only heat treatment embossing roll is divided 90% or more, the use of polyglycerol fatty acid ester shown in 2 as a parent water agent, as well as highly divided Excellent durability and hydrophilicity. On the other hand, Comparative Example 2 is not sufficiently divided only by heat treatment, and in order to divide most of the fibers, the high-pressure columnar flow treatment of Comparative Example 3 must be used in combination, and a high-density nonwoven fabric with a small specific volume. Only obtained. Moreover, since the hydrophilizing agent was not provided, durable hydrophilic property was not obtained. In Comparative Example 4 , since the content of the hydrophilizing agent was small, the splitting property was not sufficient.
[0035]
【The invention's effect】
The heat splitting composite fiber of the present invention has a polymerization degree as a hydrophilizing agent in any one of two components of a thermoplastic resin having heat shrinkability and a thermoplastic resin having substantially no heat shrinkability . (N) By containing a polyglycerol fatty acid ester composed of 2 to 10 polyglycerol and a saturated or unsaturated fatty acid having 8 to 22 carbon atoms (R is a saturated or unsaturated hydrocarbon) , the heat treatment alone is highly advanced, and It is possible to instantly divide and develop ultrafine fibers, thereby obtaining a nonwoven fabric with a large specific volume. At the same time, the heat splitting composite fiber and the fiber assembly of the present invention can have a high degree of permanent hydrophilicity. Further, the thermoplastic resin of the first component, having 1 to 2 0 ≦ T mp T 1 satisfy 1 ≦ 145 (° C.), ethylene - from butene-1 ternary copolymer - propylene copolymers and ethylene - propylene and at least one type selected, when this is contained hydrophilizing agents, advanced thermal shrinkage is obtained, not only excellent in instantaneous split, excellent thermal processing temperature, thermal processing speed, the processability, low Costly heat-splitting composite fibers and fiber aggregates can be obtained.
The fiber assembly using the heat-splitting composite fiber of the present invention can be suitably used in fields that require hydrophilic performance such as sanitary materials, wipers, and filters.
[Brief description of the drawings]
FIG. 1 shows an example of a fiber cross-sectional view of a split type composite fiber used in the present invention.
FIG. 2 shows another example of a fiber cross-sectional view of a split type composite fiber used in the present invention.
[Explanation of symbols]
1. First component 2. Second ingredient

Claims (5)

異なる2成分からなり、熱収縮性を有する熱可塑性樹脂を第一成分とし、他方を第二成分とした熱により2成分の分割が可能な熱分割型複合繊維であって、該2成分のうちのいずれか1成分親水化剤0.1〜5mass%含有し、親水化剤が下記式(化1)で示される重合度(n)2〜10のポリグリセリンと炭素数8〜22の飽和もしくは不飽和脂肪酸(Rは飽和もしくは不飽和炭化水素)とのエステル化合物であることを特徴とする熱分割型複合繊維。
Figure 0003857056
A heat-splitting type composite fiber that can be split into two components by heat, which is composed of two different components and has a heat-shrinkable thermoplastic resin as the first component and the other as the second component, any one component a hydrophilizing agent containing 0.1~5mass%, hydrophilizing agent is the degree of polymerization represented by the following formula (formula 1) (n) 2 to 10 polyglycerol with from 8 to 22 carbon atoms A heat-splitting composite fiber characterized by being an ester compound with a saturated or unsaturated fatty acid (R is a saturated or unsaturated hydrocarbon) .
Figure 0003857056
複合繊維が、Composite fiber
融点がTMelting point is T 11 (℃)であり、熱収縮率が40%以上となる温度T(℃)(但し、T(° C.), and the temperature T (° C.) (where T 11 −13≦T(℃)<T−13 ≦ T (° C.) <T 11 )を有する熱可塑性樹脂を第一成分とし、) As a first component,
T 11 より20℃以上高く、150℃≦TMore than 20 ℃, 150 ℃ ≦ T 2 <300℃を満たす、融点T<Melting point T satisfying 300 ° C. 2 (℃)を有し、かつ温度T(℃)において実質的に熱収縮性を有しない熱可塑性樹脂を第二成分とした、A thermoplastic resin having (° C.) and having substantially no heat shrinkability at the temperature T (° C.) was used as the second component.
2成分からなることを特徴とする請求項1記載の熱分割型複合繊維。It consists of two components, The heat | fever division type | mold composite fiber of Claim 1 characterized by the above-mentioned.
複合繊維が、
融点1(℃)であり温度T(℃)にて(但し、1−13≦T(℃)<T1)、熱収縮率が40%以上である熱可塑性樹脂を第一成分とし、
1より20℃以上高く、150℃≦T <300℃を満たす、融点T (℃)を有しかつ温度T(℃)において実質的に熱収縮を有しない熱可塑性樹脂を第二成分とした、
2成分からなることを特徴とする請求項1記載の熱分割型複合繊維。
Composite fiber
A thermoplastic resin having a melting point of T 1 (° C.) , a temperature T (° C.) (where T 1 −13 ≦ T (° C.) <T 1 ) and a thermal shrinkage of 40% or more is a first component. age,
T 1 than 20 ° C. or higher rather high, 150 ℃ ≦ T 2 satisfying the <300 ° C., a melting point T 2 (℃), and at a temperature T (° C.) substantially no thermoplastic resin a heat-shrinkable As the second component,
It consists of two components, The heat | fever division type composite fiber of Claim 1 characterized by the above-mentioned.
第一成分の熱可塑性樹脂が、融点 1 (℃)が、120≦T1≦145を満たす、エチレン-プロピレン共重合体、エチレン-プロピレン-ブテン−1三元共重合体、およびエチレン−ブテン−1共重合体から選ばれた少なくとも1種であり、親水化剤を0.1〜5mass%含有することを特徴とする請求項1〜3のいずれか1項に記載の熱分割型複合繊維。The first component thermoplastic resin has an melting point T 1 (° C.) satisfying 120 ≦ T 1 ≦ 145 , an ethylene-propylene copolymer, an ethylene-propylene-butene-1 terpolymer, and an ethylene-butene The heat-splitting composite fiber according to any one of claims 1 to 3, which is at least one selected from -1 copolymers and contains 0.1 to 5 mass% of a hydrophilizing agent. . 請求項1〜4のいずれかに記載の熱分割型複合繊維を20mass%以上含有する繊維ウェブが熱処理されてなることを特徴とする繊維集合物。  A fiber assembly comprising a fiber web containing 20 mass% or more of the heat splitting composite fiber according to any one of claims 1 to 4, which is heat-treated.
JP2001013840A 2000-01-24 2001-01-22 Thermally divided composite fiber and fiber assembly Expired - Fee Related JP3857056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013840A JP3857056B2 (en) 2000-01-24 2001-01-22 Thermally divided composite fiber and fiber assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000015074 2000-01-24
JP2000-15074 2000-01-24
JP2001013840A JP3857056B2 (en) 2000-01-24 2001-01-22 Thermally divided composite fiber and fiber assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006199558A Division JP4785659B2 (en) 2000-01-24 2006-07-21 Thermally divided composite fiber and fiber assembly

Publications (2)

Publication Number Publication Date
JP2001279530A JP2001279530A (en) 2001-10-10
JP3857056B2 true JP3857056B2 (en) 2006-12-13

Family

ID=26584061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013840A Expired - Fee Related JP3857056B2 (en) 2000-01-24 2001-01-22 Thermally divided composite fiber and fiber assembly

Country Status (1)

Country Link
JP (1) JP3857056B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056502B1 (en) * 2009-09-21 2011-08-12 (주)한올글로텍 Manufacturing method of split microfiber nonwoven
KR101056501B1 (en) * 2009-09-21 2011-08-12 (주)한올글로텍 Split Microfiber Nonwoven

Also Published As

Publication number Publication date
JP2001279530A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US5858504A (en) Highly absorbent nonwoven fabric
JPH11217757A (en) Staple fiber nonwoven fabric and its production
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
WO2000053831A1 (en) Split type conjugate fiber, method for producing the same and fiber formed article using the same
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP3857056B2 (en) Thermally divided composite fiber and fiber assembly
JP4785659B2 (en) Thermally divided composite fiber and fiber assembly
JPH10331063A (en) Composite nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3856972B2 (en) Split type composite short fiber having heat shrinkability and short fiber nonwoven fabric using the same
JPH0913257A (en) Fiber structure having dry touch feeling
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP4728160B2 (en) Split composite fiber, fiber assembly and non-woven fabric
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
JP4026280B2 (en) Polyolefin-based split composite fiber, production method thereof, and fiber molded body using the fiber
JP2000136477A (en) Laminated nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JP3961724B2 (en) Polyolefin-based split composite fiber and non-woven fabric using the same
JPH10158968A (en) Nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production
JP2005171430A (en) Method for producing filament nonwoven fabric
JPH1121752A (en) Composite nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Ref document number: 3857056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees