JP4053729B2 - Composite material and manufacturing method thereof - Google Patents

Composite material and manufacturing method thereof Download PDF

Info

Publication number
JP4053729B2
JP4053729B2 JP2000400952A JP2000400952A JP4053729B2 JP 4053729 B2 JP4053729 B2 JP 4053729B2 JP 2000400952 A JP2000400952 A JP 2000400952A JP 2000400952 A JP2000400952 A JP 2000400952A JP 4053729 B2 JP4053729 B2 JP 4053729B2
Authority
JP
Japan
Prior art keywords
composite material
vapor
fiber
metal
grown carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000400952A
Other languages
Japanese (ja)
Other versions
JP2002194515A (en
Inventor
均 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000400952A priority Critical patent/JP4053729B2/en
Publication of JP2002194515A publication Critical patent/JP2002194515A/en
Application granted granted Critical
Publication of JP4053729B2 publication Critical patent/JP4053729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属をマトリックスとし、フィラーとして気相成長炭素繊維を有する複合材料技術に関する。
【0002】
【従来の技術】
アルミニウム、あるいは、アルミニウム合金は熱伝導性に優れているので、ヒートシンクなどに用いられ、CPUなどの局所的な冷却・放熱に用いられている。
【0003】
しかしながら、現在、放熱ファンを用いることのできないノート型機器、ハンドヘルド機器など小型化し、極度に軽量化した機器が次々と開発される一方、クロック数(動作周波数)の増加などに伴い、これら機器での発熱量が増大している。
これら矛盾する要求を満足するため、軽量でありながら熱伝導性に優れた材料が求められている。
【0004】
このようなものとして炭素繊維がフィラーとして添加されたアルミニウムあるいはアルミニウム合金が知られ、本発明者らはすでに、特に高い熱伝導性を有する材料として、気相成長炭素繊維をフィラーとして用いた金属系複合材料を提案してきた。
【0005】
しかしこのような気相成長炭素繊維−アルミニウム系複合材料では、金属と炭素繊維との間の密着性が悪く、成形時に減圧などの手段を講じても界面に小さな隙間(以下、「ボイド」とも云う)が発生し、本来得られるべき優れた熱伝導性が実際には得られない場合が多かった。
【0006】
【発明が解決しようとする課題】
本発明は、問題点を改善する、すなわち、軽量で、かつ、本来の高い熱伝導性が充分に発揮される複合材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の複合材料は上記課題を解決するため、請求項1に記載の通り、気相成長炭素繊維と金属とからなる複合材料フィラーが添加されてなる複合材料であって、前記金属がアルミニウムまたはアルミニウム合金であり、かつ、前記フィラーが硼酸アルミニウムであることを特徴とする複合材料である。
【0008】
また、本発明の複合材料の製造方法は、請求項に記載の通り、気相成長炭素繊維及び硼酸アルミニウムを溶媒に分散した後容器に移し、その後前記溶媒を除去して気相成長炭素繊維からなる繊維層を形成し、次いで圧力容器内に繊維層、フィルタ、金属を載置し、次いで圧力容器内を真空状態とするとともに金属を加熱溶融させ、該繊維層に溶融金属を加圧含浸させる複合材料の製造方法であって、前記金属がアルミニウムまたはアルミニウム合金であることを特徴とする複合材料の製造方法である。
【0009】
【発明の実施の形態】
本発明の複合材料は極めて熱伝導性の良好な気相成長炭素繊維(以下「VGCF」とも云う)を用いるため、複合材料とした場合、優れた熱伝導性が得られる。
【0010】
本発明の複合材料で用いる気相成長炭素繊維にはウィスカと云われる針状結晶のものが知られているが、これらは形状が一次元的であり、放熱などの三次元的用途に用いる複合材料の成形に当たってはその配向方向を制御する必要があるものの、その制御は一般に困難である。
【0011】
なお、同様に一次元形状の炭素繊維として知られる、ポリアクリロニトリル系炭素繊維やピッチ系炭素繊維などの長繊維の炭素繊維をチョップ化、或いはミルド化(通常の方法でミルド化しても完全には粉状にならず、繊維としての形状は保たれる)したものも同様の形状的欠点を有するが、これらは更に、気相成長炭素繊維に比べて熱伝導性が数段低い(気相成長炭素繊維の熱伝導率が1500w/mK程度であるのに対し、これらPAN系及びピッチ系炭素繊維では1〜600w/mK程度)ため、アルミニウム(熱伝導性は200〜270w/mK)との複合材料を形成しても、熱伝導性の向上は小さい。
【0012】
また、従来の長繊維の炭素繊維(ピッチ系炭素繊維及びポリアクリロニトリル系炭素繊維が知られる)からなる織物を内部に有する複合材料(図7参照)では繊維の方向が二次元的であり、そのため熱伝導性も方向性があって1次元あるいは二次元的には良好であるが、三次元的な評価では満足できる熱伝導性が得られない。さらに、いわゆる3D織物(立体織物)などの使用も可能ではあるものの、充分な効果が得られる充填密度とすることが困難な上、このような織物は極めて高価であり実用的でない。
【0013】
このため、本発明の複合材料で用いる気相成長炭素繊維としては羽毛状繊維体である気相成長炭素繊維であることが望ましい。ここで羽毛状繊維体である気相成長炭素繊維は比重が2.0前後(アルミニウムの比重は2.7)であって、枝分かれ(分岐)を有し、場所によって曲がりを有し、場合によってはくびれがあり、また、自ら或いは互いに絡まりあって、全体として0.03mm〜1mmの不定な形状の繊維塊となっているものである。
【0014】
羽毛状繊維体である気相成長炭素繊維は枝分かれがあるため、その三次元的ネットワークを通じて熱が伝導されるため、このものをフィラーとした場合に極めて三次元的に熱伝導性が良好な複合材料が得られる。なお、図1及び図2にこのような曲がりを有し、場合によってはくびれがあり、また、自ら或いは互いに絡まり合う羽毛状繊維体である気相成長炭素繊維の走査型電子顕微鏡写真を、図3には透過型電子顕微鏡写真を示した。
【0015】
このような羽毛状繊維体である気相成長炭素繊維は、一般的な針状の気相成長炭素繊維とほぼ同様の方法によって得ることができる。すなわち、ベンゼンなどの炭化水素を炭素供給元とし、水素存在下で鉄を核として気相成長させる。このとき、温度、雰囲気圧力、原料の炭化水素供給量等条件を変化させることにより、枝分かれ(分岐)を有し、場所によって曲がりを有し、場合によってはくびれがあり、また、自ら或いは互いに絡まる羽毛状繊維体である気相成長炭素繊維を得ることができる。このとき、複数の羽毛状繊維体は互いに絡まり合って、繊維塊を形成している。なお、従来、気相成長炭素繊維を作製するに当たっては、機械的強度を得るなど通常の用途に使うことを想定し、枝分かれ、曲がりなどを有しないものが得られるよう、これら条件を設定していた。
【0016】
本発明の複合材料でマトリックスとして用いる金属としては、本発明の趣旨から、熱伝導性が高く、かつ、比重の低いものであることが好ましい。すなわち、アルミニウム、各種アルミニウム合金、マグネシウム、或いは、マグネシウム合金等が挙げられる。
【0017】
本発明の複合材料ではこれらフィラーである気相成長炭素繊維及びマトリックスである金属の他に、第2のフィラーとして、この金属と濡れ性の良いフィラーを添加することにより、気相成長炭素繊維とマトリックスである金属との界面での濡れ性も特異的に向上する。その結果、複合材料としての熱伝導性も向上し、さらに機械的な各種性能が著しく向上する。
【0018】
マトリックスである金属がアルミニウムまたはアルミニウム合金の場合には、これらと濡れ性の良いフィラーとして硼酸アルミニウムを用いることが望ましい。さらに、硼酸アルミニウムがウィスカであると、均一分散が容易で、本発明の効果が製品の複合材料全体でむらなく得られる。
このような硼酸アルミニウムウィスカは四国化成工業などから入手が可能である。
【0019】
本発明の複合材料は、例えば次のようにして得ることができる。
羽毛状繊維体である気相成長炭素繊維は繊細で脆く、応力が働くと容易に崩れ、三次元的なネットワークが失われやすい。そのため、水、あるいはアルコール類、ケトン類などの有機溶媒(混合溶媒を用いても良い)(これらを併せて「溶媒」と云う)に分散させる。このとき、金属と濡れ性の良いフィラーを添加し、また、必要に応じて界面活性剤など分散性を向上させる薬品を添加し、スラリー状として、底部が液透過性を有する多孔質材(濾紙、あるいは多孔質セラミック等)からなる容器に注ぎ(図4(a)参照)、その後溶媒を除去して、図4(b)のように、マトリックス金属と濡れ性のよいフィラーが分散した金属と濡れ性の良いフィラーが羽毛状繊維体である気相成長炭素繊維からなる繊維層を形成する。
【0020】
この繊維層を図4(c)に示すようなヒータが設けられた加減圧可能な容器(圧力容器)に移す。この圧力容器の底部(図中「基材」)は後述するように取り外し可能となっている。
【0021】
このような繊維層の上に耐熱性を有する多孔質材料(ここでは多孔質セラミック)からなるフィルタ、このフィルタの上に金属(固形)を積層する。
このように圧力容器内に繊維層、フィルタ及び金属を載置したのち、圧力容器内を真空状態とするとともに容器に付属するヒータにより上記金属を加熱溶融させ、フィルタを透過した溶融金属が容器内に導入された後、容器内をマトリックスとなる溶融金属及び炭素に対して不活性なガス、アルゴンガス等を用いて加圧し(この例ではアルゴンガスにより加圧)、繊維層に溶融金属をマトリックス成分として加圧含浸させる。
【0022】
その後、容器のヒータによる加熱を中止し、系を冷やして金属を固化させ、放冷後、容器底部の基材を外し、得られた羽毛状繊維体である気相成長炭素繊維と金属とからなる複合材料を取り出す。
【0023】
このように不活性ガス圧力下で溶融金属の含浸を行うことにより、酸化されやすい溶融金属を用いながらも良好な複合材料が得られる。なお、この構成には、マトリックス金属及び気相成長炭素繊維の他にマトリックス金属と濡れ性の良いフィラーが添加されているために気相成長炭素繊維のマトリックス金属との濡れ性が飛躍的に向上し、この両者の界面にも空隙(ボイド)のない良好な複合材料を得ることができる。
【0024】
なお、上記フィルタは圧力容器内で上下動可能となっていて、その下の空間を最適に保つため、得られる複合材料は不必要にマトリックス成分が多くなることなく、また、羽毛状繊維体である気相成長炭素繊維の破壊もほとんど生じないため、この羽毛状繊維体である気相成長炭素繊維による熱伝導性向上効果、及び、軽量化効果が充分に発揮できるものとなる。
【0025】
また、上記において基材及び多孔質セラミックスの形状を変えることにより、様座な形状、例えばヒートシンクとして適した形状とすることができ、形状を整える後加工を不要としたり、或いは、そのような後加工を容易なものとすることができる。
【0026】
なお、上記複合材料の製造方法によれば、従来、製造が困難であったマトリックスの比重が強化材の比重より大きいFRM(繊維強化金属)を容易に得ることができ、また、そのとき、気相成長炭素繊維の分散性に優れ、各種性能(伝熱特性、伝導率、強度、弾性等)のばらつき、方向性の少ない、ボイドの少ない優れた複合材料となる。なお、上記本発明に係る複合材料の製造方法は、羽毛状繊維体である気相成長炭素繊維の他、通常の気相成長炭素繊維をフィラーとする複合材料の製造にも同様に応用できる。
【0027】
【実施例】
ここで上記で説明した方法で、羽毛状繊維体である気相成長炭素繊維を6重量%、マトリックス金属としてアルミニウムを88重量%、アルミニウムとの濡れ性が良好なフィラーとして硼酸アルミニウムウィスカを6重量%となるように用い、分散時の溶媒としてエチルアルコールを用いて羽毛状繊維体である気相成長炭素繊維と硼酸アルミニウムウィスカとを分散してスラリー状とし、これを底部が液透過性を有する多孔質材からなる容器に移した後、残留したアルコールを加熱・蒸発させ、次いで、アルゴン雰囲気中で本発明に係る実施例の複合材料Aを作製した。
また、同様に、ただしアルミニウムとの濡れ性が良好な硼酸アルミニウムを添加せずに比較例の複合材料Bを作製した。
これら複合材料A及びBの断面を電子顕微鏡で観察した。そのときの結果をそれぞれ図5(a)及び図6(a)に示した。
【0028】
これら図5(a)及び図6(a)において、ハイライト部(ただし、これら図面下方の撮影データを除く部分)が繊維とマトリックスとの界面に発生したボイドである。
【0029】
ここで、これら図5(a)及び図6(a)にそれぞれ同じ画像処理を施して図5(a)及び図6(a)のハイライト部の分布を黒点で示した図を、それぞれ図5(b)及び図6(b)に示す。
これら図により本発明に係る複合材料Aでは従来技術に係る複合材料Bと比べ、繊維とマトリックスとの間のボイドが極めて少なくなっていることが理解できる。
【0030】
【発明の効果】
本発明の複合材料は、軽量で方向性のない良好な熱伝導性を有し、また気相成長炭素繊維をフィラーとして有し、その優れた熱伝導性を十全に発揮することができる機械的強度にも優れた複合材料である。
【0031】
また、本発明の複合材料の製造方法は、マトリックス成分よりも比重が小さく、かつ、脆い繊細なフィラーを用いても、フィラーの分散に優れ、各種性能のばらつき、方向性の少ない優れた複合材料(繊維強化金属)を、ボイドなしで得ることができる。
【図面の簡単な説明】
【図1】羽毛状繊維体である気相成長炭素繊維の走査型電子顕微鏡写真である。
【図2】羽毛状繊維体である気相成長炭素繊維の他の走査型電子顕微鏡写真である。
【図3】羽毛状繊維体である気相成長炭素繊維の透過型電子顕微鏡写真である。
【図4】本発明の複合材料を作製する方法の一例を示す図である。
(a)羽毛状繊維体である気相成長炭素繊維を溶媒に分散したスラリーを容器に注ぐ状態を示す図(モデル図)である。
(b)(a)の容器内で羽毛状繊維体である気相成長炭素繊維からなる繊維層が形成されたことを示す図(モデル図)である。
(c)上記繊維層に溶融金属を含浸させる状態を示すモデル断面図である。
(d)本発明に係る複合材料(羽毛状繊維体である気相成長炭素繊維と金属とからなる複合材料)を示す図(モデル図)である。
【図5】(a)本発明に係る複合材料Aの断面の電子顕微鏡写真である。
(b)(a)のハイライト部(撮影データ部以外はボイド)の分布を示した図である。
【図6】(a)従来技術に係る複合材料Bの断面の電子顕微鏡写真である。
(b)(a)のハイライト部(撮影データ部以外はボイド)の分布を示した図である。
【図7】長繊維炭素繊維からなる織物をフィラーとして有する複合材料を示す図(モデル図)である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material technology having a metal as a matrix and vapor-grown carbon fibers as a filler.
[0002]
[Prior art]
Aluminum or aluminum alloy is excellent in thermal conductivity, so it is used for a heat sink or the like, and is used for local cooling or heat dissipation of a CPU or the like.
[0003]
However, as notebook-type devices and handheld devices that cannot use heat dissipation fans are being developed in recent years, extremely light-weight devices such as notebook devices and handheld devices are being developed one after another. The amount of heat generated is increasing.
In order to satisfy these contradictory requirements, a material that is lightweight and excellent in thermal conductivity is required.
[0004]
As such, aluminum or aluminum alloy to which carbon fiber is added as a filler is known, and the present inventors have already made a metal system using vapor-grown carbon fiber as a filler as a material having particularly high thermal conductivity. Composite materials have been proposed.
[0005]
However, such a vapor-grown carbon fiber-aluminum composite material has poor adhesion between the metal and the carbon fiber, and even if measures such as pressure reduction are taken during molding, a small gap (hereinafter referred to as “void”) is formed at the interface. In many cases, the excellent thermal conductivity that should be originally obtained cannot actually be obtained.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a composite material that improves the problems, that is, is lightweight and sufficiently exhibits its original high thermal conductivity.
[0007]
[Means for Solving the Problems]
Since the composite material of the present invention is to solve the above problems, a composite material as, for the composite material comprising a vapor grown carbon fiber and metal filler formed by the addition according to claim 1, wherein the metal is aluminum Alternatively, the composite material is an aluminum alloy and the filler is aluminum borate .
[0008]
The method of producing a composite material of the present invention, as described in claim 4, the vapor-grown carbon fiber and aluminum borate transferred to a vessel after dispersing in a solvent, then the solvent was removed vapor-grown carbon fibers Then, the fiber layer, filter, and metal are placed in the pressure vessel, and then the inside of the pressure vessel is evacuated and the metal is heated and melted, and the molten metal is pressure impregnated into the fiber layer. A method for producing a composite material, wherein the metal is aluminum or an aluminum alloy .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Since the composite material of the present invention uses vapor-grown carbon fiber (hereinafter also referred to as “VGCF”) having extremely good thermal conductivity, excellent thermal conductivity can be obtained when a composite material is used.
[0010]
Vapor-grown carbon fibers used in the composite material of the present invention are known in the form of needle crystals called whiskers, but these are one-dimensional in shape and are used for three-dimensional applications such as heat dissipation. Although it is necessary to control the orientation direction when molding a material, it is generally difficult to control the orientation direction.
[0011]
Similarly, carbon fibers of long fibers such as polyacrylonitrile-based carbon fibers and pitch-based carbon fibers, which are also known as one-dimensional shape carbon fibers, are chopped or milled (even if they are milled by ordinary methods, they are completely Those that do not become powdery and retain their shape as fibers) have similar geometrical defects, but they also have several lower thermal conductivities than vapor-grown carbon fibers (vapor-phase growth). Since the thermal conductivity of carbon fiber is about 1500 w / mK, these PAN-based and pitch-based carbon fibers are about 1-600 w / mK), so it is a composite with aluminum (the thermal conductivity is 200-270 w / mK). Even if the material is formed, the improvement in thermal conductivity is small.
[0012]
Moreover, in the composite material (refer FIG. 7) which has the textile fabric which consists of the carbon fiber of a conventional long fiber (a pitch type carbon fiber and a polyacrylonitrile type carbon fiber are known) inside, the direction of a fiber is two-dimensional. The thermal conductivity is also directional and good in one or two dimensions, but satisfactory thermal conductivity cannot be obtained by three-dimensional evaluation. Furthermore, although a so-called 3D woven fabric (three-dimensional woven fabric) can be used, it is difficult to obtain a packing density that can provide a sufficient effect, and such a woven fabric is extremely expensive and impractical.
[0013]
For this reason, it is desirable that the vapor-grown carbon fiber used in the composite material of the present invention is a vapor-grown carbon fiber that is a feather-like fiber body. Here, the vapor-grown carbon fiber that is a feather-like fiber body has a specific gravity of around 2.0 (a specific gravity of aluminum is 2.7), has a branch (branch), has a bend depending on the place, and in some cases. There is a constriction, and it is entangled with itself or with each other to form an indefinitely shaped fiber mass of 0.03 mm to 1 mm as a whole.
[0014]
Vapor-grown carbon fiber, which is a feather-like fiber body, is branched, and heat is conducted through its three-dimensional network. Therefore, when this fiber is used as a filler, it is a composite with extremely good three-dimensional thermal conductivity. A material is obtained. FIGS. 1 and 2 are scanning electron micrographs of vapor-grown carbon fibers that have such a bend and are constricted in some cases and are feather-like fibrous bodies that are entangled with each other. 3 shows a transmission electron micrograph.
[0015]
The vapor grown carbon fiber which is such a feather-like fibrous body can be obtained by a method almost the same as a general needle-like vapor grown carbon fiber. That is, vapor growth is performed using hydrocarbons such as benzene as a carbon supply source and iron as a nucleus in the presence of hydrogen. At this time, by changing the conditions such as temperature, atmospheric pressure, feed amount of hydrocarbons, etc., it has branching (branching), has bending depending on the place, sometimes constricted, and entangles itself or with each other A vapor-grown carbon fiber that is a feather-like fiber body can be obtained. At this time, the plurality of feather-like fiber bodies are entangled with each other to form a fiber mass. Conventionally, when producing vapor-grown carbon fibers, these conditions have been set so that they can be used for ordinary applications such as obtaining mechanical strength, and those that do not have branching or bending can be obtained. It was.
[0016]
The metal used as a matrix in the composite material of the present invention is preferably a metal having a high thermal conductivity and a low specific gravity for the purpose of the present invention. That is, aluminum, various aluminum alloys, magnesium, a magnesium alloy, etc. are mentioned.
[0017]
In the composite material of the present invention, in addition to the vapor-grown carbon fiber as the filler and the metal as the matrix, the vapor-grown carbon fiber and the metal having good wettability are added as the second filler. The wettability at the interface with the matrix metal is also specifically improved. As a result, thermal conductivity as a composite material is improved, and various mechanical performances are remarkably improved.
[0018]
When the metal which is a matrix is aluminum or an aluminum alloy, it is desirable to use aluminum borate as a filler having good wettability with these. Further, when the aluminum borate is a whisker, uniform dispersion is easy, and the effects of the present invention can be obtained uniformly throughout the composite material of the product.
Such an aluminum borate whisker can be obtained from Shikoku Chemicals.
[0019]
The composite material of the present invention can be obtained, for example, as follows.
Vapor-grown carbon fiber, which is a feather-like fibrous body, is delicate and brittle, and easily collapses when stress is applied, so that a three-dimensional network is easily lost. Therefore, it is dispersed in water or an organic solvent such as alcohols and ketones (a mixed solvent may be used) (these are collectively referred to as “solvent”). At this time, a filler having good wettability with a metal is added, and a chemical that improves dispersibility such as a surfactant is added as necessary, and a porous material (filter paper) having a liquid permeability at the bottom as a slurry. Or a porous ceramic or the like) (see FIG. 4 (a)), and then the solvent is removed, as shown in FIG. 4 (b), a metal in which a matrix metal and a filler having good wettability are dispersed. A filler layer having good wettability forms a fiber layer made of vapor-grown carbon fibers that are feather-like fiber bodies.
[0020]
This fiber layer is transferred to a container (pressure container) capable of pressure increase / decrease provided with a heater as shown in FIG. The bottom of the pressure vessel (“base material” in the figure) is removable as will be described later.
[0021]
A filter made of a heat-resistant porous material (here, porous ceramic) is laminated on such a fiber layer, and a metal (solid) is laminated on the filter.
After placing the fiber layer, the filter and the metal in the pressure vessel in this way, the inside of the pressure vessel is evacuated and the metal is heated and melted by the heater attached to the vessel, and the molten metal that has passed through the filter is in the vessel. After being introduced into the container, the inside of the container is pressurized using a gas that is inert to the molten metal and carbon that forms the matrix, argon gas, etc. (in this example, pressurized with argon gas), and the molten metal is applied to the fiber layer in the matrix. Impregnation under pressure as a component.
[0022]
Thereafter, heating by the heater of the container is stopped, the system is cooled to solidify the metal, and after standing to cool, the base material at the bottom of the container is removed, and from the vapor grown carbon fiber and the metal that is the obtained feather-like fiber body Take out the composite material.
[0023]
Thus, by impregnating the molten metal under an inert gas pressure, a good composite material can be obtained while using a molten metal that is easily oxidized. In addition to the matrix metal and the vapor-grown carbon fiber, this composition contains a filler that has good wettability with the matrix metal, so the wettability of the vapor-grown carbon fiber with the matrix metal is dramatically improved. In addition, a good composite material having no voids at the interface between the two can be obtained.
[0024]
The above-mentioned filter can move up and down in the pressure vessel, and in order to keep the space below it optimally, the resulting composite material does not needlessly increase the matrix components, and it is a feather-like fiber body. Since almost no destruction of a certain vapor-grown carbon fiber occurs, the effect of improving thermal conductivity and the effect of reducing the weight by the vapor-grown carbon fiber that is the feather-like fiber body can be sufficiently exhibited.
[0025]
In addition, by changing the shape of the base material and the porous ceramic in the above, it is possible to obtain a conformal shape, for example, a shape suitable as a heat sink, and the post-processing for adjusting the shape is unnecessary or after such Processing can be facilitated.
[0026]
According to the method for producing a composite material, it is possible to easily obtain FRM (fiber reinforced metal) in which the specific gravity of the matrix, which has heretofore been difficult to produce, is larger than the specific gravity of the reinforcing material. It is an excellent composite material with excellent dispersibility of phase-grown carbon fibers, variation in various performances (heat transfer characteristics, conductivity, strength, elasticity, etc.), less directivity, and fewer voids. The above-described method for producing a composite material according to the present invention can be similarly applied to the production of a composite material using a normal vapor-grown carbon fiber as a filler in addition to the vapor-grown carbon fiber that is a feather-like fiber body.
[0027]
【Example】
Here, by the method described above, 6% by weight of vapor grown carbon fiber which is a feather-like fiber body, 88% by weight of aluminum as a matrix metal, and 6% of aluminum borate whisker as a filler having good wettability with aluminum. %, And vapor-grown carbon fibers and aluminum borate whiskers, which are feather-like fibrous bodies, are dispersed into a slurry by using ethyl alcohol as a solvent at the time of dispersion, and the bottom has liquid permeability. After transferring to a container made of a porous material, the remaining alcohol was heated and evaporated, and then a composite material A of an example according to the present invention was produced in an argon atmosphere.
Similarly, a composite material B of Comparative Example was prepared without adding aluminum borate having good wettability with aluminum.
The cross sections of these composite materials A and B were observed with an electron microscope. The results at that time are shown in FIGS. 5 (a) and 6 (a), respectively.
[0028]
In these FIG. 5A and FIG. 6A, the highlight portion (however, the portion excluding the photographing data below these drawings) is a void generated at the interface between the fiber and the matrix.
[0029]
Here, the same image processing is applied to FIGS. 5 (a) and 6 (a), respectively, and the distribution of the highlight portion in FIGS. 5 (a) and 6 (a) is indicated by black dots. 5 (b) and FIG. 6 (b).
From these figures, it can be understood that the composite material A according to the present invention has very few voids between the fibers and the matrix as compared with the composite material B according to the prior art.
[0030]
【The invention's effect】
The composite material of the present invention is lightweight and has good thermal conductivity without directionality, and has vapor grown carbon fiber as a filler, and can fully exhibit its excellent thermal conductivity. Composite material with excellent mechanical strength.
[0031]
In addition, the method for producing a composite material of the present invention has an excellent composite material that has a smaller specific gravity than the matrix component and is excellent in dispersion of the filler, has various performance variations, and has little directionality even when a brittle and delicate filler is used. (Fiber reinforced metal) can be obtained without voids.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph of vapor grown carbon fiber which is a feather-like fiber body.
FIG. 2 is another scanning electron micrograph of vapor-grown carbon fiber that is a feather-like fiber body.
FIG. 3 is a transmission electron micrograph of vapor grown carbon fiber which is a feather-like fiber body.
FIG. 4 is a diagram showing an example of a method for producing a composite material of the present invention.
(A) It is a figure (model figure) which shows the state which pours into a container the slurry which disperse | distributed the vapor growth carbon fiber which is a feather-like fiber body to the solvent.
(B) It is a figure (model figure) which shows that the fiber layer which consists of a vapor growth carbon fiber which is a feather-like fiber body was formed in the container of (a).
(C) It is a model sectional view showing the state where the above-mentioned fiber layer is impregnated with molten metal.
(D) It is a figure (model figure) which shows the composite material (composite material which consists of the vapor growth carbon fiber which is a feather-like fiber body, and a metal) based on this invention.
5A is an electron micrograph of a cross section of a composite material A according to the present invention. FIG.
(B) It is the figure which showed distribution of the highlight part (a void other than a photography data part) of (a).
FIG. 6A is an electron micrograph of a cross section of a composite material B according to the prior art.
(B) It is the figure which showed distribution of the highlight part (a void other than a photography data part) of (a).
FIG. 7 is a diagram (model diagram) showing a composite material having a woven fabric made of long-fiber carbon fibers as a filler.

Claims (4)

気相成長炭素繊維と金属とからなる複合材料フィラーが添加されてなる複合材料であって、
前記金属がアルミニウムまたはアルミニウム合金であり、かつ、前記フィラーが硼酸アルミニウムであることを特徴とする複合材料。
A composite material in which a filler is added to a composite material composed of vapor-grown carbon fiber and metal ,
A composite material, wherein the metal is aluminum or an aluminum alloy, and the filler is aluminum borate .
前記硼酸アルミニウムが硼酸アルミニウムウィスカであることを特徴とする請求項1に記載の複合材料。The composite material according to claim 1, wherein the aluminum borate is an aluminum borate whisker . 前記気相成長炭素繊維が、羽毛状繊維体であることを特徴とする請求項1または請求項2に記載の複合材料。The composite material according to claim 1 , wherein the vapor-grown carbon fiber is a feather-like fiber body . 気相成長炭素繊維及び硼酸アルミニウムを溶媒に分散した後容器に移し、その後前記溶媒を除去して気相成長炭素繊維からなる繊維層を形成し、次いで圧力容器内に繊維層、フィルタ、金属を載置し、次いで圧力容器内を真空状態とするとともに金属を加熱溶融させ、該繊維層に溶融金属を加圧含浸させる複合材料の製造方法であって、Vapor-grown carbon fiber and aluminum borate are dispersed in a solvent and then transferred to a container, and then the solvent is removed to form a fiber layer made of vapor-grown carbon fiber. It is a method for producing a composite material that is placed and then evacuated and the metal is heated and melted, and the fiber layer is pressure-impregnated with the molten metal,
前記金属がアルミニウムまたはアルミニウム合金であることを特徴とする複合材料の製造方法。A method for producing a composite material, wherein the metal is aluminum or an aluminum alloy.
JP2000400952A 2000-12-28 2000-12-28 Composite material and manufacturing method thereof Expired - Fee Related JP4053729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400952A JP4053729B2 (en) 2000-12-28 2000-12-28 Composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400952A JP4053729B2 (en) 2000-12-28 2000-12-28 Composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002194515A JP2002194515A (en) 2002-07-10
JP4053729B2 true JP4053729B2 (en) 2008-02-27

Family

ID=18865453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400952A Expired - Fee Related JP4053729B2 (en) 2000-12-28 2000-12-28 Composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4053729B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051782A1 (en) 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
EP2579433A4 (en) 2010-05-27 2017-01-18 Yazaki Corporation Rotor of induction motor, and induction motor using same
CN103021542B (en) * 2012-11-29 2016-09-14 安徽徽宁电器仪表集团有限公司 A kind of light environment-friendlycable cable core and preparation method
KR102201539B1 (en) * 2019-09-23 2021-01-12 재단법인대구경북과학기술원 A metal matrix composite substrate and the preparation method thereof

Also Published As

Publication number Publication date
JP2002194515A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP4538502B2 (en) Pitch-based carbon fiber, mat, and resin molded body containing them
US7407901B2 (en) Impact resistant, thin ply composite structures and method of manufacturing same
Yamaguchi et al. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons
JP2935569B2 (en) High thermal conductivity non-metallic honeycomb
US20110124253A1 (en) Cnt-infused fibers in carbon-carbon composites
EP0630875A1 (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
JP2002356381A (en) METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE
US8257495B2 (en) Crucible holding member and method for producing the same
JP4053729B2 (en) Composite material and manufacturing method thereof
JP2001107203A (en) Composite material and its production method
JP4538607B2 (en) High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers
Yuan et al. Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers
CN113896558B (en) High-performance heat-conducting composite material and preparation method thereof
US20140242327A1 (en) Fiber-reinforced ceramic composite material honeycomb and method for preparing the same
Luo et al. High‐Performance, Multifunctional, and Designable Carbon Fiber Felt Skeleton Epoxy Resin Composites EP/CF‐(CNT/AgBNs) x for Thermal Conductivity and Electromagnetic Interference Shielding
CN116693311A (en) Preparation and application of high-heat-conductivity matrix and coating integrated design and ablation-resistant composite material
Hager et al. Novel hybrid composites based on carbon foams
JP2002059257A (en) Composite material
JP6004317B2 (en) Method for producing metal-carbon fiber composite material
CN113896559B (en) Silicon carbide/carbon nano tube composite material and preparation method thereof
JP5229936B2 (en) Method for producing metal matrix composite and metal matrix composite
CN109505037B (en) Composite reinforced material with interpenetrating network structure and preparation method thereof
EP3702399B1 (en) Composite material
CN108569687B (en) Preparation method of graphene three-dimensional porous material
GB2363615A (en) Composite material with epitaxial carbon fibres in a metal matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees