JP2000012749A - Semiconductor package heat sink - Google Patents

Semiconductor package heat sink

Info

Publication number
JP2000012749A
JP2000012749A JP10176780A JP17678098A JP2000012749A JP 2000012749 A JP2000012749 A JP 2000012749A JP 10176780 A JP10176780 A JP 10176780A JP 17678098 A JP17678098 A JP 17678098A JP 2000012749 A JP2000012749 A JP 2000012749A
Authority
JP
Japan
Prior art keywords
carbon
thermal conductivity
heat
carbon composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176780A
Other languages
Japanese (ja)
Inventor
Yoshinori Suzuki
賀紀 鈴木
Haruo Ishikawa
治男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10176780A priority Critical patent/JP2000012749A/en
Publication of JP2000012749A publication Critical patent/JP2000012749A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize and make a heat sink light-weight by a method, wherein carbon fibers are arrayed in one direction, and this array is laminated, and a carbon fiber orientation of a carbon composite material obtained by impregnating a resin therein is structured so as to increase the thermal conductivity in a planar direction. SOLUTION: A carbon fiber has satisfactory thermal conductivity in a fiber direction. Thereby, the carbon fibers are arrayed in one direction, and this array is laminated and by having a resin impregnated therein solidified, a carbon composite material is obtained which has one orientation for the thermal conductivity. Such a carbon composite material having the orientation in thermal conductivity is cut out in a desirable magnitude so that the direction of the carbon fiber is set in a planar direction, and this is used as a heat spreader. If a heat sink composed of this carbon composite is used, namely using a heat spreader, radiation effects of the same level as copper are attained, and it is possible to constitute a package lighter than that when a copper plate or an aluminum plate is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体パーケージに
用いられる放熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink used for a semiconductor package.

【0002】[0002]

【従来の技術】近年の半導体パッケージは高密度化、高
集積化が求められ、そのスケール自体も小型化・軽量化
してきている。しかし、こうした反面、半導体パッケー
ジの単位面積当たりの発熱量は大幅に増加し、従来の樹
脂パッケージでは半導体パッケージ自体が破壊されるお
それがある。その結果、ヒートスプレッダーと呼ばれる
放熱板が半導体パッケージに用いられ、半導体パッケー
ジの熱を放出し、半導体パッケージを保護するようにし
ている。
2. Description of the Related Art In recent years, semiconductor packages are required to have higher density and higher integration, and the scale itself is becoming smaller and lighter. However, on the other hand, the amount of heat generated per unit area of the semiconductor package is significantly increased, and the semiconductor package itself may be broken in the conventional resin package. As a result, a heat spreader called a heat spreader is used for the semiconductor package to release the heat of the semiconductor package and protect the semiconductor package.

【0003】このような放熱板は半導体チップより発生
される熱を効率よくパッケージ外に放散させることが必
要なため、通常金属製のものが用いられる。しかし、金
属板は熱伝導性に優れるという点では良いものの、重量
が重くなるという欠点があり、小型化・軽量化には逆ら
うことになる。
Since it is necessary to efficiently dissipate the heat generated by the semiconductor chip to the outside of the package, a metal radiator is usually used. However, although the metal plate is good in that it has excellent thermal conductivity, it has a drawback that it is heavy, which is against the miniaturization and weight reduction.

【0004】[0004]

【発明が解決しようとする課題】本発明は、小型化・軽
量化が可能な新規の放熱板の提供を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel heat sink which can be reduced in size and weight.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明は、炭素繊維を一方向に配列し、この配列を積層し、
これに樹脂を含浸させて得たカーボンコンポジット材料
を用いるものであり、該カーボンコンポジット材料の炭
素繊維配向性を、平面方向に熱伝導性が高くなるように
して構成された放熱板である。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems is to arrange carbon fibers in one direction, and to laminate this arrangement,
This is a heat radiating plate configured by using a carbon composite material obtained by impregnating a resin with the carbon composite material so that the carbon fiber orientation of the carbon composite material becomes higher in the thermal conductivity in a plane direction.

【0006】[0006]

【発明の実施の形態】炭素繊維は繊維方向に良好な熱伝
導性を持つ。よって、炭素繊維を一方向に配列し、この
配列を積層し、これに樹脂を含浸させて固めれば、熱伝
導性に対して方向性を持ったカーボンコンポジット材料
が得られることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Carbon fibers have good thermal conductivity in the fiber direction. Therefore, if the carbon fibers are arranged in one direction, the arrangement is laminated, and the resin is impregnated and solidified, a carbon composite material having directionality with respect to thermal conductivity can be obtained.

【0007】本発明では、こうした熱伝導性に方向性を
持つカーボンコンポジット材料を所望の大きさに、かつ
炭素繊維の方向が平面方向になるように切り出し、これ
をヒートスプレッダーとして用いるものである。
In the present invention, such a carbon composite material having directionality in thermal conductivity is cut out to a desired size and the direction of the carbon fibers becomes a plane direction, and this is used as a heat spreader.

【0008】本発明において、ヒートスプレッダーを炭
素繊維の方向が平面方向となるようにするのは、炭素繊
維方向に熱伝導性が良好なため、素早くパッケージ全体
に熱が広がり、熱放散がパッケージ全体で行われるよう
になるからである。すなわち、パッケージ全体で熱放散
をすることにより半導体チップ近傍の局部的な熱負荷の
上昇を抑えるものである。
In the present invention, the heat spreader is arranged so that the direction of the carbon fibers is in the plane direction because the heat conductivity is good in the direction of the carbon fibers, so that the heat spreads quickly throughout the package and the heat dissipation is reduced. This is because it will be performed in. That is, by dissipating heat in the entire package, a local increase in heat load near the semiconductor chip is suppressed.

【0009】次に検討例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to a study example.

【0010】ヒートスプレッダー材としてカーボンコン
ポジット材を各種の方向で切り出して作製し、図1に示
した84PLCCタイプのMCM−Lを作製することを
想定し、シミュレーションにより熱解析を行い、風速0
m/sの場合と風速1m/sの場合とでの平衡状態での
ヒートスプレッダーの熱抵抗を求めた。
[0010] As a heat spreader material, a carbon composite material is cut out in various directions and produced, and it is assumed that the 84 PLCC type MCM-L shown in FIG. 1 is produced.
The thermal resistance of the heat spreader in an equilibrium state at a speed of m / s and a wind speed of 1 m / s was determined.

【0011】この場合、ヒートスプレッダーを構成する
炭素繊維の繊維方向がX方向、X及びY方向、X及びZ
方向、Z方向になったものとした。そして、比較として
銅板製の同じ大きさのヒートスプレッダーを用いた場合
を想定して同様に熱抵抗を求めた。用いたプログラムは
市販の熱解析用のプログラムである。
In this case, the fiber directions of the carbon fibers constituting the heat spreader are X direction, X and Y directions, X and Z directions.
Direction and Z direction. Then, as a comparison, the thermal resistance was similarly calculated on the assumption that a heat spreader of the same size made of a copper plate was used. The program used is a commercially available program for thermal analysis.

【0012】なお、X、Y方向はヒートスプレッダーの
面内方向であり、Z方向はヒートスプレッダーの厚み方
向である。結果を表1に示した。
The X and Y directions are in-plane directions of the heat spreader, and the Z direction is a thickness direction of the heat spreader. The results are shown in Table 1.

【0013】 表1より面内に炭素繊維の繊維方向、すなわち、面内に
高熱伝導性の方向を持つ3)、4)、5)の場合、銅板
と同等の低い熱抵抗が達成できることがわかる。よっ
て、3)、4)、5)の場合には銅板と同程度の放熱作
用が得られると推定できる。
[0013] From Table 1, it can be seen that in the case of 3), 4) and 5) having the direction of the carbon fiber in the plane, that is, the direction of high thermal conductivity in the plane, a low thermal resistance equivalent to a copper plate can be achieved. Therefore, in the cases of 3), 4), and 5), it can be estimated that the same heat radiation effect as that of the copper plate is obtained.

【0014】次に、実際に表1の1)と3)、4)、
5)のMCM−Lを作製し、放熱効率を比較した。その
結果、半導体チップ搭載部直上のパッケージ温度推移は
いずれも大差なく、3)、4)、5)のカーボンコンポ
ジットが銅板と同様に高熱伝導性機能を発揮しているこ
とがわかった。
Next, 1), 3), 4), and
MCM-L of 5) was prepared and the heat dissipation efficiency was compared. As a result, it was found that the transitions of the package temperature immediately above the semiconductor chip mounting portion were not significantly different, and that the carbon composites 3), 4) and 5) exhibited a high thermal conductivity function similarly to the copper plate.

【0015】ところで、カーボンコンポジットは、密度
が1.75g/cm3 で、銅の密度(8.96g/cm
3 )の約 1/5である。この点より各種パッケージで
の軽量化効果を試算すると以下のようになる。
The carbon composite has a density of 1.75 g / cm 3 and a copper density (8.96 g / cm 3 ).
It is about 1/5 of 3 ). From this point, the trial calculation of the weight reduction effect in various packages is as follows.

【0016】P−BGA(31mm角、Cu製ヒートス
プレッダー付き)の場合では 既存パッケージの重量=4.80グラム ヒートスプレッダーの体積=約 0.24cm3 (31
mm×31mm×0.25mm厚) ヒートスプレッダーの重量=約 2.15 グラム これを比重 1.75のカーボンコンポジット(0.4
2 グラム)で置き換えた場合、パッケージ全体として
の軽量化効果は重量の絶対値として、 2.15−0.42 = 1.73 グラム の軽量化になり、全体重量に対する比率として、 1.73/4.80×100 = 36.0% の軽量化が達成できることがわかる。
P-BGA (31 mm square, Cu heats
Weight with existing package = 4.80 g Heat spreader volume = approx. 0.24 cmThree (31
mm × 31 mm × 0.25 mm thick) Weight of heat spreader = about 2.15 g This was put into a carbon composite (0.4
2 g)
The weight reduction effect of 2.15-0.42 = 1.73 grams as the absolute value of the weight, and the ratio of 1.73 / 4.80 × 100 = 36.0% to the total weight It can be seen that weight reduction can be achieved.

【0017】また、160ピンPQFP(28mm角、
Al製ヒートスラグ付き)の場合では、 既存パッケージの平均重量=5.96グラム ヒートスラグの体積=約 0.73cm3 (24mm×
24mm×1.27mm厚) ヒートスラグの重量=約 1.97 グラム このヒートスラグを比重 1.75のカーボンコンポジ
ット(1.28 グラム)で置き換えた場合、パッケー
ジ全体としての軽量化効果は重量の絶対値として、 1.97−1.28 = 0.69 グラム 全体重量に対する比率として、 0.69/5.96×100 = 11.6% の軽量化となる。
A 160-pin PQFP (28 mm square,
In the case of (with aluminum heat slag), the average weight of the existing package = 5.96 g The volume of the heat slag = about 0.73 cmThree (24mm ×
24mm x 1.27mm thickness) Weight of heat slag = about 1.97 g This heat slag is carbon composite with specific gravity of 1.75.
Weight (1.28 grams)
The lightening effect of the entire body is as follows: 1.97-1.28 = 0.69 g as an absolute value of weight 0.69 / 5.96 × 100 = 11.6% as a ratio to the total weight. Become.

【0018】よって、ヒートスプレッダ(=薄板)とし
て埋め込んだ場合よりもヒートスラグとして露出させた
(=厚板)場合の方が軽量化効果は大きい。また、テー
プ−BGAのスティフナー兼ヒートスプレッダとして使
用する場合も、パッケージ全体に占めるスティフナーの
割合が大きいので、軽量化効果が大きい。
Therefore, the effect of reducing the weight is greater when exposed as a heat slag (= thick plate) than when embedded as a heat spreader (= thin plate). Also, when the tape-BGA is used as a stiffener and a heat spreader, the stiffener accounts for a large proportion of the entire package, so that the effect of reducing the weight is great.

【0019】[0019]

【発明の効果】本発明の少なくとも面内の一方向に高熱
伝導性を持たせたカーボンコンポジット製の放熱板、す
なわちヒートスプレッダーやヒートスラグを用いれば、
銅と同程度の放熱効果が得られ、かつ銅板やアルミ板を
用いる場合よりも軽いパッケージを構成することが可能
である。その効果は、ヒートスプレッダ(=薄板)とし
て埋め込んだ場合よりもヒートスラグとして露出させた
(=厚板)場合の方が大きく、また、T−BGAのステ
ィフナー兼ヒートスプレッダとして使用する場合も、パ
ッケージ全体に占めるスティフナーの割合が大きいの
で、軽量化効果が大きい。
According to the present invention, if a heat radiating plate made of carbon composite having high thermal conductivity in at least one direction within a plane, that is, a heat spreader or a heat slag is used,
A heat radiation effect equivalent to that of copper can be obtained, and a lighter package can be configured than when a copper plate or an aluminum plate is used. The effect is greater when exposed as a heat slag (= thick plate) than when embedded as a heat spreader (= thin plate), and when used as a stiffener and heat spreader for T-BGA, the entire package Since the stiffener accounts for a large proportion, the weight reduction effect is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の検討に用いたMCM−Lを示した図で
ある。
FIG. 1 is a diagram showing an MCM-L used in the study of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維を一方向に配列し、この配
列を積層し、これに樹脂を含浸させて得たカーボンコン
ポジット材料を用いて構成された半導体パッケージ用放
熱板であり、該カーボンコンポジット材料の炭素繊維配
向性を、平面方向に熱伝導性が高くなるようにして構成
されたことを特徴とする放熱板。
1. A heat radiating plate for a semiconductor package comprising a carbon composite material obtained by arranging carbon fibers in one direction, laminating the arrangement, and impregnating the carbon fiber with a resin. Characterized in that the carbon fiber orientation of (1) is such that the thermal conductivity is increased in the plane direction.
JP10176780A 1998-06-24 1998-06-24 Semiconductor package heat sink Pending JP2000012749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176780A JP2000012749A (en) 1998-06-24 1998-06-24 Semiconductor package heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176780A JP2000012749A (en) 1998-06-24 1998-06-24 Semiconductor package heat sink

Publications (1)

Publication Number Publication Date
JP2000012749A true JP2000012749A (en) 2000-01-14

Family

ID=16019719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176780A Pending JP2000012749A (en) 1998-06-24 1998-06-24 Semiconductor package heat sink

Country Status (1)

Country Link
JP (1) JP2000012749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120830A3 (en) * 2000-01-24 2002-05-22 Shinko Electric Industries Co. Ltd. Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate with a concave portion
JP2004515610A (en) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション Lightweight circuit board including conductive constrained core
US7085135B2 (en) 2004-06-21 2006-08-01 International Business Machines Corporation Thermal dissipation structure and method employing segmented heat sink surface coupling to an electronic component
JP2009238841A (en) 2008-03-26 2009-10-15 Nec Personal Products Co Ltd Heat conductive component and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120830A3 (en) * 2000-01-24 2002-05-22 Shinko Electric Industries Co. Ltd. Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate with a concave portion
US6713863B2 (en) 2000-01-24 2004-03-30 Shinko Electric Industries Co., Ltd. Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate having a concave portion
JP2004515610A (en) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション Lightweight circuit board including conductive constrained core
US7085135B2 (en) 2004-06-21 2006-08-01 International Business Machines Corporation Thermal dissipation structure and method employing segmented heat sink surface coupling to an electronic component
JP2009238841A (en) 2008-03-26 2009-10-15 Nec Personal Products Co Ltd Heat conductive component and electronic equipment

Similar Documents

Publication Publication Date Title
US6945319B1 (en) Symmetrical heat sink module with a heat pipe for spreading of heat
EP2023388B1 (en) Semiconductor package
US20070053166A1 (en) Heat dissipation device and composite material with high thermal conductivity
JP2930923B2 (en) Cooling structure, portable electronic device using the same, and method of forming cooling structure
JP2002237555A (en) Heat sink with fin
MY128398A (en) Electronic assembly with high capacity thermal interface and methods manufacturing
WO2008150775A2 (en) Heat spreader compositions and materials, integrated circuitry, methods of production and uses thereof
US20050258550A1 (en) Circuit board and semiconductor device using the same
WO2002089206A1 (en) Heat sink
JP2008159995A (en) Heat sink
US6862183B2 (en) Composite fins for heat sinks
KR20180084095A (en) Manufacturing method of heat radiator, electronic device, lighting device and radiator
JP2000012749A (en) Semiconductor package heat sink
US5796049A (en) Electronics mounting plate with heat exchanger and method for manufacturing same
JP2003100968A (en) Heat radiation member and its manufacturing method
WO2010004662A1 (en) Heat dissipation sheet and process for producing heat dissipation sheet
JP7201658B2 (en) Cooling system
US6636423B2 (en) Composite fins for heat sinks
JP2003060140A (en) Heat sink and heat radiation device
CN209029363U (en) Chip cooling structure, chip structure, circuit board and supercomputer equipment
CN113703257B (en) Camera CCD heat abstractor suitable for ultra-thin space
JPH0846095A (en) Cooling device with cooling-power variable mechanism
JP2880875B2 (en) Adhesive for electronic devices
JPH05299545A (en) Heat dissipation body
US20190285372A1 (en) Heat transfer device