JP3856467B2 - 微生物学的試験方法および試薬 - Google Patents

微生物学的試験方法および試薬 Download PDF

Info

Publication number
JP3856467B2
JP3856467B2 JP50477196A JP50477196A JP3856467B2 JP 3856467 B2 JP3856467 B2 JP 3856467B2 JP 50477196 A JP50477196 A JP 50477196A JP 50477196 A JP50477196 A JP 50477196A JP 3856467 B2 JP3856467 B2 JP 3856467B2
Authority
JP
Japan
Prior art keywords
adp
atp
reagent
sample
adenylate kinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50477196A
Other languages
English (en)
Other versions
JPH10502538A (ja
Inventor
スクイレル,デビツド・ジエイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Publication of JPH10502538A publication Critical patent/JPH10502538A/ja
Application granted granted Critical
Publication of JP3856467B2 publication Critical patent/JP3856467B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、微生物の検出およびアッセイ方法、該方法に使用するための試薬ならびに該方法を行うための必須試薬を含むテストキットに関する。
全ての生物は、化学エネルギー源としてアデノシン三リン酸(ATP)を利用しており、これは、ATPによって推進されるルシフェラーゼ/ルシフェリン反応を使用してアッセイすることが知られている。この酵素反応によって発する光は、発光測定器を使用して測定することができ、これは、存在するATP量に関係する。微生物数の指標としてのATPの有用性は1960年代中頃から公知であり(ATP Luminescence Rapid Methods in Microbiology (1989), Stanleyら編;Blackwell Scientific Publications, London, pages 1-10参照)、その主は利点は、速度および感度である。このアッセイ様式を使用すると、簡単なサンプルはものの数分で分析することができ、一方、複雑なサンプルは通常はほんの30分でよく、検出能は10-12モル/リットルATPまで可能である。しかし、速度および実行の容易さは保持したまま、微生物またはその含量を検出する際の感度がさらに高い方法が必要である。
本発明者は、ATPに基づくアッセイの速度および感度が、アッセイの標的をATPからそれを発生する酵素、特にアデニル酸キナーゼに変更することによりかなり高められることを確認した。アデニル酸キナーゼは、アデノシン二リン酸(ADP)がアデノシン三リン酸(ATP)に変換される際に全生物が使用する酵素である。本発明の好ましい方法、試薬およびキットを使用するとにより、ATPよりもむしろこの酵素が標的となり、細胞内マーカーのアデニル酸キナーゼを少なくとも10-20モルまで検出することができる。
ルシフェラーゼ/ルシフェリン系を使用するアデニル酸キナーゼのアッセイは公知である(Brolinら、Journal of Biochemical and Biophysical Methods 1 (1979) 163-169およびShutenkoら、Biotekhnologiya, No 4, (1988) 542-547参照)。これは、その活性を測定することを目的とするものであり、ある種の哺乳類および植物の組織の研究に適用されている(例えば、Rodionovaら、Fiziologiya Rastenii (1978) 25, 4, p731-734参照)。しかし、微生物の検出およびアッセイのための該アッセイ系の使用は示唆されていないし、そうすることの利点、すなわち高められた感度が得られることは、酵素自体を研究する人々には問題とされることはなかった。
アデニル酸キナーゼはADPまたはATPよりも少量で存在するが、それを微生物に対する生物学的マーカーとして使用すると感度が高められ、それが産生するATPによりその存在を測定すると、利用できる典型的な増幅は400,000である。すなわち、10分のインキュベーションで、存在する酵素1モル毎に400,000モルのADPがATPに変換される。すなわち、アデニル酸キナーゼが触媒する反応の基質または生成物を測定することにより、10-20モルまでもの検出が可能である。
本出願人による同時係属中のPCT出願WO 94/17202は、サンプルにおけるADPからATPへの変換能からサンプル中の微生物を推定し、それを微生物またはその細胞内物質の存在と関連づける一般的方法に関する。該出願が例として挙げている方法では、2分子のADPと各アデニル酸キナーゼ活性部位との反応に必要なマグネシウムイオンは試薬としては添加しないが、存在する細菌細胞によって、また、他の試薬における不純物として供給されている。該方法を使用してその実施例で検出された細胞数は約102であることが示されたが、統計的により有効な性質の結果からは103以上で得られ、発光測定器による計数と細胞数との間には直線関係が得られた。
本発明は、アデニル酸キナーゼ活性を最適化した方法で測定する改善された方法に関し、該方法では、マグネシウムイオンがADP変換反応に供給され、使用する試薬はアデニル酸キナーゼを除去すべく処理して純度を高くし、それによって、検出することができる微生物数を、200μlのサンプルにつき百の位ではなく十の位まで可能とし、細胞とATPにより誘発される光との間の直線関係による読み取りは、10個の細胞まで可能である。
本発明の第一の態様では、サンプルに存在する微生物および/またはその細胞内物質の存在および/または量を測定するための方法を提供し、該方法は、サンプル中のアデニル酸キナーゼの量を、それをアデノシン二リン酸(ADP)と混合し、このADPから該サンプルによって産生するアデノシン三リン酸(ATP)の量を測定し、そうして産生したATPの量をアデニル酸キナーゼならびに微生物および/またはその細胞内物質の存在および/または量と関連づけることにより測定し、ADPのATPへの変換は、ADPのATPへの最大変換を可能とするのに十分なモル濃度のマグネシウムイオンの存在下で行うことを特徴とする。存在するマグネシウムの量は、好ましくは、全てのADP分子が少なくとも1個のマグネシウムイオンと結合することができるように、ADP1モルに対して1モルのマグネシウムが与えられるのに十分であるようにする。
本発明のこの発明の好ましい態様では、サンプルを水性懸濁物または溶液の形態で提供し、サンプル中のアデニル酸キナーゼ、すなわち微生物および/またはその細胞内物質の推定は、存在するアデニル酸キナーゼがADPをATPに変換する条件下でADPおよびマグネシウムイオンをサンプルに添加し、そのサンプルを予め定めた時間インキュベートして該変換を行い、ルシフェラーゼおよびルシフェリン試薬を添加し、サンプルから放出される光の量を測定し、それをアデニル酸キナーゼの存在および量と関連づけることにより行う。
サンプルと混合するADPの量は、好ましくは、混合物中のADP濃度を0.005mM以上、より好ましくは0.01mM以上、最も好ましくは、0.08mM以上とするの十分な量である。変換工程の混合物における特に好ましいADPの量は、約0.1mMである。
使用すべき試薬がマグネシウムイオン除去剤、例えばEDTAおよびリン酸塩緩衝液などのキレート/封鎖剤を含む場合、最適な変換を受けるのに十分なマグネシウムイオンをADPに供給するために、十分量のマグネシウムイオンを存在させるのが好ましいと認識される。上記した好ましい濃度のADPの場合、ADPのATPへの変換の際の懸濁物または溶液中のマグネシウムイオンの好ましい濃度は、1mM以上、より好ましくは5mM以上、最も好ましくは10mM以上である。マグネシウムイオンは、マグネシウム塩の形態で、好ましくは酢酸マグネシウムとして供給することができる。
本発明のさらに好ましい態様では、ルシフェリン/ルシフェラーゼ発光測定試薬を、好ましくはADPおよびマグネシウムイオン源を含む単一試薬として、インキュベーション開始時にサンプルに添加する。ルシフェラーゼは、好ましくは、抽出剤とは別に保存する。
ADPのATPへの変換開始時に全ての試薬を含み、および/または別個の工程であるルシフェリン/ルシフェラーゼ添加の後に発光測定器による計数を続ける本発明の態様では、マグネシウムを、ルシフェリン/ルシフェラーゼ試薬によって提供することができる。しかし、EDTAおよびリン酸塩によるマグネシウムイオンの結合のため、マグネシウムイオンの量は、予め実験または計算することにより、明確に確認する必要がある。当業者であれば、所定のADP、サンプルおよびルシフェリン/ルシフェラーゼ混合物に添加すべきマグネシウム塩の最適量は、既知量の細菌、例えば大腸菌(E. coli)を含むサンプルを使用する通常の実験を行い、それにより最大の信号を得ることにより、容易に求めることができることが分かる。下記図3は、下記実施例で使用する混合物に添加すべき酢酸マグネシウムの最適量を示す。
Mg2+イオンは、汚染物のアデニル酸キナーゼによるADPの消耗を容易にするので、それらは使用前には一緒にしないのが好ましい。これを避けるために、EDTAなどのキレート剤をADPに入れてもよい。好ましくは、マグネシウムおよびADPは、使用直前またはADP変換工程の際に一緒に入れる。試薬を一緒にしておく場合は、ADPのATPへの早すぎる変換を防ぐために、凍結乾燥の状態で保存するのが好ましい。
上述したように、他のアッセイを使用することもできるが、ATPは、好ましくは、ルシフェリン/ルシフェラーゼ系を使用して検出し、サンプル中のATPの量を示す光学的に検出可能な信号を得る。ルシフェリン/ルシフェラーゼ調製物およびそれをATPアッセイにおいて使用する方法は当業者には周知であり、市販されている(例えば、Brolinら)。典型的な組成物は、例えば、0.1〜10mg/lのルシフェラーゼ、15〜1000μモル/lのD−ルシフェリン、並びにMgCl2(2.5〜25ミリモル)、EDTA、BSAおよびpH7の緩衝液(例えば、EP 054676参照)などの試薬を含む。
本明細書に記載したアデニル酸キナーゼ試験法で使用する単一試験に対しては、ADPをATPに変換しながら計数が継続できるように、pHを、両方の酵素に対して最適であるように、すなわち妥協の値に調節するのが好ましい。これは、サンプルに既知数の細菌を使用する通常の実験により求めることができる。
サンプル、ADPおよびマグネシウムイオン源は、アデニル酸キナーゼ反応に適したpHを付与する緩衝液で混合することができる。他の試薬は不要である。すなわち、5.5〜8.5のpHを付与する緩衝液を使用することができ、最適pHは6〜7の間であり、好ましくはpH6.5である。適する緩衝液の例としては、トリスおよびリン酸塩緩衝液が挙げられる。本発明方法を行うのに備えて、サンプルは、該緩衝液に集めるか、および/または希釈するのが最も適する。
いずれかの増幅アッセイと同様に、本発明のアデニル酸キナーゼアッセイは、試薬の純度によって制限される。この場合、重要な汚染物質は、ADP基質におけるATPおよびルシフェラーゼ調製物におけるアデニル酸キナーゼである。微生物の高感度アッセイとして使用する場合、特に微生物が潜在的に有害であり、低い数値での検出を必要とする場合、各試薬の純度は、そのアッセイでそれと反応するはずの基質に関してできる限り高いことが必要である。
最初の問題を処理するために、好ましくは、高純度の市販ADP(>99.5%純度)をカラムクロマトグラフィーでさらに精製した後、使用する。これは、たとえ少量でもATPが混ざっていると、バックグランドの示度を高くするのには十分であるため、望ましい。例えば、ジエチルアミノエチルセルロースカラムおよび0.02mMの塩酸溶離液を使用して、ATPを実質的に分離することができる程度にADPよりもかなりゆっくりカラムから溶離する。他のクロマトグラフィー媒体および溶離液の組み合わせも使用して同様の効果を得ることもできる。例えば、Nucleosil 3(RTm)およびNucleosil 5(RTm)などのNucleosil(登録商標(RTm))カラム充填材(Technicol, Stockport Cheshire UK製)を使用し、0.06MのKH2PO4:メタノール(77:23v/v)(pH6)を5mMの硫酸水素テトラブチルアンモニウムとともに使用するHPLCがある。ADP対ATPの比が高い画分は使用のために保持し、純度は、アデニル酸キナーゼ作用によるADPレベルの測定、およびアデニル酸キナーゼがない場合はATP汚染レベルの測定の後に、ルシフェリン/ルシフェラーゼ試薬が媒介する生物発光によって評価する。
20mMのリン酸カリウム(pH4.6)と平衡させた好ましいEconopaq Q (RTm)強陰イオン変換ゲルカートリッジ(Biorad-RTm)を使用し、400mMまでの段階的濃度のKPiで溶離することにより、ADPは強く保持され、コヒーレントピークとして溶離され、ATPはその後で溶離されることが分かった。このようにして、ATPモル%の上限が2×10-8であるADPが得られた。本出願人が文献から知った最も純粋なADPは、0.001%のATP(Shutenkoら、前出、参照)であり、すなわち、本発明は、本発明方法で使用するための、ATPが0.001モル%未満、より好ましくは2×10-8モル%以下であるADPを提供する。
ADP基質からATPを除去するための別の方法は、ATPを特異的に分解する酵素(ルシフェラーゼまたはアピラーゼなど)を使用する。該酵素は、クロマトグラフィーにより精製したADPをさらに精製するために使用することができ、あるいは、酵素により精製したADPをカラムクロマトグラフィーにより処理してもよい。なお、アピラーゼはADPアーゼでもあるが、いくつかはATPに対してより活性であり、ADPはかなり高いレベルで存在するので、これはあまり問題ではない。
第二の問題に関して、必須の「ハウスキーピング」酵素であるアデニル酸キナーゼは、実質的に全生物に存在し、一般的には、ルシフェラーゼ調製物中に存在する。ほんの少量の混入であるかもしれないが、目的がサンプル中の極微量のアデニル酸キナーゼの測定であるため、ルシフェラーゼにおけるその存在は制限因子であると考えられる。実際、本出願人は、1単位(U)の活性を0.5mMのADPおよび4.5mMのMg2+の存在下、pH7.8、20℃で1μモルのADPを1μモルのATPに変換する酵素の量として定義すると、市販のルシフェラーゼは、10-7U/ml以上のアデニル酸キナーゼ活性を含む可能性があるが、その基質であるルシフェリンは、活性があったとしても、非常に少ないことを確認した。さらに、ルシフェラーゼ試薬は、安定剤、通常はウシ血清アルブミン(BSA)などのタンパク質で安定化するのが普通であり、この市販製剤は、本出願人によって、かなりのアデニル酸キナーゼ活性を有することが確認された。
ルシフェラーゼおよびアデニル酸キナーゼの分子量はかなり異なり、各々、61kDおよび21kDである。さらに、ルシフェラーゼは膜結合タンパク質であり、従って、比較的疎水性であるが、アデニル酸キナーゼは可溶性酵素として生じる。すなわち、アデニル酸キナーゼは、例えばサイズ排除クロマトグラフィー、逆相クロマトグラフィー、またはその両方によってルシフェラーゼ調製物から除去することができる。あるいは、またはこの他に、ルシフェラーゼのアデニル酸キナーゼ汚染の問題は、汚染アデニル酸キナーゼがかなりの影響を及ぼすための時間を持たないように、測定を行う直前、または行うときに、生物発光試薬(ルシフェラーゼおよびルシフェリン)を添加することにより回避することができる。
ルシフェラーゼを精製するのに適する方法は、多孔性の低いゲル(例えば、Sephadex G-25 (RTm))によるカラムクロマトグラフィー分画(NielsenとRasmussen, Acta Chemica Scandinavica 22 (1968) p1757-1762参照;一連のSephadex(RTm)およびSepharose(RTm)カラム(例えば、Blue Sepharose)および/またはSDS電気泳動(Devineら、Biochimica et Biophysica Acta 1172 (1993) 121-132参照)またはある一定の期間、高められた室温での老化(ageing)を使用する。
ウシ血清アルブミンなどの試薬からアデニル酸キナーゼ活性を除去するためには、同様に、カラムクロマトグラフィーの使用が可能である。これに関して成功したさらに別の処理は、ルシフェラーゼを安定化するための能力は保持されるが、アデニル酸キナーゼ活性は総じて低下し、あるいは消耗されるようにBSAを化学処理するものである。タンパク質の酵素活性の消耗に対するどの従来の化学的処理も、この目的に等しく適用することができる。あるいは、非タンパク質ルシフェラーゼ安定剤、例えばグリセロールは、BSAの補足または代わりとして使用することができる。
例えば、本出願人は、市販のBSAのアデニル酸キナーゼ活性を、単に酸またはアルカリ性pHで熱処理することにより、元の活性の2%未満に低下させることができることを確認した。一つの適する有効な処理は、BSAをpH5.6またはpH10、50℃で24時間加熱するものである。アデニル酸キナーゼのないBSAのさらに別の供給源は、SigmaおよびBDHから市販されている、化学的に処理された試薬アセチル化BSAである。当業者であれば理解されるように、他の化学的に処理されたBSAも適する。
標的微生物に関連するアデニル酸キナーゼ全てが、本発明のADP、マグネシウムイオンおよびルシフェラーゼ/ルシフェリンアッセイ試薬に利用できるようにするためには、細胞内物質が放出され、さもなくば、試薬にさらされるように、微生物を破砕することが必要である。そのような破砕は、超音波発生機などの機械的手段を使用して、所望により低温ショックまたはリゾチームなどの試薬とともに浸透圧ショック法の使用により、またはその便利な洗剤の使用により行われると考えられる。そのような洗剤は市販されており、通常は、「抽出剤」と言う。典型的な抽出剤としては、CTAB(臭化セチルトリメチルアンモニウム)などの一般的な陽イオン洗剤、ならびにBiotrace(RTm)XM抽出剤(Biotrace, Bridgend UK製)、Celcis UK陽イオン抽出剤およびLumac NRM(RTm)(Lumac BV, Holland製のヌクレオチド放出試薬)などの専売試薬が挙げられる。CTABを使用する場合、通常の調製剤は、0.01〜1%CTAB水溶液を含む(例えば0.2%)が、他の濃度も、当業者であれば考えつくと考えられる。
すなわち、微生物を含むことが疑われるアッセイサンプルにADPおよびルシフェラーゼ/ルシフェリン試薬を添加する前に、破壊剤の使用により微生物を破砕して、その細胞内物質が発光測定試薬に接触できるようにするのが好ましい。標的細胞を菌類胞子などの細胞から区別することを望む場合、二つの別々のアッセイを行うことが可能である。一方は、これらの胞子および多細胞の動物「体」細胞のみを破砕することができる非イオン洗剤(例えば、Triton TX-100(RTm))により処理し、他方は、全ての細胞を破砕するための上記で詳述した陽イオン洗剤の「抽出剤」により処理するアッセイである。これらのアッセイは、アピラーゼなどのATPアーゼを洗剤/ルシフェラーゼ/測定サイクル間、すなわち、間に濾過工程を有する第一のサイクル工程において非イオン洗剤を使用する一方のサイクルおよび陽イオン洗剤を使用する他方のサイクルの間で添加する場合、同一のサンプルに対して行うことが可能である。
ルシフェラーゼ/ルシフェリン系に対する抽出物の影響は重要であることが知られており(例えば、Simpsonら、(1991) J. Biolumin Chemilumin 6(2) pp97-106参照)、陽イオン洗剤は反応を可能にするが、ルシフェラーゼを徐々に不活性化することが知られており、陰イオン洗剤は反応を阻害し、非イオンおよび両イオン洗剤は広範囲にわたって増強することが知られている。0.15%の陽イオン洗剤および0.25%の第三ジアミン界面活性剤の混合物(Celcis, Cambridge, UK製)は、本発明の目的には十分であることが分かったが、同一溶液に共存する場合、アデニル酸キナーゼおよびルシフェラーゼ活性の最適混合物を生じる他の「抽出剤」のスクリーニングは、当業者であれば問題ないであろう。
全ての必須工程、すなわちADPのATPへの変換および続くルシフェラーゼのルシフェリンに対する作用が完了した後に混合物から発する光は、光検出器内で例えば発光測定管によるサンプル体積の滞留によって、ルシフェラーゼおよびルシフェリンまたは必須工程を促進することができる他の試薬を添加した直後、あるいは添加と同時に測定することができる。
本発明の第二の態様では、本発明方法に必要な必須試薬、すなわち、アデノシン二リン酸、マグネシウムイオン源ならびに好ましくはルシフェラーゼおよびルシフェリンを含むテストキットを提供する。好ましくは、該キットは、これらの試薬全てを含み、ルシフェラーゼおよびルシフェリンは単一の試薬溶液として供給し、アッセイしようとする標的細胞の破砕に適する洗剤試薬をそのキットに含む。通常、微生物のアッセイに対しては、陽イオン洗剤のみが必要であるが、菌の胞子および体細胞の存在がかなりありそうな場合は、さらに非イオン洗剤を含めて、それらの数を評価してもよい。キットは、単一パッケージの形状であり、好ましくは、本発明方法を実施する方法に関する使用説明書を含む。試薬は容器に入れ、直接の使用または希釈後の使用に適する濃度である。
マグネシウムイオンは、ADPのATPへの変換(conversion)が始まる前にこれを添加すべき場合は、ルシフェラーゼ/ルシフェリンとともに供給するのが適しているが、その試薬のEDTAまたはリン酸塩に結合する量よりも過剰にすべきであり、アデニル酸キナーゼおよびルシフェラーゼの両方の要求量を受け入れるように最適化すべきである。微生物の検出の場合、マグネシウムイオンは、好ましくは、サンプル採集/希釈緩衝液とともに供給するが、特定用途の場合は、他の様式が好ましい可能性がある。最も便利なのは、マグネシウムイオンをサンプル採集または希釈緩衝液とともに供給し、ADPは洗剤/界面活性剤抽出剤および所望によりEDTAなどの安定剤とともに供給し、ルシフェラーゼおよびルシフェリンは一緒にして供給し、こうして、3試薬のテストキットを提供する。あるいは、これらの試薬は、それらが使用前に相互作用して、例えばADPの分解(degradation)を引き起こすことがないように凍結乾燥した単一の試薬として供給してもよい。
本発明の好ましいテストキットは、純度が99.999%より高いADP試薬、およびBSAを含みアデニル酸キナーゼ活性は実質的にないルシフェラーゼ/ルシフェリン試薬を含む。あるいは、キットの使用説明書および/またはそれらの相対濃度において示される使用するルシフェラーゼ/ルシフェリン比は、ルシフェラーゼが十分速くルシフェリン基質に作用して、最初の光放出が終わった後にルシフェラーゼ結合アデニル酸キナーゼがATPを産生することができるようにする。すなわち、微生物由来のアデニル酸キナーゼは、迅速な動力学反応によって示され、汚染物ATPはグロー(glow)によって示される。
好ましい精製試薬は、上記方法によって提供することができる。なお、ルシフェラーゼ中のアデニル酸キナーゼ活性は、ルシフェラーゼを数カ月または数年放置することにより消散させることもできる。
次に、本発明の方法、装置、試薬およびキットの例を、下記実施例および図を参照して説明するが、下記実施例および図は本発明を限定するものではない。本発明のさらに別の態様は、これらに照らしてみれば、当業者には明らかである。
図面の説明
図1は、本発明の改善されたアッセイを使用し、ルシフェリン/ルシフェラーゼ添加の前に1分および5分インキュベートすることによる、発光測定器の信号の対数(log)を200μlのサンプルにおける大腸菌の数の対数(log)に対してプロットした図である。
図2は、マグネシウムの非存在下で、発光測定器の信号の対数(log)を大腸菌の細胞数の対数(log)に対してプロットした図である。
図3は、pH7.5およびpH8.0における一定数のP. aeruginosaに由来する発光測定器の信号に対するマグネシウムイオン濃度の影響を示す図であり、マグネシウムを添加しない場合に対して10倍増加したことを示す。
実施例1:精製アデノシン二リン酸試薬の調製
20mMのリン酸カリウム(pH4.6)で平衡化し、5mlの1mMADP(2.1mg)をロードした5mlのEconopac Qカートリッジ(RTm)(Biorad-RTm)を使用して市販の高純度(>99.95%)ADP(Sigma)を、液体クロマトグラフィーでさらに精製した。溶離は、400mMまでの段階的KPi濃度により行った。ADPは強く保持されており、約340mMのKPiのピークとして溶離された。系にポンプ(5ml/分)およびグラジエントミキサーをセットし、全部で200mlに50〜1Mの勾配のKPiを供給し、5mlの画分を集めた。ADPが画分12と17との間に鋭いピークとして溶離されるとともに、ATPがその勾配の終わりに現れ始めた。残りのATPは、1Mまでの〔KPi〕段階で溶離された。このカラムからの最も純粋なADP画分は、ATPが2×10-8モル%未満であった。
実施例2:アデニル酸キナーゼを含まないルシフェラーゼ試薬の調製
アデニル酸キナーゼ活性を、乾燥状態での12カ月間にわたる高い室温(約30℃)での数カ月を含む老化(aging)により、市販のルシフェリン/ルシフェラーゼ試薬(Biotrace HM(RTm))から消散させた。
実施例3:キナーゼを含まないルシフェラーゼ試薬の別の調製
市販のルシフェラーゼを、上記したBlue Sepharose(RTm)を使用し、Devineら(1993)の方法によるカラムクロマトグラフィーを使用して精製する。
実施例4:アデニル酸キナーゼを含まないBSAの調製
Sigma Fraction V(RIA Grade, Cat. No. A-7888)BSAを、200mlの滅菌水中で1%w/vとし、最初のpHを5.6とした。この50mlのサンプル2つを100ml容のDuranビンに入れ、残りは、5MNaOHを使用してpH10とし、2つのDuranの各々に50ml入れた。微生物の増殖を防ぐための保存剤として、チメロサールを最終濃度0.02%にして添加し、そのびんを37℃または50℃で24時間インキュベートした後、各々のpHを5MのHClまたは5MのNaOHの適する方で7.6に再調整した。アデニル酸キナーゼ活性の測定を、上記で調製した100μlのBSAサンプルを100μlの30mM酢酸マグネシウム溶液と混合し、得られた混合物を発光測定器の3.5ml容発光測定管に入れ、実施例1で調製した100μlのADP溶液ならびにカラムクロマトグラフィーおよび化学的に処理したBSAの使用によりアデニル酸キナーゼ活性を含まないように調製した100μlのルシフェリン/ルシフェラーゼ試薬(Celcis, Cambridge UK)を添加することにより行った。5秒後に、10秒間にわたる光の放出を測定してコンピューターに記録し、10秒間の読み取りを全部で10連続行ってATP産生速度を求めた。分析は、二重に行った。検定は、10ng/ml(91 femtomole)のATP水溶液5μlから放出される光の測定を4回行うことにより行った。平均の信号は、2950/femtomoleであった。
結果:37℃でインキュベートしたBSAサンプルは透明なままであったが、50℃の場合は沈殿を生じ、それは、pH10ではわずかであり、pH5.6では非常に多かった。pH10および50℃ではわずかな変色があった。これらのサンプルに残っているアデニル酸キナーゼ活性を下記表1に、発光測定器の計数/分によって表す。
pH10および50℃のサンプルは、2週間後ですら変色の増加により使用できなくなったので、より長期間の場合は、さらに温和な不活性化を使用するか、あるいは、どんな期間でも保存しようとする場合は、直ちに凍結乾燥するのが好ましい。37℃のサンプルは、この方法では変わらなかったので、インキュベーション時間を延ばすことによりアデニル酸キナーゼ活性のないBSAを安定にするための良好な範囲である。Biotrace HM(RTm)試薬が、40℃での保存の後、乾燥状態でその活性を失ったという事実は、その可能性を示すものである。
Figure 0003856467
実施例5:BSAを含有するルシフェリン/ルシフェラーゼ試薬の調製
ルシフェリン/ルシフェラーゼの市販調製物は、通常、BSAを必要なものとして含む。上記実施例4で述べたように化学的に処理した。またはアセチル化BSAとして市販されているBSA(例えば、BDHまたはSigma)を、アデニル酸キナーゼ活性が10-9Uアッセイ体積(すなわち、300μl)未満であるCelcis LDRルシフェリン/ルシフェラーゼ発光試薬を与えるような他の標準的なCelcis試薬とともに通常の割合でアデニル酸キナーゼを含まないルシフェラーゼと混合した。
実施例6:本発明のテストキット
本発明のテストキットは、下記容器から成る。
(i)サンプルを採集/希釈するための15mMの酢酸マグネシウム溶液を保持する容器;
(ii)0.2mMのEDTAならびに、0.15%の陽イオン洗剤および0.25%の三級ジアミン界面活性剤の混合抽出剤をさらに含む、リン酸カリウム緩衝溶液(7.5mM、pH6.5)における0.3mM濃度の実施例1で調製した精製ADP溶液(ATPに関して>99.99999998%純粋)を保持する容器;
(iii)アデニル酸キナーゼが10-8U/100μl未満である、ルシフェリン/ルシフェラーゼLDR(Celcis, Cambridge, UK)生物発光試薬を保持する容器。
所望により、該パッケージは、非イオン洗剤溶液(Triton X-100(RTm)0.2%またはそれと同等のもの)の容器、および/またはサンプルに対する非イオン洗剤の作用により放出されるATPを破壊して陽イオン洗剤の添加による再アッセイに適するようにするためのアピラーゼなどのATPアーゼを保持する容器を含む。
実施例7:本発明の方法を使用する既知量の大腸菌のアッセイ
200μlのリン酸緩衝塩水(pH7.4)につき約2.2×107個の微生物を含む1週齢の大腸菌培養物をストックとして使用し、マグネシウムイオンを含む採集/希釈試薬(実施例6の(i))で順次10倍希釈して、200μlのサンプルにつき107〜0.1個の微生物を含むサンプルを作った。
各200μlのサンプルを3.5ml容の発光測定管に添加し、100μlのADP/抽出剤試薬(実施例6の(ii))を添加して、全体積300μlの混合物を室温で1〜5分インキュベートした。インキュベーションが終了すると、100μlの改良Celcis LDR生物試薬(上記実施例6の(iii))を添加し、放出される光の最初の10秒間測定した後、10秒間隔で1分間測定し、Biotrace M3 (RTm)発光測定器を使用して累積様式で光の増加を求めた。最後の測定値から最初の信号値を差し引いて、1分間当たりの信号(カウント)を得た。
本発明方法の効果は、図1を参照することにより示すことができる。図1は、大腸菌と、ADPとともに5分インキュベートした後のサンプル混合物によって放出された光との間の統計的に有効な直線的応答が、1サンプル当たり10個の生物に対して得られ、100個以上の生物に対しては1分のインキュベーションで上向きとなり、どちらの場合も、検出限界は約10個の微生物である。これは、1分のインキュベーションの後の100個の生物による相違がほんの26cpmであり、1000個の場合は67cpmであり、直線的応答は1000個以上の細胞に対してのみ得られるPCT出願公開WO 94/17202の方法と比較して非常に有利である。本発明方法での1サンプルに対する1000個の細胞による信号の増加は、比較すると、1分後に数千cpmとなる。
理解されるように、サンプルにおける未知量の微生物に対するアッセイを本発明方法を使用して行うために、検量線を、図1および2に示すように(例えば、対数値として)既知数の微生物を発生測定器のカウントに対してプロットすることにより作成し、未知数の微生物(0個の生物を含む)を含むサンプルのカウント数を同じプロトコールを使用して誘導し、そのサンプルの微生物数を、その検量線上の同じカウント数に対応するものとして推定することができる。
当業者であれば理解されるように、特定の微生物(例えば、細菌)に存在するアデニル酸キナーゼの量は、他の微生物とは異なる可能性がある。例えば、酵母は、その大きさのために、細菌よりも多くのアデニル酸キナーゼを含み、実際、個々の酵母はこの方法によって検出することができる。すなわち、所与の微生物に対しては特定の検量線が必要であり、同じ微生物でも異なる状態(例えば、弱められた、pHストレスのある、または酸素ストレスのある生物)に対してはそのような検量線を作成する必要があると考えられる。しかし、既存のATPに基づく方法に対する本発明方法のさらに別の利点は、アデニル酸キナーゼ含量が、細胞代謝により消耗されるかなり変化し得るATP含量よりも細胞数とより密接に関係するということである。

Claims (41)

  1. サンプル中に存在する微生物細胞および/またはその細胞内物質の存在および/または量を測定する方法において、そのサンプル中のアデニル酸キナーゼの量を、サンプルをマグネシウムイオンの存在下でアデノシン二リン酸(ADP)と混合し、このADPからそのサンプルによって産生するアデノシン三リン酸(ATP)の量を測定し、そのようにして産生したATPの量をアデニル酸キナーゼの存在および/または量と関連づけ、かくして微生物細胞および/またはその細胞内物質の存在および/または量と関連づけることにより推定することを特徴とする方法。
  2. マグネシウムイオン源を試薬として添加することを特徴とする請求項1に記載の方法。
  3. サンプルを水性懸濁物または溶液の形態で供給し、微生物細胞および/またはその細胞内物質の推定は、存在するアデニル酸キナーゼによりADPがATPに変換される条件下でADPをサンプルに添加し、該サンプルを予め定めた時間インキュベートして該変換を行い、ルシフェラーゼおよびルシフェリン試薬を添加し、サンプルから放出される光の量を測定し、それを微生物細胞および/またはその細胞内物質の存在および量と関連づけることにより行うことを特徴とする請求項1または2に記載の方法。
  4. 混合物中のADP濃度が0.005mMより多い、請求項1〜3のいずれか一項に記載の方法。
  5. ADPが0.08mMより多いことを特徴とする請求項4に記載の方法。
  6. ADP濃度が0.1mMであることを特徴とする請求項4に記載の方法。
  7. ADPからATPへ変換する際の懸濁物または溶液中のマグネシウムイオンの濃度が1mM以上であることを特徴とする請求項1〜6いずれか一項に記載の方法。
  8. 懸濁物または溶液中のマグネシウムイオンの濃度が10mM以上であることを特徴とする請求項7に記載の方法。
  9. マグネシウムイオンが酢酸マグネシウムの形態で供給されることを特徴とする請求項2に記載の方法。
  10. ルシフェリン/ルシフェラーゼ発光試薬を、ADPおよびマグネシウムイオン源と共に単一試薬としてインキュベーション開始時にサンプルに添加することを特徴とする請求項1〜9のいずれか一項に記載の方法。
  11. マグネシウムイオン源およびADPを使用前は乾燥形態または別々の溶液で保存し、使用直前またはADP変換ステップで一緒にするか水溶液にすることを特徴とする請求項1〜10のいずれか一項に記載の方法。
  12. マグネシウムイオン源およびサンプルを、ADPを添加する前に混合することを特徴とする請求項1〜11のいずれか一項に記載の方法。
  13. サンプルを、マグネシウムイオン源を含む溶液中に採集するか該溶液で希釈することを特徴とする請求項12に記載の方法。
  14. ADPのATPへの変換を、pH5.5〜8.5で行うことを特徴とする請求項1〜13のいずれか一項に記載の方法。
  15. ADP中のATPモル%が0.001%未満であることを特徴とする請求項1〜14のいずれか一項に記載の方法。
  16. ADP中のATPモル%が2×10-8以下であることを特徴とする請求項15に記載の方法。
  17. ADPが混入するアデニル酸キナーゼにより早まってATPに変換されるのを防ぐために、ADPをキレート剤の存在下で保存することを特徴とする請求項15に記載の方法。
  18. ルシフェラーゼ/ルシフェリン試薬中のアデニル酸キナーゼ含量が10-7U/ml未満であることを特徴とする請求項1〜17のいずれか一項に記載の方法。
  19. ルシフェラーゼ/ルシフェリン試薬が、化学的に処理されてそのアデニル酸キナーゼ活性を消散させたウシ血清アルブミンを含むことを特徴とする請求項18に記載の方法。
  20. サンプルを、微生物細胞を破砕してそのアデニル酸キナーゼを放出させる抽出剤で処理することを特徴とする請求項1〜19のいずれか一項に記載の方法。
  21. 細胞が菌類胞子または体細胞であり、抽出剤が非イオン性洗剤からなることを特徴とする請求項20に記載の方法。
  22. 細胞全部を検出しおよび/または定量するものであり、抽出剤が陽イオン性洗剤からなることを特徴とする請求項20に記載の方法。
  23. 抽出剤がさらに界面活性剤を含むことを特徴とする請求項22に記載の方法。
  24. 細胞が細菌細胞であり、非イオン性洗剤によって放出されるATPを陽イオン性洗剤および界面活性剤によって放出されるATPから差し引いた残りが細菌細胞数に関係することを特徴とする請求項20に記載の方法。
  25. ADPと、ADPのATPへの変換が生じるように微生物のアデニル酸キナーゼをこれらにさらすための抽出剤とマグネシウムイオン源とを含んでなる、請求項1〜23のいずれかに記載の方法により微生物細胞および/またはその細胞内物質を検出および/または定量するためのテストキット。
  26. さらにマグネシウムイオン源を含むことを特徴とする請求項25に記載のテストキット。
  27. マグネシウムイオン源がサンプルの採集または希釈溶液として提供されることを特徴とする請求項26に記載のテストキット。
  28. 採集または希釈緩衝液が酢酸マグネシウムを含むことを特徴とする請求項27に記載のテストキット。
  29. さらに、ルシフェラーゼおよびルシフェリンを、ATPの存在下で光を放出することができる生物発光試薬の形態で含むことを特徴とする請求項25〜28のいずれか一項に記載のテストキット。
  30. ADPが洗剤および/または界面活性剤抽出剤と一緒になっていることを特徴とする請求項25〜29のいずれか一項に記載のテストキット。
  31. ADP、マグネシウムイオン源および生物発光試薬が3個の別々の容器で提供されることを特徴とする請求項25〜30のいずれか一項に記載のテストキット。
  32. 試薬全部が単一の凍結乾燥試薬として提供されることを特徴とする請求項25〜31のいずれか一項に記載のテストキット。
  33. ADPの純度がATPに関して99.999モル%より高いことを特徴とする請求項25〜32のいずれか一項に記載のテストキット。
  34. アデニル酸キナーゼ活性が10-7U/ml未満である生物発光試薬を含むことを特徴とする請求項25〜33のいずれか一項に記載のテストキット。
  35. 生物発光試薬が、化学的に処理されてアデニル酸キナーゼ活性を消散させたウシ血清アルブミンからなることを特徴とする請求項32に記載のテストキット。
  36. ATPに関する純度が99.999%より高いADPを含む試薬を含む請求項25〜32のいずれか一項に記載のテストキット。
  37. さらに、混入したアデニル酸キナーゼによるADPのATPへの変換を防ぐのに十分な量のキレート剤を含むことを特徴とする請求項36に記載のテストキット。
  38. キレート剤がEDTAからなることを特徴とする請求項37に記載のテストキット。
  39. ATPに関する純度が99.999%より高いADPを含む、請求項1に記載の方法に使用するための試薬。
  40. さらに、混入したアデニル酸キナーゼによるADPのATPへの変換を防ぐのに十分な量のキレート剤を含むことを特徴とする請求項39に記載の試薬。
  41. キレート剤がEDTAからなることを特徴とする請求項40に記載の試薬。
JP50477196A 1994-07-13 1994-07-13 微生物学的試験方法および試薬 Expired - Lifetime JP3856467B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB1994/001513 WO1996002665A1 (en) 1994-07-13 1994-07-13 Microbiological test method and reagents

Publications (2)

Publication Number Publication Date
JPH10502538A JPH10502538A (ja) 1998-03-10
JP3856467B2 true JP3856467B2 (ja) 2006-12-13

Family

ID=10749377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50477196A Expired - Lifetime JP3856467B2 (ja) 1994-07-13 1994-07-13 微生物学的試験方法および試薬

Country Status (14)

Country Link
EP (1) EP0788553B1 (ja)
JP (1) JP3856467B2 (ja)
AT (1) ATE215608T1 (ja)
AU (1) AU698916B2 (ja)
BR (1) BR9408598A (ja)
CA (1) CA2194457C (ja)
DE (1) DE69430327T2 (ja)
DK (1) DK0788553T3 (ja)
ES (1) ES2171457T3 (ja)
GB (1) GB2303919B (ja)
HU (1) HU220855B1 (ja)
NO (1) NO318646B1 (ja)
NZ (1) NZ268405A (ja)
WO (1) WO1996002665A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9308411D0 (en) * 1993-04-23 1993-06-09 Celsis Ltd Detection of biological material
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
US6861230B1 (en) 1998-01-21 2005-03-01 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Antibiotic sensitivity testing
GB9803156D0 (en) * 1998-02-13 1998-04-08 Celsis Int Plc Assay
GB9823468D0 (en) 1998-10-28 1998-12-23 Secr Defence Novel enzyme
GB9911095D0 (en) * 1999-05-13 1999-07-14 Secr Defence Microbiological test method and reagents
GB9925161D0 (en) 1999-10-26 1999-12-22 Secr Defence Novel enzyme
GB0111275D0 (en) 2001-05-09 2001-06-27 Secr Defence Analytical method and kit
GB0122790D0 (en) 2001-09-21 2001-11-14 Secr Defence Method of determining the presence of target bacteria
GB0202421D0 (en) * 2002-02-01 2002-03-20 Celsis Internat Plc Polyols in bioluminescence assays
GB0508981D0 (en) 2005-05-03 2005-06-08 Acolyte Biomedica Ltd Distinguishing cells in a sample
GB0517005D0 (en) 2005-08-19 2005-09-28 Enigma Diagnostics Ltd Analytical method and kit
GB0915664D0 (en) 2009-09-08 2009-10-07 Enigma Diagnostics Ltd Reaction method
EP3284831B1 (en) 2010-04-16 2019-07-24 Momentum Bioscience Limited Methods for measuring enzyme activity useful in determining cell viability in non-purified samples
US9284500B2 (en) 2013-03-14 2016-03-15 Exxonmobil Research And Engineering Company Production of base oils from petrolatum
EP3191600A1 (en) 2014-09-11 2017-07-19 Promega Corporation Luciferase sequences utilizing infrared-emitting substrates to produce enhanced luminescence

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933592A (en) * 1965-02-17 1976-01-20 Hazleton Laboratories, Incorporated Method of detecting living microorganisms
DE3047860A1 (de) * 1980-12-18 1982-07-15 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren zur bestimmung von hla-antigenen
CH678065A5 (en) * 1988-04-13 1991-07-31 Hamilton Bonaduz Ag Quantitative determn. of adenosine-tri:phosphate - by a bio-luminescent reaction capable of determining ATP in somatic and/or microbial cells
GB9301118D0 (en) * 1993-01-21 1993-03-10 Secr Defence Enzyme linked assays

Also Published As

Publication number Publication date
JPH10502538A (ja) 1998-03-10
EP0788553A1 (en) 1997-08-13
NO318646B1 (no) 2005-04-25
CA2194457C (en) 2009-05-12
NO970105D0 (no) 1997-01-10
GB2303919B (en) 1998-08-26
GB9627142D0 (en) 1997-02-19
AU7130594A (en) 1996-02-16
AU698916B2 (en) 1998-11-12
DE69430327T2 (de) 2002-10-31
WO1996002665A1 (en) 1996-02-01
DE69430327D1 (de) 2002-05-08
DK0788553T3 (da) 2002-06-17
CA2194457A1 (en) 1996-02-01
ATE215608T1 (de) 2002-04-15
ES2171457T3 (es) 2002-09-16
GB2303919A (en) 1997-03-05
NO970105L (no) 1997-03-13
BR9408598A (pt) 1997-11-18
EP0788553B1 (en) 2002-04-03
HUT76563A (en) 1997-09-29
HU220855B1 (en) 2002-06-29
NZ268405A (en) 1997-12-19

Similar Documents

Publication Publication Date Title
US5648232A (en) Microbiological best method and reagents
JP3856467B2 (ja) 微生物学的試験方法および試薬
Lundin Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites
EP0680515B1 (en) Microbiological test method and reagents
CN1090677C (zh) 俘获测定法
US9057093B2 (en) Detection and enumeration of microorganisms
US6660489B2 (en) ATP extraction method
Siro et al. Continuous flow method for extraction and bioluminescence assay of ATP in baker's yeast
CN1091804C (zh) 微生物检测法和试剂
US20100311093A1 (en) Method of amplifying atp and user thereof
Singh et al. Evaluation of biomass
Bostick et al. Methodologies for the determination of adenosine phosphates
CN110684822A (zh) 一种基于丙酮酸激酶检测样品中微生物的方法及试剂盒
EP3218510B1 (en) Kit comprising atp-diphosphohydrolase for detecting bacterial atp in a sample
NO315276B1 (no) Mikrobiologisk fremgangsmåte, apparat for anvendelse derav samt testkit ogADP reagens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term