JP3855583B2 - Composite - Google Patents

Composite Download PDF

Info

Publication number
JP3855583B2
JP3855583B2 JP2000061969A JP2000061969A JP3855583B2 JP 3855583 B2 JP3855583 B2 JP 3855583B2 JP 2000061969 A JP2000061969 A JP 2000061969A JP 2000061969 A JP2000061969 A JP 2000061969A JP 3855583 B2 JP3855583 B2 JP 3855583B2
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
metal
fibers
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000061969A
Other languages
Japanese (ja)
Other versions
JP2001250893A (en
Inventor
隆太 神谷
藤夫 堀
義治 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2000061969A priority Critical patent/JP3855583B2/en
Publication of JP2001250893A publication Critical patent/JP2001250893A/en
Application granted granted Critical
Publication of JP3855583B2 publication Critical patent/JP3855583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭素繊維と金属との複合材に係り、例えば半導体装置の放熱部材や電子部品搭載基材として好適な複合材に関するものである。
【0002】
【従来の技術】
従来、特開平4−147654号公報には、この種の電子部品搭載基材として、アルミニウム又はアルミニウム合金に炭素繊維を含有させた複合材が提案されている。この複合材はピッチ系炭素繊維を溶媒に分散して攪拌濾過したものを圧縮した炭素繊維の予備成形体に、アルミニウムを高圧で含浸させて製造したものである。
【0003】
また、特開平11−49578号公報には、半導体装置用放熱部材として、黒鉛化カーボンのマトリックスに、黒鉛化カーボン長繊維を電子部品搭載面と平行に2次元面内で直交又は所定の角度に疑似等方で配列し、さらに電子部品搭載面に垂直な方向に配向した繊維群を有する黒鉛化カーボン繊維/黒鉛化カーボンの複合体が提案されている。この複合体は三次元に織られた黒鉛化カーボン繊維にピッチ樹脂の含浸、炭素化、黒鉛化という黒鉛化処理の工程を複数回繰り返すことで製造される。
【0004】
【発明が解決しようとする課題】
特開平11−49578号公報に開示された複合材は、熱伝導率及び熱膨張率とも半導体装置用放熱部材に適した熱特性を有する。しかし、この複合材を製造するには、黒鉛化カーボン繊維の三次元織物に対して、ピッチ樹脂の含浸、炭素化、黒鉛化という黒鉛化処理の工程を複数回繰り返す必要があり、製造コストが高くなる。
【0005】
また、黒鉛化カーボン繊維は破壊歪みが小さいため曲げに弱く、三次元織物を製造する場合に糸(繊維)同士の擦れにより切断し易く、特に繊維層を結合するための糸が切断し易い。従って、生産性が悪いという問題もある。
【0006】
特開平4−147654号公報に開示された複合材では、強化繊維を構成するピッチ系炭素繊維の熱膨張率が小さいため、複合材全体の熱膨張率がアルミニウムに比較して小さくなる。しかし、短繊維がマトリックス中にランダムに分散されている構成のため、複合材の熱膨張率は単純にアルミニウムと炭素繊維の割合で決まり、炭素繊維にアルミニウムの膨張を積極的に抑える機能を持たせて、複合材の膨張量をより小さくすることは難しい。
【0007】
本発明は前記の従来の問題点に鑑みてなされたものであって、その目的は、半導体装置の放熱部材や電子部品搭載基材として使用した場合に必要な熱伝導性を有し、かつ少なくとも半導体装置と対向する側の熱膨張率が低く、しかも低コストで製造できる複合材を提供することにある。
【0008】
【課題を解決するための手段】
前記の目的を達成するため請求項1に記載の発明では、熱伝導率の良い金属で所定形状に形成された金属部材の、電子部品搭載面側を含む少なくとも両面に、長繊維からなる炭素繊維を金属の膨張を所定量以下に抑制するため所定の割合、埋設状態で所定方向に配列した。
【0009】
この発明の複合材は、複合材全体では熱伝導率の良い金属部材により十分な放熱が確保される。また、電子部品が搭載される側は、所定方向に配列された長繊維の炭素繊維により金属の熱膨張が抑制される。従って、熱膨張率の小さな半導体装置の放熱部材として使用した場合でも、半導体装置に対して過大な熱応力が作用するのが抑制される。また、全体を炭素繊維の三次元繊維構造体と黒鉛化カーボンの複合体とする場合に比較して生産性が高く、コストが安くなる。さらにこの発明では、炭素繊維が片面側に配列されたものに比較して、複合材全体の膨張率が小さくなるとともに、複合材が反り難くなる。
【0010】
請求項2に記載の発明では、請求項1に記載の発明において、前記炭素繊維はX,Y2方向に配列されている。従って、この発明では、複合材のX,Yの2方向の膨張が均等に抑制される。
【0012】
請求項に記載の発明では、請求項1又は請求項2に記載の発明において、前記金属は銅である。従って、この発明では、高熱伝導率の複合体を低コストで製造できるとともに、アルミニウムに比較して炭素繊維との濡れ性が良いため炭素繊維による金属の熱膨張抑制効果が向上する。
【0013】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態を図1〜図3に従って説明する。
図1に示すように、複合材1は四角板状の金属部材2の片面側に炭素繊維3が埋設されて構成されている。金属部材2には熱伝導率の良い銅が使用されている。炭素繊維3は繊維が直交する2方向に配列された織物(平織りの織物)4で構成され、織物4の一部が金属部材2の表面に露出するように、かつ炭素繊維3の配列方向が複合材のX,Y方向に沿うように埋設されている。
【0014】
炭素繊維3には比較的安価なPAN系炭素繊維(ポリアクリロニトリル系炭素繊維)が使用されている。各炭素繊維3はロービング(トウ)の状態で使用されている。ロービング(トウ)とは細い単繊維のフィラメント(長繊維)を多数本束ねた実質無撚りの繊維束を意味する。織物4は炭素繊維3を、炭素繊維3が埋設された部分の金属部材2の膨張を所定量以下に抑制するための所定の割合となるように、その目の粗さが設定されている。目の粗さは炭素繊維3が埋設された部分において、体積比で炭素繊維3が30%〜50%の範囲になるように設定されている。即ち、図2において、炭素繊維3が埋設された厚さtの部分に含まれる炭素繊維3の体積割合が30%〜50%になるように設定されている。従って、織物4として目の粗さが炭素繊維3の太さと同じ値から2倍程度のものが使用される。図1及び図2では目の粗さが実際より粗く描かれている。
【0015】
炭素繊維の含有率の範囲は、炭素繊維と銅を複合化した場合における、炭素繊維の体積含有率(%)と、複合材の線膨張率及び熱伝導率の関係から決定した。図3に示すように、炭素繊維及び銅の複合材(CF/Cu複合材)の熱伝導率は炭素繊維の体積含有率に比例して低下し、線膨張率は炭素繊維の体積含有率にほぼ比例して低下する。線膨張率がシリコンの値に近く、この発明の複合材1を放熱部材として使用した際に熱膨張が生じても、放熱を必要とする部材に対して過大な応力が生じない、図3に示す範囲Aとなるように、炭素繊維の体積含有率が設定されている。この範囲Aの体積含有率では、熱伝導率が現在半導体チップ用に使用されている放熱部材の熱伝導率の150W/(mK)より大きなほぼ200W/(mK)以上となる。
【0016】
前記構成の複合材1は、金型内に炭素繊維製の織物4を所定の張力を加えた状態、あるいは張力を加えない状態で配置し、高温、高圧下で溶融状態の銅を流して織物4を銅に埋設するとともに織物4を構成する炭素繊維の空隙に銅を含浸させることにより製造される。
【0017】
前記のように構成された複合材1を、例えば半導体装置用の放熱部材として使用する場合には、複合材1を所定の大きさに切断する。そして、炭素繊維3側の面において銀ペーストや半田を介して半導体チップに接合し、半導体チップとの接合面と反対側に必要に応じてヒートシンクを接合した状態で使用する。
【0018】
この実施の形態では以下の効果を有する。
(1) 複合材1は、半導体装置搭載面側に埋設状態で配列された長繊維からなる炭素繊維3が銅の膨張を抑えるため、少なくとも前記搭載面側の膨張率が半導体装置の膨張率に近い値となる。従って、半導体装置の放熱部材として使用した場合に半導体装置に過大な応力が作用するのが防止され、熱伝導率の良好な銅の性質を利用した放熱部材として好適に使用できる。
【0019】
(2) 炭素繊維3が金属の膨張を所定量以下に抑制するため所定の割合、埋設状態で設けられる。従って、炭素繊維3の量を必要最小限にでき、原料コストを削減できて複合材の製造コストを低減できる。
【0020】
(3) 炭素繊維3がX,Y2方向に配列されているため、複合材のX,Yの2方向の膨張が均等に抑制される。
(4) 炭素繊維3が平織りの織物4で構成されているため、炭素繊維3の体積含有率を所望の値に調整する際、織物4の目の粗さの調整により簡単に対応できる。また、複合材1を製造する際、炭素繊維3をX,Y2方向に配列するのが簡単になり、製造が容易になる。
【0021】
(5) 金属部材2の材料に銅が使用されているため、高熱伝導率の複合体を低コストで製造できるとともに、アルミニウムに比較して炭素繊維との濡れ性が良いため含浸工程が容易になる。
【0022】
(6) 炭素繊維3に比較的安価で、曲げや擦れに対してピッチ系炭素繊維より優れたPAN系炭素繊維が使用されている。従って、織物4を製造する際、炭素繊維の毛羽や糸切れを抑えた状態で製造できるとともに、製造コストを低くできる。
【0023】
実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 炭素繊維3を複合材1の片面側だけでなく、図4に示すように複合材1の両面に設けたり、図5に示すように複合材1の全体に均等に設けてもよい。複合材1の片面側にだけ炭素繊維を配列した場合は、高温時に複合材1が反る場合があるが、両面あるいは全体に炭素繊維を配列することにより、高温時に複合材1が反るのを防止できる。
【0024】
○ 炭素繊維3としてPAN系炭素繊維に代えてピッチ系炭素繊維を使用してもよい。ピッチ系炭素繊維の方が引張弾性率が高く、少ない量で同じ膨張抑制効果を有することになり、銅の含有量を高めて熱伝導率を高くできる。
【0025】
○ マトリックスを構成する金属はCuに限らず、アルミニウムと同等以上の熱伝導率を有するものであればよい。例えば、熱伝導率がさほど要求されない放熱部材として使用する複合材では、金属にアルミニウムを使用する。炭素繊維及びアルミニウムの複合材(CF/Al複合材)における、炭素繊維の体積含有率と、熱伝導率及び線膨張率との関係を図6に示す。CF/Al複合材の線膨張率が、CF/Cu複合材で採用した場合の線膨張率の範囲と同じ範囲の値を持つためには、炭素繊維の体積含有率がほぼ35%〜55%となる。アルミニウムは熱伝導率がCuの6割程度であるが、密度がほぼ1/3のため、軽量化に寄与する。また、アルミニウムの融点は660℃とCuの融点より400℃以上低いため、含浸時の温度を低くでき、溶融に必要なエネルギーが少なくなる。
【0026】
○ 複合材1を半導体装置の放熱材として使用する場合、図7に示すように、半導体装置に取り付けられる側と反対側に多数の放熱フィン5を備えた形状に切削加工して使用してもよい。複合材1の両面あるいは全体に炭素繊維が配列された場合でも、片側にフィンを形成してもよい。黒鉛化カーボン繊維/黒鉛化カーボン複合体の場合はこのような加工が難しいが、マトリックスとして金属を使用したものでは加工が比較的容易となる。この場合、別部品のヒートシンクを使用する場合に比較して、部品点数及び組立工数が少なくなる。
【0027】
○ 炭素繊維3の配列方向は必ずしもX,Yの2軸に限らず、X,Yの2軸に対して所定の角度(例えば±45°)で傾斜するように配列された2層一組のバイアス糸を含んでもよい。この場合、複合材1の形状安定性が向上する。
【0028】
○ 織物4を金属部材2の片面側あるいは両側に配列する構成において、織物4の枚数は1枚に限らず複数枚であってもよい。
○ 炭素繊維3が2方向に配列された織物4の形で炭素繊維3を配列する代わりに、炭素繊維のロービングをX方向及びY方向に2層あるいは3層以上に交互に配列してもよい。この場合、織物4に比較して、所定方向に配列された炭素繊維をより真っ直ぐな状態で配列することが可能となり、炭素繊維が金属の熱膨張を抑制する機能が高くなる。
【0029】
前記実施の形態から把握できる技術思想について、以下にその効果とともに記載する。
(1)前記複合材は放熱部材として使用され、その取付面と反対側に複数の放熱フィンが形成されている。この場合、別部品のヒートシンクを使用する場合に比較して、部品点数及び組立工数を少なくできる。
【0030】
(2)前記炭素繊維は繊維が直交する2方向に配列された織物で構成されている。この場合、炭素繊維の配列が簡単になるとともに、炭素繊維の体積含有率を織物の目の粗さで容易に調整できる。
【0031】
(3)前記炭素繊維としてPAN系炭素繊維が使用されている。この場合、PAN系炭素繊維がピッチ系炭素繊維に比較して安価で、曲げや擦れに対して優れているため、製造コストが低減されるとともに、炭素繊維を織物状態で配列するのが容易になる。
【0032】
【発明の効果】
以上詳述したように請求項1〜請求項に記載の発明は、半導体装置の放熱部材や電子部品搭載基材として使用した場合に必要な熱伝導性を有し、かつ少なくとも半導体装置と対向する側の熱膨張率が低く、しかも低コストで製造することができる。
【図面の簡単な説明】
【図1】 一実施の形態の複合材の模式斜視図。
【図2】 同じく模式断面図。
【図3】 CF/Cu複合材のCF体積含有率と線膨張率及び熱伝導率の関係を示すグラフ。
【図4】 別の実施の形態の複合材の模式断面図。
【図5】 別の実施の形態の複合材の模式断面図。
【図6】 CF/Al複合材のCF体積含有率と線膨張率及び熱伝導率の関係を示すグラフ。
【図7】 別の実施の形態の複合材の模式断面図。
【符号の説明】
1…複合材、2…金属部材、3…炭素繊維、4…織物。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material of carbon fiber and metal, for example, a composite material suitable as a heat radiating member of a semiconductor device or an electronic component mounting substrate.
[0002]
[Prior art]
Conventionally, JP-A-4-147654 has proposed a composite material in which carbon fiber is contained in aluminum or an aluminum alloy as this type of electronic component mounting base material. This composite material is manufactured by impregnating aluminum at high pressure into a carbon fiber preform that is obtained by dispersing pitch-based carbon fibers in a solvent and stirring and filtering them.
[0003]
Japanese Patent Laid-Open No. 11-49578 discloses a graphitized carbon matrix as a heat radiating member for a semiconductor device, and graphitized carbon long fibers parallel to an electronic component mounting surface at a right angle or at a predetermined angle in a two-dimensional plane. There has been proposed a graphitized carbon fiber / graphitized carbon composite having a group of fibers arranged in a pseudo-isotropic manner and oriented in a direction perpendicular to the electronic component mounting surface. This composite is produced by repeating a graphitization process of impregnation with a pitch resin, carbonization, and graphitization multiple times on graphitized carbon fibers woven in three dimensions.
[0004]
[Problems to be solved by the invention]
The composite material disclosed in Japanese Patent Application Laid-Open No. 11-49578 has thermal characteristics suitable for a heat radiating member for a semiconductor device, both in terms of thermal conductivity and thermal expansion coefficient. However, in order to produce this composite material, it is necessary to repeat the graphitization process steps of impregnation with the pitch resin, carbonization, and graphitization several times on the three-dimensional woven fabric of graphitized carbon fiber, which reduces the production cost. Get higher.
[0005]
In addition, graphitized carbon fiber is weak in bending because of its small fracture strain, and is easily cut by rubbing yarns (fibers) when manufacturing a three-dimensional woven fabric, and in particular, the yarn for bonding the fiber layers is easily cut. Therefore, there is also a problem that productivity is poor.
[0006]
In the composite material disclosed in Japanese Patent Laid-Open No. 4-147654, the thermal expansion coefficient of the pitch-based carbon fiber constituting the reinforcing fiber is small, so that the thermal expansion coefficient of the entire composite material is smaller than that of aluminum. However, because the short fibers are randomly dispersed in the matrix, the thermal expansion coefficient of the composite material is simply determined by the ratio of aluminum and carbon fibers, and the carbon fibers have a function of actively suppressing the expansion of aluminum. Therefore, it is difficult to reduce the amount of expansion of the composite material.
[0007]
The present invention has been made in view of the above-described conventional problems, and has an object of having thermal conductivity necessary when used as a heat dissipation member or an electronic component mounting substrate of a semiconductor device, and at least An object of the present invention is to provide a composite material that has a low coefficient of thermal expansion on the side facing the semiconductor device and can be manufactured at low cost.
[0008]
[Means for Solving the Problems]
In the invention described in claim 1 for achieving the above object, the metal member formed in a predetermined shape by metal having excellent thermal conductivity, on at least two sides including the electronic component mounting surface side, the carbon consisting of long fibers predetermined rate for the fiber to suppress expansion of the metal to or below a predetermined amount, and array in a predetermined direction an embedded state.
[0009]
In the composite material of the present invention, sufficient heat dissipation is ensured by the metal member having good thermal conductivity in the entire composite material. Further, on the side on which the electronic component is mounted, the thermal expansion of the metal is suppressed by the long carbon fibers arranged in a predetermined direction. Therefore, even when used as a heat dissipation member of a semiconductor device having a small coefficient of thermal expansion, it is possible to suppress an excessive thermal stress from acting on the semiconductor device. Further, the productivity is high and the cost is low as compared with a case where the whole is a composite of a three-dimensional carbon fiber structure and graphitized carbon. Furthermore, in this invention, the expansion rate of the entire composite material is reduced and the composite material is less likely to warp as compared with the carbon fibers arranged on one side.
[0010]
According to a second aspect of the present invention, in the first aspect of the present invention, the carbon fibers are arranged in the X and Y2 directions. Therefore, in this invention, expansion of the composite material in the two directions X and Y is uniformly suppressed.
[0012]
In invention of Claim 3 , in the invention of Claim 1 or Claim 2 , the said metal is copper. Therefore, according to the present invention, a composite having a high thermal conductivity can be produced at a low cost, and since the wettability with the carbon fiber is better than that with aluminum, the effect of suppressing the thermal expansion of the metal by the carbon fiber is improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the composite material 1 is configured by embedding carbon fibers 3 on one side of a square plate-like metal member 2. Copper having a good thermal conductivity is used for the metal member 2. The carbon fiber 3 is composed of a woven fabric (plain woven fabric) 4 arranged in two directions perpendicular to each other, and a part of the woven fabric 4 is exposed on the surface of the metal member 2 and the arrangement direction of the carbon fibers 3 is It is embedded along the X and Y directions of the composite material.
[0014]
As the carbon fiber 3, a relatively inexpensive PAN-based carbon fiber (polyacrylonitrile-based carbon fiber) is used. Each carbon fiber 3 is used in a roving (tow) state. Roving (tow) means a substantially untwisted fiber bundle in which a large number of thin filaments (long fibers) are bundled. The texture of the fabric 4 is set so that the carbon fiber 3 has a predetermined ratio for suppressing the expansion of the metal member 2 in the portion where the carbon fiber 3 is embedded to a predetermined amount or less. The roughness of the eyes is set so that the volume ratio of carbon fiber 3 is in the range of 30% to 50% in the portion where carbon fiber 3 is embedded. That is, in FIG. 2, the volume ratio of the carbon fibers 3 included in the portion of the thickness t in which the carbon fibers 3 are embedded is set to be 30% to 50%. Accordingly, the fabric 4 having a mesh size that is approximately the same as the thickness of the carbon fiber 3 to about twice that of the carbon fiber 3 is used. In FIGS. 1 and 2, the roughness of the eyes is shown to be coarser than the actual.
[0015]
The range of the carbon fiber content was determined from the relationship between the volume content (%) of carbon fiber and the linear expansion coefficient and thermal conductivity of the composite material when carbon fiber and copper were combined. As shown in FIG. 3, the thermal conductivity of the carbon fiber and copper composite material (CF / Cu composite material) decreases in proportion to the volume content of the carbon fiber, and the linear expansion coefficient becomes the volume content of the carbon fiber. Decreases almost proportionally. The linear expansion coefficient is close to the value of silicon, and even when thermal expansion occurs when the composite material 1 of the present invention is used as a heat radiating member, no excessive stress is generated on the member that requires heat radiation. The volume content of the carbon fiber is set so as to be in the range A shown. With the volume content in this range A, the thermal conductivity is about 200 W / (mK) or more, which is larger than 150 W / (mK) of the thermal conductivity of the heat dissipation member currently used for semiconductor chips.
[0016]
The composite material 1 having the above-described structure is a fabric in which a carbon fiber fabric 4 is placed in a mold with a predetermined tension applied or without tension, and molten copper is poured under high temperature and high pressure. 4 is embedded in copper and impregnated with copper in the voids of carbon fibers constituting the fabric 4.
[0017]
When the composite material 1 configured as described above is used as, for example, a heat dissipation member for a semiconductor device, the composite material 1 is cut into a predetermined size. Then, the carbon fiber 3 side surface is bonded to the semiconductor chip via silver paste or solder, and the heat sink is bonded to the side opposite to the bonding surface with the semiconductor chip as necessary.
[0018]
This embodiment has the following effects.
(1) In the composite material 1, since the carbon fibers 3 made of long fibers arranged in an embedded state on the semiconductor device mounting surface side suppress the expansion of copper, at least the expansion rate on the mounting surface side becomes the expansion rate of the semiconductor device. A close value. Therefore, when used as a heat radiating member of a semiconductor device, an excessive stress is prevented from acting on the semiconductor device, and it can be suitably used as a heat radiating member utilizing the properties of copper having good thermal conductivity.
[0019]
(2) The carbon fibers 3 are provided in a predetermined ratio and in an embedded state in order to suppress metal expansion to a predetermined amount or less. Therefore, the amount of the carbon fiber 3 can be minimized, the raw material cost can be reduced, and the manufacturing cost of the composite material can be reduced.
[0020]
(3) Since the carbon fibers 3 are arranged in the X and Y2 directions, expansion of the composite material in the X and Y directions is evenly suppressed.
(4) Since the carbon fiber 3 is composed of the plain woven fabric 4, the volume content of the carbon fiber 3 can be easily adjusted by adjusting the roughness of the woven fabric 4 when the volume content is adjusted to a desired value. Moreover, when manufacturing the composite material 1, it becomes easy to arrange the carbon fibers 3 in the X and Y2 directions, and the manufacturing becomes easy.
[0021]
(5) Since copper is used as the material of the metal member 2, a composite with high thermal conductivity can be produced at low cost, and the impregnation process is easy because the wettability with carbon fiber is better than aluminum. Become.
[0022]
(6) A PAN-based carbon fiber that is relatively inexpensive and is superior to the pitch-based carbon fiber with respect to bending and rubbing is used for the carbon fiber 3. Therefore, when manufacturing the fabric 4, it can be manufactured in a state in which the fluff and thread breakage of the carbon fiber are suppressed, and the manufacturing cost can be reduced.
[0023]
The embodiment is not limited to the above, and may be embodied as follows, for example.
The carbon fibers 3 may be provided not only on one side of the composite material 1 but also on both surfaces of the composite material 1 as shown in FIG. 4, or evenly provided on the entire composite material 1 as shown in FIG. When carbon fibers are arranged only on one side of the composite material 1, the composite material 1 may be warped at a high temperature, but by arranging the carbon fibers on both sides or the whole, the composite material 1 is warped at a high temperature. Can be prevented.
[0024]
A pitch-based carbon fiber may be used as the carbon fiber 3 instead of the PAN-based carbon fiber. The pitch-based carbon fiber has a higher tensile elastic modulus and has the same expansion suppressing effect with a small amount, and the copper content can be increased to increase the thermal conductivity.
[0025]
O The metal which comprises a matrix is not restricted to Cu, What is necessary is just to have the thermal conductivity equivalent to or more than aluminum. For example, in a composite material used as a heat radiating member that does not require much thermal conductivity, aluminum is used for the metal. FIG. 6 shows the relationship between the carbon fiber volume content, the thermal conductivity, and the linear expansion coefficient in the carbon fiber and aluminum composite material (CF / Al composite material). In order for the linear expansion coefficient of the CF / Al composite material to have a value in the same range as that of the CF / Cu composite material, the volume content of the carbon fiber is approximately 35% to 55%. It becomes. Aluminum has a thermal conductivity of about 60% of Cu, but its density is almost 1/3, which contributes to weight reduction. Further, since the melting point of aluminum is 660 ° C. and 400 ° C. lower than the melting point of Cu, the temperature during impregnation can be lowered, and the energy required for melting is reduced.
[0026]
When the composite material 1 is used as a heat radiating material for a semiconductor device, as shown in FIG. 7, it may be used by cutting into a shape having a large number of heat radiating fins 5 on the side opposite to the side attached to the semiconductor device. Good. Even when carbon fibers are arranged on both sides or the whole of the composite material 1, fins may be formed on one side. In the case of graphitized carbon fiber / graphitized carbon composite, such processing is difficult, but processing using a metal as a matrix is relatively easy. In this case, the number of parts and the number of assembling steps are reduced as compared with the case where a heat sink of another part is used.
[0027]
The arrangement direction of the carbon fibers 3 is not necessarily limited to the two axes X and Y, but a set of two layers arranged so as to be inclined at a predetermined angle (for example, ± 45 °) with respect to the two axes X and Y A bias yarn may be included. In this case, the shape stability of the composite material 1 is improved.
[0028]
In the configuration in which the woven fabric 4 is arranged on one side or both sides of the metal member 2, the number of the woven fabric 4 is not limited to one and may be a plurality.
○ Instead of arranging the carbon fibers 3 in the form of the woven fabric 4 in which the carbon fibers 3 are arranged in two directions, the roving of the carbon fibers may be arranged alternately in two layers or three or more layers in the X direction and the Y direction. . In this case, compared with the fabric 4, it becomes possible to arrange the carbon fibers arranged in a predetermined direction in a straight state, and the function of the carbon fibers to suppress the thermal expansion of the metal is enhanced.
[0029]
About technique Sube思virtual that can be grasped from the above embodiment will be described in conjunction with the effects below.
(1) Before Symbol composite is used as a heat radiating member, a plurality of heat radiation fins are formed on the opposite side with its mounting surface. In this case, the number of parts and the number of assembly steps can be reduced as compared with the case where a heat sink of another part is used.
[0030]
(2) pre-SL carbon fiber is composed of fabrics that are arranged in two directions in which the fibers are orthogonal. In this case, the arrangement of the carbon fibers is simplified, and the volume content of the carbon fibers can be easily adjusted by the roughness of the fabric.
[0031]
(3) PAN-based carbon fibers are used as a pre-SL carbon fibers. In this case, since the PAN-based carbon fiber is cheaper than the pitch-based carbon fiber and excellent in bending and rubbing, the manufacturing cost is reduced and the carbon fibers can be easily arranged in a woven state. Become.
[0032]
【The invention's effect】
As described above in detail, the invention according to claims 1 to 3 has a thermal conductivity required when used as a heat dissipation member or an electronic component mounting substrate of a semiconductor device, and at least faces the semiconductor device. The coefficient of thermal expansion on the side to be used is low and can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a composite material according to an embodiment.
FIG. 2 is a schematic sectional view of the same.
FIG. 3 is a graph showing the relationship between the CF volume content, the linear expansion coefficient, and the thermal conductivity of a CF / Cu composite material.
FIG. 4 is a schematic cross-sectional view of a composite material according to another embodiment.
FIG. 5 is a schematic cross-sectional view of a composite material according to another embodiment.
FIG. 6 is a graph showing the relationship between the CF volume content, the linear expansion coefficient, and the thermal conductivity of a CF / Al composite material.
FIG. 7 is a schematic cross-sectional view of a composite material according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Composite material, 2 ... Metal member, 3 ... Carbon fiber, 4 ... Woven fabric.

Claims (3)

熱伝導率の良い金属で所定形状に形成された金属部材の、電子部品搭載面側を含む少なくとも両面に、長繊維からなる炭素繊維を金属の膨張を所定量以下に抑制するため所定の割合、埋設状態で所定方向に配した複合材。Metal member formed in a predetermined shape by metal having excellent thermal conductivity, on at least two sides including the electronic component mounting surface side, a predetermined ratio for suppressing carbon fiber having a length fibers expansion of the metal to or below a predetermined amount the composite material in which an array in a predetermined direction an embedded state. 前記炭素繊維はX,Y2方向に配列されている請求項1に記載の複合材。  The composite material according to claim 1, wherein the carbon fibers are arranged in the X and Y2 directions. 前記金属は銅である請求項1又は請求項2に記載の複合材 The composite material according to claim 1 , wherein the metal is copper .
JP2000061969A 2000-03-07 2000-03-07 Composite Expired - Lifetime JP3855583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061969A JP3855583B2 (en) 2000-03-07 2000-03-07 Composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061969A JP3855583B2 (en) 2000-03-07 2000-03-07 Composite

Publications (2)

Publication Number Publication Date
JP2001250893A JP2001250893A (en) 2001-09-14
JP3855583B2 true JP3855583B2 (en) 2006-12-13

Family

ID=18582038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061969A Expired - Lifetime JP3855583B2 (en) 2000-03-07 2000-03-07 Composite

Country Status (1)

Country Link
JP (1) JP3855583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI388042B (en) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg Integrated circuit nanotube-based substrate

Also Published As

Publication number Publication date
JP2001250893A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP4829465B2 (en) Carbon-substrate complexes and related compositions and methods
KR102517816B1 (en) Boron nitride nanotube enhanced electrical components
EP0670776B1 (en) High thermal conductivity non-metallic honeycomb
JP4889741B2 (en) Carbon fiber-containing laminated molded body and method for producing the same
JPH0819594B2 (en) Three-dimensional fabric for composite materials
KR100883661B1 (en) Heat dissipating member and method for manufacture thereof
US5503893A (en) Ultra-high performance carbon composites
JP3855583B2 (en) Composite
JP4062879B2 (en) Three-dimensional fiber structure
JP2005534826A (en) Pitch-based graphite cloth and felt with felt holes for gas diffusion layer substrates and high thermal conductivity reinforced composites for fuel cells
CN113896558A (en) High-performance thermal dredging composite material and preparation method thereof
JPH10168699A (en) Composite fiber material and its production
JP3279048B2 (en) Reinforced fabric and FRP using it
JP2001168248A (en) Composite material
JPH0925178A (en) Ceramic-base fiber composite material and its production
JP7202460B2 (en) Heat sink with carbon nanostructure-based fibers
JP5873244B2 (en) Heat dissipation board
JPH1149578A (en) Radiating member for semiconductor device and its production
US20030008590A1 (en) Three-dimensional nonwoven substrate for circuit board
JP4053729B2 (en) Composite material and manufacturing method thereof
WO2008050906A1 (en) Composite material and method for producing the same
JP4048423B2 (en) Fabric with excellent heat conductivity
JP3833421B2 (en) Heat dissipation sheet
JP2001336034A (en) Method for producing carbon yarn woven fabric
WO2023085080A1 (en) Screw component formed of two-dimensional carbon/carbon composite material that is obtained by stacking anisotropic nonwoven fabrics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6