JP4048423B2 - Fabric with excellent heat conductivity - Google Patents

Fabric with excellent heat conductivity Download PDF

Info

Publication number
JP4048423B2
JP4048423B2 JP2002221664A JP2002221664A JP4048423B2 JP 4048423 B2 JP4048423 B2 JP 4048423B2 JP 2002221664 A JP2002221664 A JP 2002221664A JP 2002221664 A JP2002221664 A JP 2002221664A JP 4048423 B2 JP4048423 B2 JP 4048423B2
Authority
JP
Japan
Prior art keywords
fiber
pile
fabric
thermal conductivity
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002221664A
Other languages
Japanese (ja)
Other versions
JP2004060111A (en
Inventor
幸弘 野村
義徳 佐原
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002221664A priority Critical patent/JP4048423B2/en
Publication of JP2004060111A publication Critical patent/JP2004060111A/en
Application granted granted Critical
Publication of JP4048423B2 publication Critical patent/JP4048423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は厚み方向に優れた伝熱性を持つ布帛に関する。
【0002】
【従来技術】
従来、半導体集積回路の放熱材にはアルミ合金のフィンが使用されていた。最近では携帯型コンピューターが主流となり、軽量化が必要となったためシート状の放熱材が使用されるようになった。従って最近ではシート状の放熱材において放熱の効率を高めるために放熱性に優れた繊維材料を厚み方向に配向させる提案がなされている。例えば特開2000-281802号公報では高熱伝導性の繊維を樹脂中に充填し磁場中で配向させる技術が提案されている。あるいは特開2000-248474号公報では植毛による放熱材が提案されている。しかしながらこれらの方法では引き揃えが難しい、伝熱性に優れた繊維の重点密度に限界があるため繊維材料の保有する熱伝導性を十分活かすことができないなどの問題があった。
【0003】
【発明が解決しようとする課題】
本発明は繊維材料の保有する熱伝導性を十分活かし、厚み方向への伝熱性に優れた布帛を提案する物である。
【0004】
【課題を解決するための手段】
即ち本発明は、下記の公正からなる。
1.パイル二重織物のパイル糸の少なくとも一部に熱伝導係数が10W/mK以上の高熱伝導性繊維を使用したことを特徴とする伝熱性に優れた布帛。
2.高熱伝導性繊維が高分子量ポリエチレン繊維、アラミド繊維、ポリアリレート繊維、ポリベンザゾール繊維及び炭素繊維のいずれか1又は2種以上の繊維から選ばれたものであることを特徴とする上記第1に記載の伝熱性に優れた布帛シート。
3.二重織物の表経糸、裏経糸、表緯糸及び裏緯糸の少なくとも1つが熱伝導係数が10W/mK以上の高熱伝導性繊維からなることを特徴とする上記第1に記載の伝熱性に優れた布帛シート。
4.二重織物の表経糸、裏経糸、表緯糸及び裏緯糸の少なくとも一部にガラス繊維を使用してなることを特徴とする上記第1に記載の伝熱性に優れた布帛シート。
5.パイル糸と表経糸、裏経糸、表緯糸及び裏緯糸の繊度の比が各々1以上であることを特徴とする上記第1に記載の伝熱性に優れた布帛。
【0005】
以下、本発明を詳述する。
所謂パイル二重織物は機台上で表地、裏地をつなぐパイル糸を切断することで表地、裏地双方を起毛織物に仕上げる手法として使用されている。しかしながら本発明ではパイル二重織物の構造をそのまま利用してパイル糸を切断せずそのままパイル糸が表地と裏地の熱伝熱を担うことに特徴がある。
したがって本発明ではパイル糸である高伝導性繊維の熱伝導係数が10W/mK以上あることが放熱性に優れた布帛を得るために最も重要である。熱伝導係数が10W/mK以下であると表地と裏地の間の熱伝達が十分でなく本発明の目的を達成することが出来ない。
【0006】
本発明で用いられる熱伝導係数が10W/mK以上の高熱伝導性繊維としては高分子量ポリエチレン繊維、アラミド繊維、ポリアリレート繊維、ポリベンザゾール繊維、炭素繊維などの高強度繊維が挙げられるが特に単独で使用することに限定されるものではなく一種あるいは複数の種類の繊維から選んでも熱伝導係数が10W/mK以上であれば本発明の目的を達することができる。
【0007】
また、該二重織物の表経、裏経、表緯、裏緯の繊維についてはどのような種類の繊維を用いても良い。さらに単独、あるいは組み合わせて用いても良い。例えば熱伝導係数が10W/mK以上の高熱伝導性繊維を表地裏地とも経緯のいずれか一方に使用する場合、織物面内の熱分散が良くなるため伝熱効率が高くなる効果が得られる。また、ガラス繊維を表地裏地とも経緯のいずれかに一部に使用すると樹脂含浸性、研磨性などが良くなり後加工性が良くなる効果が得られる。
【0008】
また本発明ではパイル糸の量が多いほど熱伝達性を向上させることが出来るため、密度を上げることが必要である。したがって本発明で使用するパイル糸の繊度は1200dtex以下、好ましくは700dtex以下、より好ましくは400dtex以下であるとパイル糸の充填密度を高めることが可能となり本発明の効果が発揮されやすくなる。また、本発明ではパイル糸の存在率を高めるためにパイル糸と表経、裏経、表緯、裏緯に用いる繊度の比は少なくとも1以上であることが重要である。繊度の比が1以下ではパイル糸の断面占有率が低くなるために十分な熱伝達性を発揮することができない。
【0009】
また、本発明では発熱体または放熱体との面密着性を上げるために二重織物の表地、裏地の少なくとも一方に樹脂が含浸または被覆して使用しても良い。さらに樹脂眼浸された面を研磨してパイル糸の断面を剥き出しの状態にするとさらに熱伝導性に優れた布帛を得ることができる。
【0010】
本発明ではパイル二重織物のパイル糸に高熱伝導係数を持つ繊維を使用することで厚み方向に高い熱伝導性を持つ布帛を得ることができ、半導体集積回路等の発熱体の放熱材として有効な放熱シートを提供することができる。
【0011】
【実施例】
以下に実施例をあげて、本発明を具体的に説明する。
本発明では熱伝導係数の計測に定常熱流法を用いた。定常熱流法とは、一定の熱量を常に加え、一定距離隔てた部位の温度差を計測するもので、保原夏朗等:低温工学,Vol.28,p688(1993)に詳説されている。
【0012】
(実施例1)
パイル糸に定常熱流法による繊維方向の23℃での熱伝導係数が50W/mKである日本ダイニーマ社製高強度ポリエチレン繊維ダイニーマSK60(登録商標)(繊度220dtex)、表経糸、裏経糸にポリエステル繊維(繊度220dtex)、表緯糸、裏緯糸にポリエステル/レーヨン加工糸(40番手/2)を用いてパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は10%であった。
【0013】
(実施例2)
パイル糸に定常熱流法による繊維方向の熱伝導係数が50W/mKである日本ダイニーマ社製高強度ポリエチレン繊維ダイニーマSK60(登録商標)(繊度220dtex)、表経糸、裏経糸にポリエステル繊維(繊度220dtex)、表緯糸、裏緯糸にポリエステル/レーヨン加工糸(40番手/2)を用いてパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は14%であった。
【0014】
(実施例3)
パイル糸に定常熱流法法による繊維方向の熱伝導係数が50W/mKである東洋紡績株式会社社製PBO繊維ザイロンAS(繊度278dtex)を用いたことを除いては実施例1と同様の方法でパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は8%であった。
【0015】
(実施例4)
パイル糸に定常熱流法による繊維方向の熱伝導係数が50W/mKである東洋紡績株式会社社製PBO繊維ザイロンAS(繊度555dtex)を用いたことを除いては実施例1と同様の方法でパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は15%であった。
【0016】
(実施例5)
パイル糸に定常熱流法による繊維方向の熱伝導係数が50W/mKである東レ・デュポン社製ケブラー29(繊度220dtex)を用いたことを除いては実施例1と同様の方法でパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は15%であった。
【0017】
(実施例6)
表緯糸、裏緯糸に定常熱流法による繊維方向の熱伝導係数が**W/mKである東洋紡績株式会社社製PBO繊維ザイロンAS(繊度278dtex)を用いたことを除いては実施例2と同様の方法でパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は8%であった。
【0018】
(比較例1)
パイル糸に定常熱流法による繊維方向の熱伝導係数が0.5W/mKであるポリエステル繊維(繊度220dtex)を用いたことを除いては実施例1と同様の方法でパイル密度2,720本/in2のパイル二重織物を得た。パイル糸の断面占有率は7%であった。
【0019】
以上で得られたパイル二重織物について定常熱流法を用いて熱伝導係数の計測を行った。結果を表1に示す。
【0020】
【表1】

Figure 0004048423
【0021】
【発明の効果】
本発明によると、軽量でコンパクトな繊維材料の保有する熱伝導性を十分活かした厚み方向への伝熱性に優れた、携帯型コンピューター用のシート状の放熱材として有用な布帛を提案することを可能とした。
【図面の簡単な説明】
【図1】本発明に係る布帛の織組織図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fabric having excellent heat conductivity in the thickness direction.
[0002]
[Prior art]
Conventionally, aluminum alloy fins have been used as heat dissipation materials for semiconductor integrated circuits. Recently, portable computers have become the mainstream, and the need to reduce weight has led to the use of sheet-like heat dissipation materials. Therefore, recently, a proposal has been made to orient a fiber material excellent in heat dissipation in the thickness direction in order to increase heat dissipation efficiency in a sheet-like heat dissipation material. For example, Japanese Patent Application Laid-Open No. 2000-281802 proposes a technique in which highly heat conductive fibers are filled in a resin and oriented in a magnetic field. Alternatively, Japanese Patent Application Laid-Open No. 2000-248474 proposes a heat dissipation material by flocking. However, there is a problem that these methods are difficult to align and there is a limit to the density of fibers with excellent heat conductivity, so that the thermal conductivity possessed by the fiber material cannot be fully utilized.
[0003]
[Problems to be solved by the invention]
The present invention proposes a fabric that makes full use of the thermal conductivity of the fiber material and has excellent heat conductivity in the thickness direction.
[0004]
[Means for Solving the Problems]
That is, this invention consists of the following fairness.
1. A fabric having excellent heat conductivity, wherein a high thermal conductivity fiber having a thermal conductivity coefficient of 10 W / mK or more is used for at least a part of pile yarn of a pile double fabric.
2. First, wherein the high thermal conductive fiber is selected from one or more of high molecular weight polyethylene fiber, aramid fiber, polyarylate fiber, polybenzazole fiber and carbon fiber. The fabric sheet excellent in heat conductivity as described.
3. 2. The heat transfer property according to the first aspect, wherein at least one of the front warp, the back warp, the front weft and the back weft of the double woven fabric is made of a high thermal conductive fiber having a thermal conductivity coefficient of 10 W / mK or more. Fabric sheet.
4). The fabric sheet having excellent heat conductivity according to the first aspect, wherein glass fibers are used for at least a part of the front warp, the back warp, the front weft and the back weft of the double woven fabric.
5. The fabric having excellent heat conductivity according to the first aspect, wherein the fineness ratio of the pile yarn and the surface warp yarn, the back warp yarn, the front weft yarn and the back weft yarn is 1 or more.
[0005]
The present invention is described in detail below.
The so-called pile double woven fabric is used as a technique for finishing both the outer fabric and the lining fabric by cutting the pile yarn that connects the outer fabric and the lining fabric on the machine base. However, the present invention is characterized in that the structure of the pile double woven fabric is used as it is and the pile yarn is not cut, and the pile yarn bears heat transfer between the outer material and the lining material.
Therefore, in the present invention, it is most important to obtain a fabric excellent in heat dissipation by having a thermal conductivity coefficient of 10 W / mK or higher for highly conductive fibers which are pile yarns. When the thermal conductivity coefficient is 10 W / mK or less, the heat transfer between the outer material and the lining material is insufficient, and the object of the present invention cannot be achieved.
[0006]
Examples of the high thermal conductivity fiber having a thermal conductivity coefficient of 10 W / mK or more used in the present invention include high-strength fibers such as high molecular weight polyethylene fiber, aramid fiber, polyarylate fiber, polybenzazole fiber, and carbon fiber. The object of the present invention can be achieved if the thermal conductivity coefficient is 10 W / mK or more even if one or a plurality of types of fibers are selected.
[0007]
Any kind of fiber may be used for the front, back, front, and back fibers of the double woven fabric. Further, they may be used alone or in combination. For example, when a high thermal conductivity fiber having a thermal conductivity coefficient of 10 W / mK or more is used for either the surface lining or the background, the heat dispersion in the fabric surface is improved, and the effect of increasing the heat transfer efficiency is obtained. Further, when glass fiber is used in part of the background and lining, the resin impregnation property, the polishing property, etc. are improved, and the post-processability is improved.
[0008]
In the present invention, the heat transferability can be improved as the amount of pile yarn increases, so that the density needs to be increased. Therefore, if the fineness of the pile yarn used in the present invention is 1200 dtex or less, preferably 700 dtex or less, more preferably 400 dtex or less, the packing density of the pile yarn can be increased, and the effects of the present invention are easily exhibited. In the present invention, it is important that the ratio of the fineness used for the pile yarn and the front warp, back warp, front weft, and back weir is at least 1 or more in order to increase the presence rate of the pile yarn. When the fineness ratio is 1 or less, the cross-sectional occupancy of the pile yarn is low, so that sufficient heat transfer cannot be exhibited.
[0009]
Further, in the present invention, in order to improve the surface adhesion with the heat generating element or the heat radiating element, at least one of the front surface and the back surface of the double woven fabric may be impregnated or covered with a resin. Further, when the surface immersed in the resin is polished to expose the cross-section of the pile yarn, a fabric having further excellent thermal conductivity can be obtained.
[0010]
In the present invention, it is possible to obtain a fabric having a high thermal conductivity in the thickness direction by using a fiber having a high thermal conductivity coefficient in the pile yarn of the pile double woven fabric, which is effective as a heat dissipation material for a heating element such as a semiconductor integrated circuit. A heat dissipation sheet can be provided.
[0011]
【Example】
The present invention will be specifically described with reference to the following examples.
In the present invention, the steady heat flow method was used to measure the thermal conductivity coefficient. The steady heat flow method is a method in which a constant amount of heat is constantly applied and a temperature difference between parts separated by a certain distance is measured, and is described in detail in Natsuro Hohara et al .: Cryogenic Engineering, Vol. 28, p688 (1993).
[0012]
Example 1
High-strength polyethylene fiber Dyneema SK60 (registered trademark) (fineness 220dtex) manufactured by Nippon Dyneema Co., which has a thermal conductivity coefficient of 50 W / mK at 23 ° C in the fiber direction by a steady heat flow method for pile yarn, polyester fiber for surface warp and back warp A pile double woven fabric having a pile density of 2,720 yarns / in 2 was obtained using polyester / rayon processed yarn (40 count / 2) for the front and back wefts and back wefts (fineness 220dtex). The cross-sectional occupancy of the pile yarn was 10%.
[0013]
(Example 2)
High-strength polyethylene fiber Dyneema SK60 (registered trademark) (fineness 220dtex) manufactured by Nippon Dyneema Co., which has a thermal conductivity coefficient of 50W / mK in the fiber direction by a steady heat flow method for pile yarn, polyester fiber (fineness 220dtex) for front warp and back warp A pile double woven fabric having a pile density of 2,720 / in 2 was obtained using polyester / rayon processed yarn (40 count / 2) for the front and back wefts. The cross-sectional occupation ratio of the pile yarn was 14%.
[0014]
(Example 3)
The same method as in Example 1 except that PBO fiber Zyron AS (fineness 278 dtex) manufactured by Toyobo Co., Ltd., which has a thermal conductivity coefficient in the fiber direction by a steady heat flow method of 50 W / mK, was used for the pile yarn. A pile double woven fabric with a pile density of 2,720 / in 2 was obtained. The cross-sectional occupation ratio of the pile yarn was 8%.
[0015]
Example 4
The pile is piled in the same manner as in Example 1 except that PBO fiber Zylon AS (fineness 555dtex) manufactured by Toyobo Co., Ltd., which has a thermal conductivity coefficient in the fiber direction by a steady heat flow method of 50 W / mK, is used for the pile yarn. A pile double woven fabric with a density of 2,720 / in 2 was obtained. The cross-sectional occupancy of the pile yarn was 15%.
[0016]
(Example 5)
The pile density is 2,720 in the same manner as in Example 1 except that Kevlar 29 (fineness 220 dtex) manufactured by Toray DuPont with a thermal conductivity coefficient in the fiber direction of 50 W / mK is used for the pile yarn. A pile double woven fabric of / in 2 was obtained. The cross-sectional occupation ratio of the pile yarn was 15%.
[0017]
(Example 6)
Example 2 with the exception of using PBO fiber Zyron AS (fineness 278dtex) manufactured by Toyobo Co., Ltd. with a thermal conductivity coefficient in the fiber direction of ** W / mK by the steady heat flow method for the front and back wefts. A pile double woven fabric having a pile density of 2,720 / in 2 was obtained in the same manner. The cross-sectional occupation ratio of the pile yarn was 8%.
[0018]
(Comparative Example 1)
A pile density of 2,720 yarns / in 2 was obtained in the same manner as in Example 1 except that polyester fibers having a thermal conductivity coefficient in the fiber direction of 0.5 W / mK by a steady heat flow method were used for the pile yarn. A pile double woven fabric was obtained. The cross-sectional occupancy of the pile yarn was 7%.
[0019]
About the pile double fabric obtained above, the thermal conductivity coefficient was measured using the steady heat flow method. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0004048423
[0021]
【The invention's effect】
According to the present invention, it is proposed to propose a fabric useful as a sheet-like heat dissipation material for a portable computer, which is excellent in heat conductivity in the thickness direction, making full use of the thermal conductivity possessed by a lightweight and compact fiber material. It was possible.
[Brief description of the drawings]
FIG. 1 is a woven structure diagram of a fabric according to the present invention.

Claims (3)

パイル糸と、表経糸、裏経糸、表緯糸及び裏緯糸の繊度の比が各々1以上のパイル二重織物からなり、該パイル二重織物のパイル糸の少なくとも一部に高分子量ポリエチレン繊維、アラミド繊維、ポリアリレート繊維、ポリベンザゾール繊維のいずれか1又は2種以上の熱伝導係数が10W/mK以上である高熱伝導性繊維を使用し、且つ該パイル糸の繊度が1200dtex以下であることを特徴とする放熱シート And pile yarn, Table warp, back warp, Ri Do from the ratio of the fineness of the table weft and back wefts are each 1 or more pile double fabric, high molecular weight polyethylene fibers at least a part of the pile yarn of said pile double fabric, Use one or two or more of aramid fiber, polyarylate fiber, and polybenzazole fiber with high thermal conductivity fiber having a thermal conductivity coefficient of 10 W / mK or more, and the pile yarn has a fineness of 1200 dtex or less A heat dissipation sheet characterized by 二重織物の表経糸、裏経糸、表緯糸及び裏緯糸の少なくとも1つが熱伝導係数が10W/mK以上の高熱伝導性繊維からなることを特徴とする請求項1に記載の放熱シートThe heat radiating sheet according to claim 1, wherein at least one of the front warp, the back warp, the front weft and the back weft of the double woven fabric is made of a high thermal conductive fiber having a thermal conductivity coefficient of 10 W / mK or more. 二重織物の表経糸、裏経糸、表緯糸及び裏緯糸の少なくとも一部にガラス繊維を使用してなることを特徴とする請求項1に記載の放熱シートThe heat-dissipating sheet according to claim 1, wherein glass fibers are used for at least a part of the front warp, the back warp, the front weft and the back weft of the double woven fabric.
JP2002221664A 2002-07-30 2002-07-30 Fabric with excellent heat conductivity Expired - Fee Related JP4048423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221664A JP4048423B2 (en) 2002-07-30 2002-07-30 Fabric with excellent heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221664A JP4048423B2 (en) 2002-07-30 2002-07-30 Fabric with excellent heat conductivity

Publications (2)

Publication Number Publication Date
JP2004060111A JP2004060111A (en) 2004-02-26
JP4048423B2 true JP4048423B2 (en) 2008-02-20

Family

ID=31941912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221664A Expired - Fee Related JP4048423B2 (en) 2002-07-30 2002-07-30 Fabric with excellent heat conductivity

Country Status (1)

Country Link
JP (1) JP4048423B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911190B2 (en) * 2009-03-31 2012-04-04 東洋紡績株式会社 Comfortable fabric
EP2258893B8 (en) * 2009-05-14 2013-05-29 Herbert Fenkes Use of a textile pile material
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
CN103451838B (en) * 2013-09-13 2016-04-27 邓志健 A kind of cold fabric
JP7252530B2 (en) * 2018-08-30 2023-04-05 株式会社クラレ Heat dissipation material

Also Published As

Publication number Publication date
JP2004060111A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US5688577A (en) Multi-directional friction materials
US5007508A (en) Friction system using refractory composite materials
EP0762009B1 (en) Improved carbon-based friction material for an automotive continuous slip service
JPS63102927A (en) Thermal conductive laminated board consisting of metallic layer and reinforced high-molecular base-material composite material layer and having low thermal expansion coefficient
US6193027B1 (en) Friction unit
EP0670776B1 (en) High thermal conductivity non-metallic honeycomb
AU625929B1 (en) Press pad for high-pressure presses
JP4048423B2 (en) Fabric with excellent heat conductivity
EP0862722B1 (en) Penetration-resistant composition
JP2974007B1 (en) Polishing object holding material and method of manufacturing polishing object
US5962348A (en) Method of making thermal core material and material so made
KR102214307B1 (en) Battery cell module
US20040147192A1 (en) Carbon fiber friction material
US7022629B2 (en) Print through elimination in fiber reinforced matrix composite mirrors and method of construction
TW201823057A (en) Carbon fiber wheel rim and method of manufacturing thereof
JP4062879B2 (en) Three-dimensional fiber structure
JPH09500840A (en) High thermal conductivity non-metallic honeycomb with laminated cell walls
JP2001105304A (en) Disc holding carrier material
JPS63210065A (en) Carbon-carbon fiber composite material
JP3855583B2 (en) Composite
JP3521318B2 (en) High heat flux heat receiving plate and method of manufacturing the same
WO2023039492A1 (en) Multilayer cooling assemblies for thermal management
JP2000012749A (en) Semiconductor package heat sink
WO2000044212A1 (en) Carbon/carbon cooling system
JPH0472374A (en) Friction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R151 Written notification of patent or utility model registration

Ref document number: 4048423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees