JP5873244B2 - Heat dissipation board - Google Patents

Heat dissipation board Download PDF

Info

Publication number
JP5873244B2
JP5873244B2 JP2011047140A JP2011047140A JP5873244B2 JP 5873244 B2 JP5873244 B2 JP 5873244B2 JP 2011047140 A JP2011047140 A JP 2011047140A JP 2011047140 A JP2011047140 A JP 2011047140A JP 5873244 B2 JP5873244 B2 JP 5873244B2
Authority
JP
Japan
Prior art keywords
heat
sheet body
fibers
heat dissipation
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011047140A
Other languages
Japanese (ja)
Other versions
JP2012186242A (en
Inventor
弘貴 上條
弘貴 上條
敏行 立花
敏行 立花
寿秀 菅原
寿秀 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2011047140A priority Critical patent/JP5873244B2/en
Publication of JP2012186242A publication Critical patent/JP2012186242A/en
Application granted granted Critical
Publication of JP5873244B2 publication Critical patent/JP5873244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、この上に与えられた素子の熱を放熱する放熱基板に関し、特に、基板の主面に沿って配置された熱伝導性繊維を含む複合材料からなる放熱基板に関する。   The present invention relates to a heat dissipation board that dissipates heat from an element applied thereon, and more particularly, to a heat dissipation board made of a composite material including thermally conductive fibers disposed along a main surface of the substrate.

電子回路基板に発熱量の大きい素子を取り付ける場合、その使用中に素子の温度が上昇して、素子の動作が不安定になったり、素子の寿命が早期に劣化してしまうなどの問題を生じることがある。このような素子の発熱による問題を回避するためには、素子に放熱器を取り付けるほか、電子回路基板を通じて素子の熱を放熱することが考慮されている。特に後者の方法に対しては、放熱のための孔を与えた電子回路基板を使用する方法や、熱伝導性が良い金属のような材料からなる電子回路基板を使用する方法などが多く提案されている。   When an element that generates a large amount of heat is mounted on an electronic circuit board, the temperature of the element rises during use, causing problems such as unstable operation of the element or early deterioration of the element life. Sometimes. In order to avoid such problems due to heat generation of the element, it is considered to dissipate the heat of the element through an electronic circuit board in addition to attaching a radiator to the element. In particular, for the latter method, many methods such as a method using an electronic circuit board provided with holes for heat dissipation and a method using an electronic circuit board made of a material such as a metal having good thermal conductivity are proposed. ing.

例えば、特許文献1では、金属フィラーを混入させたガラス繊維に樹脂を含浸させた複合材料基板が開示されている。熱伝導率の大きい金属フィラーを基板の主面に対してランダムな方向に伸びるようにして基板内に埋入させ、基板の熱伝導性の熱異方性を低減させつつ、電子回路基板そのものの熱伝導率を大きくしている。これにより素子の熱を電子回路基板に放熱させ得るのである。   For example, Patent Literature 1 discloses a composite material substrate in which a glass fiber mixed with a metal filler is impregnated with a resin. A metal filler having a high thermal conductivity is embedded in the substrate so as to extend in a random direction with respect to the main surface of the substrate, and the thermal anisotropy of the thermal conductivity of the substrate is reduced. The thermal conductivity is increased. Thereby, the heat of the element can be dissipated to the electronic circuit board.

また、例えば、特許文献2では、熱伝導率の大きいポリベンザゾール繊維の如き有機高分子繊維を電子回路基板の厚み方向及び面方向に制御配列させたエポキシ樹脂などからなる樹脂基板が開示されている。かかる有機高分子繊維を埋入させた基板では、繊維長さ方向の熱伝導性が良好となる。そこで、所望とする電子回路基板の熱伝導性の方向に合わせて、厚み方向及び面方向に所定の分配比率で有機高分子繊維を配向・配置させて熱異方性を基板に与え、素子の熱を電子回路基板に放熱させ得るのである。   Further, for example, Patent Document 2 discloses a resin substrate made of an epoxy resin or the like in which organic polymer fibers such as polybenzazole fibers having high thermal conductivity are controlled and arranged in the thickness direction and the surface direction of an electronic circuit board. Yes. In a substrate in which such organic polymer fibers are embedded, the thermal conductivity in the fiber length direction is good. Therefore, in accordance with the desired direction of thermal conductivity of the electronic circuit board, the organic polymer fibers are oriented and arranged at a predetermined distribution ratio in the thickness direction and the surface direction to give thermal anisotropy to the board. Heat can be dissipated to the electronic circuit board.

ところで、電子回路基板そのものの熱伝導率を大きくしたり、発熱量の大きい素子からの熱を電子回路基板の所定の部分に導いたとしても、電子回路基板からその周囲への放熱が十分でないと、徐々に電子回路基板の温度が上昇してしまう。つまり、他の電子回路基板上の素子の温度が上昇して、動作が不安定になってしまうおそれがある。   By the way, even if the thermal conductivity of the electronic circuit board itself is increased or the heat from the element that generates a large amount of heat is conducted to a predetermined part of the electronic circuit board, the heat dissipation from the electronic circuit board to the surrounding area is not sufficient. The temperature of the electronic circuit board gradually increases. In other words, the temperature of elements on other electronic circuit boards may rise and operation may become unstable.

例えば、特許文献3では、素子で発生した熱を電子回路基板に蓄積させず、電子回路基板外周などの比較的温度の低い部分に伝導させて素子の放熱を行うことのできる複合材料からなる複合材料基板が開示されている。かかる電子回路基板では、これを収容するシャーシなどに固定するための連結部を該基板の外周部に複数設けるとともに、発熱量の大きい素子の取り付けられた部分を網羅しながらこの連結部と結ぶように複数の熱伝導性長繊維をマトリクスに配向・配置させている。素子で発生した熱はほとんどマトリクスに与えられることなく、熱伝導性長繊維から電子回路基板外周部の連結部を介してシャーシに放熱される。これにより電子回路基板の温度の上昇を防止できて、その上の素子の温度の上昇も防止できるのである。   For example, in Patent Document 3, heat generated in an element is not accumulated in an electronic circuit board, but a composite material made of a composite material that can conduct heat to a relatively low temperature portion such as the outer periphery of the electronic circuit board to radiate the element. A material substrate is disclosed. In such an electronic circuit board, a plurality of connecting portions for fixing to a chassis or the like that accommodates the electronic circuit board are provided on the outer peripheral portion of the board, and the connecting portion is connected while covering the portion where the element having a large amount of heat generation is attached. A plurality of thermally conductive long fibers are oriented and arranged in a matrix. Almost no heat generated in the element is given to the matrix, but is dissipated from the thermally conductive long fibers to the chassis via the connecting portion on the outer periphery of the electronic circuit board. As a result, an increase in the temperature of the electronic circuit board can be prevented, and an increase in the temperature of the element thereon can also be prevented.

特開2008−243977号公報JP 2008-243976 A 特開2000−273196号公報JP 2000-273196 A 特開2004−22828号公報Japanese Patent Laid-Open No. 2004-22828

素子の発熱量に対して、電子回路基板の熱容量が十分に大きければ、素子の熱を電子回路基板に放熱させて素子の温度上昇を抑制できる。しかしながら、基板が小型化すると、一般的には、熱容量は小さくなってしまう。このような場合であっても、特許文献3に開示された電子回路基板のように基板からその周囲への放熱が十分に可能な場合にあっては、素子及び基板の温度上昇を抑制でき得るが、該基板を収容する設計条件に大きく依存してしまう。特に、装置の小型化、軽量化、低価格化のために、電子回路基板が小型化し、シャーシなども比較的熱伝導性の良くない汎用樹脂が使用されるようになると、電子回路基板自身における素子の発熱に対する対策が求められる。   If the heat capacity of the electronic circuit board is sufficiently large with respect to the amount of heat generated by the element, the heat of the element can be radiated to the electronic circuit board and the temperature rise of the element can be suppressed. However, when the substrate is downsized, the heat capacity is generally reduced. Even in such a case, when the heat radiation from the substrate to the periphery thereof is sufficiently possible as in the electronic circuit substrate disclosed in Patent Document 3, the temperature rise of the element and the substrate can be suppressed. However, it greatly depends on the design conditions for accommodating the substrate. In particular, in order to reduce the size, weight, and cost of the device, the electronic circuit board is downsized, and a general-purpose resin having relatively poor thermal conductivity is used for the chassis and the like. Countermeasures against heat generation of elements are required.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、基板の主面に沿った方向に配置された熱伝導性繊維を含む複合材料からなり、この上に与えられた素子の熱の放熱に優れる放熱基板を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is a composite material including thermally conductive fibers arranged in a direction along the main surface of the substrate, and is provided thereon. Another object of the present invention is to provide a heat dissipating substrate that excels in heat dissipation of the obtained element.

本発明は、繊維強化複合材料からなりこの上に与えられた素子の熱を放熱する放熱基板であって、複数の熱伝導性繊維を主面と垂直方向に互いに接触するようにしつつ平面上に配置させたシート体の複数を互いに接触するようにして積層させて硬化樹脂内に埋入させたことを特徴とする。   The present invention is a heat radiating substrate made of a fiber reinforced composite material and dissipating the heat of an element applied thereon, and a plurality of thermally conductive fibers are placed on a plane while being in contact with each other in a direction perpendicular to the main surface. A plurality of arranged sheet bodies are laminated so as to be in contact with each other and embedded in a cured resin.

かかる発明によれば、複数の熱伝導性繊維を厚さ方向に互いに接触するようにして得たシート体の複数を互いに接触するようにして積層させることで放熱基板の熱容量を大きくして素子の熱を電子回路基板に放熱させ得て、しかもこの熱をシート体の拡がる面方向へ放熱させ得る。すなわち、かかる放熱基板上に与えられた素子の熱の放熱に優れるのである。   According to this invention, the heat capacity of the heat dissipation substrate is increased by laminating a plurality of sheet bodies obtained by bringing a plurality of thermally conductive fibers into contact with each other in the thickness direction so as to contact each other. Heat can be dissipated to the electronic circuit board, and this heat can be dissipated in the direction of the surface of the sheet. That is, it is excellent in heat dissipation of the element given on such a heat dissipation board.

上記した発明において、前記シート体の間には、前記熱伝導性繊維をフェルト様に集積させた中間シート体を挿入されていることを特徴としてもよい。かかる発明によれば、シート体の複数の熱伝導性長繊維を厚さ方向に互いに接触するようにできて、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, an intermediate sheet member in which the heat conductive fibers are integrated like a felt may be inserted between the sheet members. According to this invention, the plurality of heat conductive long fibers of the sheet can be brought into contact with each other in the thickness direction, and the heat dissipation of the element applied on the heat dissipation substrate is excellent.

上記した発明において、前記熱伝導性繊維は前記シート体若しくは前記中間シート体の主面に略垂直な方向に延びて前記熱伝導性繊維同士を連結する分枝部を有することを特徴としてもよい。かかる発明によれば、シート体の複数の熱伝導性長繊維を厚さ方向に互いに接触させて熱伝導率を上げられるので、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the thermally conductive fiber may have a branch portion that extends in a direction substantially perpendicular to a main surface of the sheet body or the intermediate sheet body and connects the thermally conductive fibers to each other. . According to this invention, since the heat conductivity can be increased by bringing the plurality of heat conductive long fibers of the sheet body into contact with each other in the thickness direction, the heat dissipation of the element applied on the heat dissipation substrate is excellent.

上記した発明において、前記熱伝導性繊維は前記シート体若しくは前記中間シート体の間に熱伝導性繊維からなる短繊維を分散させたことを特徴としてもよい。かかる発明によれば、シート体の複数の熱伝導性長繊維を厚さ方向に互いに接触させて熱伝導率を上げられるので、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the heat conductive fibers may be characterized in that short fibers made of heat conductive fibers are dispersed between the sheet body or the intermediate sheet body. According to this invention, since the heat conductivity can be increased by bringing the plurality of heat conductive long fibers of the sheet body into contact with each other in the thickness direction, the heat dissipation of the element applied on the heat dissipation substrate is excellent.

上記した発明において、前記シート体の前記熱伝導性繊維は長繊維を互いにステッチ様に編み合わせて配置されることを特徴としてもよい。かかる発明によれば、シート体の複数の熱伝導性長繊維を厚さ方向に互いに接触するようにできて、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the thermally conductive fibers of the sheet body may be arranged by stitching long fibers together in a stitch-like manner. According to this invention, the plurality of heat conductive long fibers of the sheet can be brought into contact with each other in the thickness direction, and the heat dissipation of the element applied on the heat dissipation substrate is excellent.

上記した発明において、前記シート体の前記熱伝導性繊維は長繊維を互いに織り合わされていることを特徴としてもよい。かかる発明によれば、シート体の複数の熱伝導性長繊維を厚さ方向に互いに接触するようにできて、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the thermally conductive fibers of the sheet body may be characterized in that long fibers are interwoven with each other. According to this invention, the plurality of heat conductive long fibers of the sheet can be brought into contact with each other in the thickness direction, and the heat dissipation of the element applied on the heat dissipation substrate is excellent.

上記した発明において、前記熱伝導性繊維は互いに離間して略平行に配置された縦糸部を有することを特徴としてもよい。かかる発明によれば、シート体の拡がる面方向への放熱効率が上げられるので、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the thermally conductive fibers may have warp portions that are spaced apart from each other and arranged substantially in parallel. According to this invention, since the heat radiation efficiency in the surface direction in which the sheet body expands is increased, the heat radiation of the element applied on the heat radiation substrate is excellent.

上記した発明において、前記シート体の前記熱伝導性繊維は互いにフェルト様に集積させて配置されることを特徴としてもよい。かかる発明によれば、シート体の拡がる面方向への放熱効率が上げられるので、放熱基板上に与えられた素子の熱の放熱に優れる。   In the above-described invention, the thermally conductive fibers of the sheet body may be arranged so as to be accumulated in a felt-like manner. According to this invention, since the heat radiation efficiency in the surface direction in which the sheet body expands is increased, the heat radiation of the element applied on the heat radiation substrate is excellent.

本発明による放熱基板の(a)斜視図、及び、(b)要部の拡大断面図である。It is the (a) perspective view of the thermal radiation board by this invention, and (b) the expanded sectional view of the principal part. 本発明による放熱基板の要部の(a)上面図、及び、(b)拡大断面図である。It is the (a) top view of the principal part of the thermal radiation board by this invention, and (b) expanded sectional view. 本発明による放熱基板の(a)斜視図、及び、(b)要部の拡大断面図である。It is the (a) perspective view of the thermal radiation board by this invention, and (b) the expanded sectional view of the principal part. 本発明による放熱基板の要部の(a)上面図、及び、(b)断面図である。It is the (a) top view of the principal part of the thermal radiation board | substrate by this invention, and (b) sectional drawing. 本発明による放熱基板の要部の断面図である。It is sectional drawing of the principal part of the thermal radiation board | substrate by this invention. 本発明による放熱基板の(a)斜視図、及び、(b)要部の拡大断面図である。It is the (a) perspective view of the thermal radiation board by this invention, and (b) the expanded sectional view of the principal part. 本発明による放熱基板の要部の(a)上面図、及び、(b)断面図である。It is the (a) top view of the principal part of the thermal radiation board | substrate by this invention, and (b) sectional drawing. 本発明による放熱基板を用いた検証試験の条件及び結果を示す図である。It is a figure which shows the conditions and result of a verification test using the thermal radiation board | substrate by this invention.

<実施例1>
本発明の1つの実施例による放熱基板10について、図1及び図2を用いてその詳細を説明する。
<Example 1>
Details of the heat dissipation substrate 10 according to one embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示すように、放熱基板10は、積層された複数のシート体1を樹脂7に埋入させ板状に固定させた繊維強化複合材料からなる基板である。樹脂7内において、複数のシート体1は互いにその主面に垂直な方向に接触するように積層されている。ここで樹脂7は、絶縁性の高い、エポキシ樹脂などの熱硬化性樹脂やアクリル樹脂などの熱可塑性樹脂を使用され得る。   As shown in FIG. 1, the heat dissipation substrate 10 is a substrate made of a fiber-reinforced composite material in which a plurality of laminated sheet bodies 1 are embedded in a resin 7 and fixed in a plate shape. In the resin 7, the plurality of sheet bodies 1 are laminated so as to contact each other in a direction perpendicular to the main surface. Here, as the resin 7, a thermosetting resin such as an epoxy resin or a thermoplastic resin such as an acrylic resin having a high insulating property can be used.

図2に示すように、シート体1は後述するような繊維3をランダムな方向を向けて絡み合わせ、シート状になるように平面上に集積させたフェルト様の不織布シートである。積層されたシート体1同士は、不織布の表面に突出した繊維3により、互いに主面と垂直方向に接する接点を多数有している。また、シート体1の繊維3は分枝する起毛を表面に有し、繊維3同士、特に、積層されたシート体1の繊維3の間を連結する。ここで繊維3には樹脂7よりも引張強度が高く、熱伝導性に優れるカーボン繊維などの熱伝導性繊維を用いることができる。また、繊維3は、絶縁性の高いPBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、超高分子量ポリエチレン繊維などであってもよい。   As shown in FIG. 2, the sheet body 1 is a felt-like non-woven sheet in which fibers 3 to be described later are entangled in a random direction and accumulated on a plane so as to form a sheet. The laminated sheet bodies 1 have a large number of contacts that are in contact with each other in the direction perpendicular to the main surface by the fibers 3 protruding from the surface of the nonwoven fabric. Further, the fibers 3 of the sheet body 1 have branched nappings on the surface, and connect the fibers 3 to each other, particularly, the fibers 3 of the stacked sheet bodies 1. Here, a heat conductive fiber such as a carbon fiber having higher tensile strength than the resin 7 and excellent in heat conductivity can be used for the fiber 3. Further, the fiber 3 may be a PBO (polyparaphenylene benzobisoxazole) fiber having a high insulating property, an ultrahigh molecular weight polyethylene fiber, or the like.

なお、積層されたシート体1の間には、熱伝導性に優れた短繊維(チョップドストランド)が挿入されて分散配置されている。このような短繊維には、繊維3と同様に引張強度の高い、熱伝導性に優れるとともに絶縁性の高い繊維を用いることが好ましい。   In addition, the short fiber (chopped strand) excellent in heat conductivity is inserted and distributed between the laminated sheet bodies 1. As such a short fiber, it is preferable to use a fiber having high tensile strength, excellent thermal conductivity, and high insulation properties as in the case of the fiber 3.

次に、上記した放熱基板10の製造方法について説明する。   Next, a method for manufacturing the heat dissipation substrate 10 will be described.

まず、シート体1を積層させて積層体を得る。この際、シート体1の層間に短繊維を分散配置させる。次に、シート体1の積層体にいわゆるニードルパンチを施して、シート体1の繊維3及び短繊維に起毛を与える。かかるニードルパンチでは、シート体1の積層体に微小突起を有する針(ニードル)を往復動させて厚さ方向に突き刺し抜き取る動作を繰り返し与えることで行われる。針の微小突起により繊維3及び短繊維の一部が分岐されて、針の往復動の方向である厚さ方向に延びる起毛となる。次に、樹脂7を硬化前の液体の状態でシート体1の積層体に含浸させ、シート体1を埋入するように積層体の全体に行き渡らせる。その後、樹脂7を板状の形状に硬化させて放熱基板10を得る。   First, the sheet body 1 is laminated to obtain a laminated body. At this time, short fibers are dispersed and arranged between the layers of the sheet body 1. Next, a so-called needle punch is applied to the laminated body of the sheet body 1 to raise the fibers 3 and the short fibers of the sheet body 1. In such a needle punch, it is carried out by repeatedly applying an operation of reciprocating a needle (needle) having fine protrusions in the laminated body of the sheet body 1 to pierce and extract in the thickness direction. The fibers 3 and a part of the short fibers are branched by the fine protrusions of the needles, and become brushed extending in the thickness direction that is the direction of the reciprocating movement of the needles. Next, the laminated body of the sheet body 1 is impregnated with the resin 7 in a liquid state before being cured, and the entire laminated body is spread so that the sheet body 1 is embedded. Thereafter, the resin 7 is cured into a plate shape to obtain the heat dissipation substrate 10.

上記した実施例1によれば、シート体1は繊維3をランダムな方向を向けて絡み合わせて平面上に集積させたフェルト様の不織布シートなので、繊維3は、互いにシート体1の主面と垂直方向に接している。また、複数のシート体1同士も互いに接するように積層されている。特に、積層されたシート体1同士は、不織布の表面に突出した繊維3により、互いに主面と垂直方向に接する接点を多数有する。そのため、放熱基板10の熱容量が大きくなるとともに、厚さ方向への熱伝導率も大きくなる。これにより、この上に与えられた素子の熱を放熱基板10に放熱させて、しかも、この熱をシート体1の拡がる面方向、すなわち、主面に沿った方向へ放熱させ得る。つまり、放熱基板10はこの上に与えられた素子の熱の放熱に優れ、素子の温度上昇を抑制できるのである。また、放熱基板10は繊維強化複合材料からなるため、例えば窒化ケイ素や窒化アルミニウムなどのセラミックスからなる基板より強度が高く、薄型化することができる。   According to Example 1 described above, since the sheet body 1 is a felt-like non-woven sheet in which the fibers 3 are tangled in a random direction and accumulated on a plane, the fibers 3 are mutually connected to the main surface of the sheet body 1. It touches vertically. Further, the plurality of sheet bodies 1 are laminated so as to contact each other. In particular, the laminated sheet bodies 1 have a large number of contacts that are in contact with each other in the direction perpendicular to the main surface by the fibers 3 protruding from the surface of the nonwoven fabric. For this reason, the heat capacity of the heat dissipation substrate 10 is increased, and the thermal conductivity in the thickness direction is also increased. Thereby, the heat of the element given on this can be radiated to the heat radiating substrate 10, and this heat can be radiated in the surface direction in which the sheet body 1 spreads, that is, the direction along the main surface. That is, the heat dissipation substrate 10 is excellent in heat dissipation of the element applied thereon, and can suppress the temperature rise of the element. In addition, since the heat dissipation substrate 10 is made of a fiber-reinforced composite material, it can be made thinner and thinner than a substrate made of ceramics such as silicon nitride or aluminum nitride.

また、シート体1は繊維3をランダムな方向を向けて絡み合わせて平面上に集積させたフェルト様の不織布シートなので、シート体1の拡がる面方向への放熱効率を上げることができる。つまり、放熱基板10のシート体1の拡がる面方向への放熱効率を上げられる。よって、放熱基板10は、その上に与えられた素子の熱の放熱性により優れる。   Further, since the sheet body 1 is a felt-like nonwoven fabric sheet in which the fibers 3 are tangled in a random direction and accumulated on a plane, the heat dissipation efficiency in the surface direction in which the sheet body 1 spreads can be increased. That is, the heat dissipation efficiency in the surface direction in which the sheet body 1 of the heat dissipation substrate 10 expands can be increased. Therefore, the heat dissipation substrate 10 is more excellent in the heat dissipation of the element applied thereon.

また、シート体1の主面に略垂直な方向に延びる起毛により、繊維3同士、シート体1同士が互いに連結される。さらに、シート体1の層間に短繊維を分散配置させたので、これによってもシート体1同士が連結される。これらによって、繊維3同士及びシート体1同士を厚さ方向に互いに連結させて熱伝導率を大きくできるので、放熱基板10は、その上に与えられた素子の熱の放熱にさらに優れる。   Further, the fibers 3 and the sheet bodies 1 are connected to each other by the raised portions extending in a direction substantially perpendicular to the main surface of the sheet body 1. Furthermore, since the short fibers are dispersedly arranged between the layers of the sheet body 1, the sheet bodies 1 are also connected to each other. By these, since the fibers 3 and the sheet bodies 1 can be connected to each other in the thickness direction to increase the thermal conductivity, the heat dissipation substrate 10 is further excellent in the heat dissipation of the element applied thereon.

<実施例2>
本発明の他の実施例による放熱基板10aについて、図3乃至図5を用いてその詳細を説明する。
<Example 2>
Details of a heat dissipation substrate 10a according to another embodiment of the present invention will be described with reference to FIGS.

図3に示すように、放熱基板10aは、積層された複数のシート体1a及び中間シート体2を樹脂7に埋入させ板状に固定させた繊維強化複合材料からなる基板である。樹脂7内において、複数のシート体1a及び中間シート体2は互いにその主面に垂直な方向に接触するように交互に積層されている。   As shown in FIG. 3, the heat dissipation substrate 10a is a substrate made of a fiber-reinforced composite material in which a plurality of laminated sheet bodies 1a and intermediate sheet bodies 2 are embedded in a resin 7 and fixed in a plate shape. In the resin 7, the plurality of sheet bodies 1 a and the intermediate sheet bodies 2 are alternately stacked so as to contact each other in a direction perpendicular to the main surface.

図4に示すように、シート体1aは実施例1と同様な材質の熱伝導性繊維からなる複数の長繊維3’を互いに編み合わせて配置されているステッチ様シートである。長繊維3’は、あらかじめ開繊されて縦糸部4に互いに略平行に離間して配置され、横糸部5に縦糸部4より広い間隔で互いに略平行に配置された複数の長繊維3’によって縫うように編み合わされている。これにより、縦糸部4と横糸部5に配置された長繊維3’同士がシート体1aの厚さ方向に互いに接触する。   As shown in FIG. 4, the sheet body 1 a is a stitch-like sheet in which a plurality of long fibers 3 ′ made of heat conductive fibers made of the same material as in the first embodiment are knitted together. The long fibers 3 ′ are pre-opened and arranged in the warp portion 4 so as to be spaced apart from each other in substantially parallel to each other. They are knitted to sew. As a result, the long fibers 3 ′ arranged in the warp yarn portion 4 and the weft yarn portion 5 come into contact with each other in the thickness direction of the sheet body 1 a.

シート体1aの間に挿入される中間シート体2は、実施例1と同様の繊維3をランダムな方向を向けて絡み合わせ、シート状になるように平面上に集積させたフェルト様の不織布シートである。中間シート体2は、不織布の表面に突出した繊維3により、シート体1aとの間で互いに主面と垂直方向に接する接点を多数有している。   The intermediate sheet 2 inserted between the sheets 1a is a felt-like non-woven sheet in which fibers 3 similar to those in Example 1 are entangled in a random direction and accumulated on a flat surface so as to form a sheet. It is. The intermediate sheet body 2 has a large number of contacts that are in contact with each other in the direction perpendicular to the main surface between the sheet body 1a and the fibers 3 protruding from the surface of the nonwoven fabric.

さらに、図5に示すように、シート体1aは、その主面に略垂直な方向に延びて長繊維3’同士を連結するように長繊維3’から分枝する起毛6を有する。同様の起毛は中間シート体2にも与えられている。また、シート体1a及び中間シート体2の間には、実施例1と同様の熱伝導に優れた短繊維が挿入されて分散配置されている。   Furthermore, as shown in FIG. 5, the sheet body 1 a has raised hairs 6 that branch from the long fibers 3 ′ so as to extend in a direction substantially perpendicular to the main surface and connect the long fibers 3 ′. Similar raising is given to the intermediate sheet 2. In addition, short fibers excellent in heat conduction similar to those in Example 1 are inserted and distributed between the sheet body 1a and the intermediate sheet body 2.

次に、放熱基板10aの製造方法について説明する。   Next, a method for manufacturing the heat dissipation substrate 10a will be described.

まず、シート体1aと中間シート体2とを交互に積層させて積層体を得る。この際、シート体1a及び中間シート体2の間に短繊維を分散配置させる。次に、シート体1a及び中間シート体2の積層体にニードルパンチを施して、シート体1aの長繊維3’、中間シート体2の繊維3及び短繊維に起毛を与える。樹脂7の含浸及び硬化については実施例1と同様である。   First, the sheet body 1a and the intermediate sheet body 2 are alternately stacked to obtain a stacked body. At this time, short fibers are dispersedly arranged between the sheet body 1 a and the intermediate sheet body 2. Next, needle punching is applied to the laminate of the sheet body 1a and the intermediate sheet body 2 to raise the long fibers 3 'of the sheet body 1a and the fibers 3 and short fibers of the intermediate sheet body 2. The impregnation and curing of the resin 7 are the same as in Example 1.

上記した実施例2によれば、シート体1aの編み合わせた複数の長繊維3’は互いに厚さ方向に接触するので、実施例1と同様に、放熱基板10aの熱容量を大きくできる。しかも、縦糸部4に互いに離間して略平行に配置された長繊維3’によって、シート体の拡がる面方向への放熱効率を向上できる。つまり、放熱基板10aはこの上に与えられた素子の熱の放熱性に優れ、素子の温度上昇を抑制できるのである。   According to the second embodiment described above, the plurality of long fibers 3 'knitted on the sheet body 1a are in contact with each other in the thickness direction, so that the heat capacity of the heat dissipation substrate 10a can be increased as in the first embodiment. In addition, the long fibers 3 ′ spaced apart from each other in the warp portion 4 can improve the heat dissipation efficiency in the surface direction in which the sheet body expands. That is, the heat dissipation substrate 10a is excellent in heat dissipation of the element applied thereon and can suppress the temperature rise of the element.

また、不織布シートである中間シート体2のランダムな方向を向いた繊維3によりシート体1aとの接点を多数有し、厚さ方向への熱伝導率を大きくできる。さらに、シート体1a及び中間シート体2の主面に略垂直な方向に延びる起毛6により、長繊維3’同士及び繊維3同士が連結され、シート体1a及び中間シート体2が互いに連結される。また、シート体1a及び中間シート体2の層間に短繊維を分散配置させたので、シート体1a及び中間シート体2の層同士が連結される。これらによっても、厚さ方向の熱伝導率を上げられるので、放熱基板10aは、その上に与えられた素子の熱の放熱性により優れる。   Further, the fibers 3 oriented in a random direction of the intermediate sheet 2 which is a non-woven sheet has a large number of contacts with the sheet 1a, and the thermal conductivity in the thickness direction can be increased. Further, the raised fibers 6 extending in a direction substantially perpendicular to the main surfaces of the sheet body 1 a and the intermediate sheet body 2 connect the long fibers 3 ′ and the fibers 3, and the sheet body 1 a and the intermediate sheet body 2 are connected to each other. . Moreover, since the short fibers are dispersed and arranged between the sheet body 1a and the intermediate sheet body 2, the layers of the sheet body 1a and the intermediate sheet body 2 are connected to each other. Also by these, the heat conductivity in the thickness direction can be increased, so that the heat dissipation substrate 10a is more excellent in heat dissipation of the element applied thereon.

なお、図4では横糸部5に配置される長繊維3’を縦糸部4に配置される長繊維3’に波縫いのように編み合わせた実施例を示したが、他の公知の縫い方で編み合わせてもよい。また、縦糸部4と横糸部5とに用いられる長繊維3’の材質や太さ、開繊の有無などを異なるものとすることもできる。   Although FIG. 4 shows an embodiment in which the long fibers 3 ′ arranged in the weft portion 5 are knitted into the long fibers 3 ′ arranged in the warp portion 4 like wave stitches, other known sewing methods are shown. May be knitted together. Further, the material and thickness of the long fibers 3 ′ used for the warp yarn portion 4 and the weft yarn portion 5, the presence / absence of opening, etc. may be different.

<実施例3>
本発明のさらに他の実施例による放熱基板10bについて、図6及び図7を用いてその詳細を説明する。
<Example 3>
Details of a heat dissipation board 10b according to another embodiment of the present invention will be described with reference to FIGS.

図6に示すように、放熱基板10bは、積層された複数のシート体1b及び中間シート体2を樹脂7に埋入させ板状に固定させた繊維強化複合材料からなる基板である。樹脂7内において、複数のシート体1b及び中間シート体2は互いにその主面に垂直な方向に接触するように交互に積層されている。   As shown in FIG. 6, the heat dissipation substrate 10b is a substrate made of a fiber-reinforced composite material in which a plurality of laminated sheet bodies 1b and intermediate sheet bodies 2 are embedded in a resin 7 and fixed in a plate shape. In the resin 7, the plurality of sheet bodies 1 b and the intermediate sheet bodies 2 are alternately stacked so as to contact each other in a direction perpendicular to the main surface.

図7に示すように、シート体1bは実施例1及び実施例2と同様な熱伝導性繊維からなる複数の長繊維3’を互いに織り合わせて配置されているクロス様シートである。長繊維3’は、あらかじめ開繊されて縦糸部4に互いに略平行に離間して配置され、横糸部5に互いに略平行に配置された複数の長繊維3’と互いに交互に浮き沈みさせて平織りで織り合わされている。これにより、縦糸部4と横糸部5に配置された長繊維3’同士がシート体1bの厚さ方向に互いに接触する。また、横糸部5に開繊させた長繊維3’を配置させることもできる。縦糸部4及び/又は横糸部5の長繊維3’を開繊させることにより、長繊維3’を均一に配置でき、シート体1bを均質化し得て、シート体1bの厚さを薄くすることができる。これにより放熱基板10bの厚さを薄くすることができる。   As shown in FIG. 7, the sheet body 1 b is a cloth-like sheet in which a plurality of long fibers 3 ′ made of heat conductive fibers similar to those in the first and second embodiments are woven together. The long fibers 3 ′ are pre-opened and arranged in the warp portion 4 so as to be spaced apart from each other in parallel, and the plurality of long fibers 3 ′ arranged in the weft yarn portion 5 so as to be substantially parallel to each other are floated alternately and plain weave. Is interwoven. Thereby, the long fibers 3 ′ arranged in the warp yarn portion 4 and the weft yarn portion 5 come into contact with each other in the thickness direction of the sheet body 1 b. Moreover, the continuous fiber 3 'opened in the weft portion 5 can be arranged. By opening the long fibers 3 ′ of the warp portion 4 and / or the weft portion 5, the long fibers 3 ′ can be arranged uniformly, the sheet body 1 b can be homogenized, and the thickness of the sheet body 1 b is reduced. Can do. Thereby, the thickness of the heat dissipation substrate 10b can be reduced.

シート体1bの間に挿入される中間シート体2は、実施例2と同様の不織布シートである。中間シート体2は、不織布の表面に突出した繊維3により、シート体1bとの間で互いに主面と垂直方向に接する接点を多数有している。   The intermediate sheet body 2 inserted between the sheet bodies 1b is a nonwoven fabric sheet similar to that of the second embodiment. The intermediate sheet 2 has a large number of contacts that are in contact with each other in the direction perpendicular to the main surface between the sheet 1b and the fibers 3 protruding from the surface of the nonwoven fabric.

さらに、シート体1b及び中間シート体2には、実施例2と同様の長繊維3’及び繊維3から分枝する起毛を有する。また、シート体1b及び中間シート体2の間には、実施例1及び実施例2と同様の熱伝導に優れた短繊維が挿入されて分散配置されている。   Further, the sheet body 1b and the intermediate sheet body 2 have raised fibers branched from the long fibers 3 'and the fibers 3 similar to those in the second embodiment. Further, short fibers excellent in heat conduction similar to those in Example 1 and Example 2 are inserted and distributed between the sheet body 1b and the intermediate sheet body 2.

放熱基板10bの製造方法については実施例2の放熱基板10aと同様のため、その説明を省略する。   Since the manufacturing method of the heat dissipation board 10b is the same as that of the heat dissipation board 10a of the second embodiment, the description thereof is omitted.

上記した実施例3によれば、シート体1bの織り合わせた複数の長繊維3’は互いに厚さ方向に接触するので、実施例1及び実施例2と同様に、放熱基板10bの熱容量を大きくできる。しかも、縦糸部4に互いに離間して略平行に配置された長繊維3’によって、シート体の拡がる面方向への放熱効率が上げられる。つまり、放熱基板10bはこの上に与えられた素子の熱の放熱に優れ、素子の温度上昇を抑制できるのである。   According to Example 3 described above, since the plurality of long fibers 3 ′ interwoven with the sheet body 1 b are in contact with each other in the thickness direction, the heat capacity of the heat dissipation substrate 10 b is increased as in Examples 1 and 2. it can. In addition, the long fibers 3 ′ arranged in the warp portion 4 so as to be spaced apart from and parallel to each other increase the heat radiation efficiency in the surface direction in which the sheet body expands. That is, the heat dissipation substrate 10b is excellent in heat dissipation of the element applied thereon and can suppress the temperature rise of the element.

また、不織布シートである中間シート体2のランダムな方向を向いた繊維3によりシート体1bとの接点を多数有し、厚さ方向への熱伝導率も上げられる。さらに、シート体1b及び中間シート体2の主面に略垂直な方向に延びる起毛6により、長繊維3’同士及び繊維3同士が連結され、シート体1b及び中間シート体2が互いに連結される。また、シート体1b及び中間シート体2の層間に短繊維を分散配置させたので、シート体1b及び中間シート体2の層同士が連結される。これらによっても、厚さ方向の熱伝導率を上げられるので、放熱基板10bは、その上に与えられた素子の熱の放熱により優れる。   In addition, the fibers 3 facing the random direction of the intermediate sheet 2 that is a non-woven sheet has many contacts with the sheet 1b, and the thermal conductivity in the thickness direction can be increased. Further, the raised fibers 6 extending in a direction substantially perpendicular to the main surfaces of the sheet body 1b and the intermediate sheet body 2 connect the long fibers 3 'and the fibers 3 to each other, and the sheet body 1b and the intermediate sheet body 2 are connected to each other. . Moreover, since the short fibers are dispersed and arranged between the sheet body 1b and the intermediate sheet body 2, the layers of the sheet body 1b and the intermediate sheet body 2 are connected to each other. Also by these, since the thermal conductivity in the thickness direction can be increased, the heat dissipation substrate 10b is excellent in the heat dissipation of the element applied thereon.

なお、シート体1の織り合わせの方法は綾織り、朱子織りなどであってもよいが、シート体1bの長繊維3’同士の厚さ方向の接点をより多くできる織り合わせの方法が好ましく、厚さ方向の熱伝導率を向上させ得て好適である。また、縦糸部4と横糸部5とに配置される長繊維3’の材質や太さなどを要求される機会強度に合わせて、適宜、異なるようにしてもよい。   The weaving method of the sheet body 1 may be twill weaving, satin weaving, etc., but the weaving method capable of increasing the contact in the thickness direction between the long fibers 3 ′ of the sheet body 1b is preferable, It is preferable because the thermal conductivity in the thickness direction can be improved. In addition, the material and thickness of the long fibers 3 ′ arranged in the warp portion 4 and the weft portion 5 may be appropriately changed according to the required opportunity strength.

<検証試験>
上記した実施例3のクロス様シートによってシート体を構成する放熱基板において、シート体に起毛を与えた場合、その層間に短繊維を与えた場合、その層間に不織布による中間シート体を挿入した場合のそれぞれについての熱伝導率の変化を検証した。
<Verification test>
In the heat dissipation substrate constituting the sheet body by the cloth-like sheet of Example 3 described above, when raising the sheet body, when providing short fibers between the layers, when inserting an intermediate sheet body made of nonwoven fabric between the layers The change of the thermal conductivity about each of was verified.

図8に示す各条件において、PBO繊維による長繊維を平織りしたシート体を積層させて、これらの積層体をエポキシ樹脂に埋入させた放熱基板を作製しそれぞれ試験片とした。なお、試験片1〜5は2層、試験片6〜10は6層のシート体を積層させている。また、試験片1及び6以外には、所定のニードルパンチを施して起毛を与えている。さらに、試験片3及び8には長さ1mm、試験片4及び9には長さ3mmのPBO繊維による短繊維をシート体の層間に分散配置させた。また、試験片5及び10にはシート体の層間にPBO繊維をフェルト様に集積させた不織布による中間シート体を挿入させた。   Under each condition shown in FIG. 8, sheet bodies obtained by plain weaving long fibers of PBO fibers were laminated, and a heat dissipation board in which these laminated bodies were embedded in an epoxy resin was produced, and each was used as a test piece. In addition, the test pieces 1-5 have laminated | stacked the sheet | seat body of 2 layers, and the test pieces 6-10 laminated | stacked 6 layers. In addition to the test pieces 1 and 6, a predetermined needle punch is applied to raise the brush. Further, short fibers made of PBO fibers having a length of 1 mm for test pieces 3 and 8 and 3 mm for test pieces 4 and 9 were dispersed and arranged between the layers of the sheet body. Further, in the test pieces 5 and 10, an intermediate sheet body made of a nonwoven fabric in which PBO fibers were accumulated in a felt-like manner between the sheet bodies was inserted.

各試験片の厚さはマイクロメータによって測定し、熱伝導率の算出に使用した。すなわち、熱伝導率の算出については、JIS H7801に準拠してキセノンランプを用いた熱拡散率の測定装置によって測定した熱拡散率と、JIS K7112のA法に準拠した水中置換法により測定した密度と、JIS K7123に準拠した示差走査熱量測定により測定した比熱容量とを用いた。得られた試験片の厚さ、厚さ方向の熱伝導率、主面に平行な方向(面方向)の熱伝導率をそれぞれ図8に示した。   The thickness of each test piece was measured with a micrometer and used for calculation of thermal conductivity. That is, for the calculation of thermal conductivity, the thermal diffusivity measured by a thermal diffusivity measuring device using a xenon lamp in accordance with JIS H7801, and the density measured by an underwater substitution method in accordance with A method of JIS K7112. And the specific heat capacity measured by differential scanning calorimetry based on JIS K7123 were used. FIG. 8 shows the thickness of the obtained test piece, the thermal conductivity in the thickness direction, and the thermal conductivity in the direction parallel to the main surface (plane direction).

図8に示すように、試験片1と試験片2、及び、試験片5と試験片6のそれぞれを比較すると、ニードルパンチを施すことで面方向の熱伝導率をほとんど変化させることなく、厚さ方向の熱伝導率を大幅に上昇させ得る。すなわち、ニードルパンチにより起毛を得られ、これにより長繊維同士及びシート体同士を連結させたためであると考える。   As shown in FIG. 8, when each of the test piece 1 and the test piece 2 and the test piece 5 and the test piece 6 are compared, the thickness of the test piece is changed without changing the thermal conductivity in the plane direction by applying the needle punch. The lateral thermal conductivity can be significantly increased. That is, it is considered that the raising was obtained by the needle punch, and the long fibers and the sheet bodies were thereby connected.

次に、試験片2、3及び4を比較すると、厚さ方向の熱伝導率が順に高くなっている。また、試験片7、8及び9を比較すると、厚さ方向の熱伝導率はほぼ同様であった。これらの結果を併せて、短繊維を挿入させることで、また挿入させる短繊維をより長くすることで、厚さ方向の熱伝導率を大きくさせ得る。すなわち、短繊維によりシート体同士を連結させているため、短繊維を長くすることで連結箇所を増やし得るためであると考える。   Next, when the test pieces 2, 3 and 4 are compared, the thermal conductivity in the thickness direction increases in order. Moreover, when the test pieces 7, 8, and 9 were compared, the thermal conductivity in the thickness direction was almost the same. Combined with these results, the thermal conductivity in the thickness direction can be increased by inserting the short fibers and making the inserted short fibers longer. That is, since the sheet bodies are connected to each other by the short fibers, it is considered that the number of connected portions can be increased by lengthening the short fibers.

また、試験片2と5、及び、試験片7と10のそれぞれを比較すると、層間に中間シート体を挿入した場合に厚さ方向の熱伝導率を大きくできる。すなわち、不織布による中間シート体により、シート体との層間でその主面と垂直方向に接する接点をより多くできるためと考える。   Moreover, when each of the test pieces 2 and 5 and the test pieces 7 and 10 are compared, the thermal conductivity in the thickness direction can be increased when an intermediate sheet is inserted between the layers. That is, it is considered that the intermediate sheet body made of non-woven fabric can increase the number of contacts that are in contact with the main surface in the direction perpendicular to the main surface between the sheet body.

上記したように、起毛を与え、短繊維を分散配置させ、不織布による中間シート体を挿入させることでそれぞれ厚さ方向の熱伝導率を向上させ得る。すなわち、これらにより、より素子の熱の放熱に優れる放熱基板を与えることができる。   As described above, it is possible to improve the thermal conductivity in the thickness direction by imparting raising, dispersing and arranging short fibers, and inserting an intermediate sheet made of nonwoven fabric. That is, these can provide a heat dissipation substrate that is more excellent in heat dissipation of the element.

ここまで本発明による代表的実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した請求項の範囲を逸脱することなく種々の代替実施例及び改変例を見出すことができるであろう。本発明による放熱基板は、例えば、電子回路基板だけでなく、絶縁ゲートバイポーラトランジスタのような電力素子のパッケージ内に用いられる絶縁基板としても採用され得る。   So far, representative embodiments and modifications based thereon have been described. However, the present invention is not necessarily limited thereto, and those skilled in the art will understand the gist of the present invention or the scope of the appended claims. Various alternative embodiments and modifications may be found without departing from the invention. The heat dissipation substrate according to the present invention can be employed not only as an electronic circuit substrate, but also as an insulating substrate used in a power device package such as an insulated gate bipolar transistor.

1、1a、1b シート体
2 中間シート体
3 繊維
3’ 長繊維
6 起毛
7 樹脂
10、10a、10b 放熱基板
1, 1a, 1b Sheet body 2 Intermediate sheet body 3 Fiber 3 'Long fiber 6 Raised 7 Resin 10, 10a, 10b Heat dissipation board

Claims (6)

繊維強化複合材料からなりこの上に与えられた素子の熱を放熱する放熱基板であって、
複数の熱伝導性繊維を互いに離間して略平行に与えた縦糸及び横糸からなるシート体の複数を互いに接触するようにして硬化樹脂内に積層させて前記シート体の拡がる面方向へ放熱させるとともに、前記熱伝導性繊維の表面から分枝する分岐部が前記シート体の主面に略垂直な方向に延びて複数の前記シート体の前記熱伝導性繊維同士を連結するようにして硬化樹脂内に埋入させて熱容量を大きくさせたことを特徴とする放熱基板。
A heat dissipating board made of a fiber reinforced composite material and dissipating the heat of the element applied thereon,
A plurality of sheet bodies composed of warp and weft yarns provided with a plurality of thermally conductive fibers spaced apart and substantially parallel to each other are laminated in a cured resin so as to contact each other and dissipate heat in the surface direction in which the sheet body expands. In the cured resin, a branch portion branched from the surface of the thermally conductive fiber extends in a direction substantially perpendicular to the main surface of the sheet body and connects the thermally conductive fibers of the plurality of sheet bodies. A heat dissipating board characterized in that it has a large heat capacity by being embedded in the heat sink.
前記シート体の間には、前記熱伝導性繊維をフェルト様に集積させた中間シート体を挿入されていることを特徴とする請求項1記載の放熱基板。   The heat dissipation board according to claim 1, wherein an intermediate sheet body in which the heat conductive fibers are integrated in a felt-like manner is inserted between the sheet bodies. 前記熱伝導性繊維は前記中間シート体の主面に略垂直な方向に延びて前記熱伝導性繊維同士を連結する分枝部を有することを特徴とする請求項2記載の放熱基板。   The heat dissipation substrate according to claim 2, wherein the heat conductive fiber has a branch portion that extends in a direction substantially perpendicular to a main surface of the intermediate sheet body and connects the heat conductive fibers to each other. 前記シート体若しくは前記中間シート体の間に熱伝導性繊維からなる短繊維を分散させたことを特徴とする請求項1乃至3のうちの1つに記載の放熱基板。   The heat dissipation substrate according to claim 1, wherein short fibers made of thermally conductive fibers are dispersed between the sheet body or the intermediate sheet body. 前記シート体は前記縦糸及び前記横糸を互いにステッチ様に編み合わせてなることを特徴とする請求項1乃至4のうちの1つに記載の放熱基板。   The heat radiating substrate according to claim 1, wherein the sheet body is formed by weaving the warp yarn and the weft yarn in a stitch-like manner. 前記シート体は前記縦糸及び前記横糸を互いに織り合わされてなることを特徴とする請求項1乃至4のうちの1つに記載の放熱基板。
The heat radiating substrate according to claim 1, wherein the sheet body is formed by weaving the warp and the weft.
JP2011047140A 2011-03-04 2011-03-04 Heat dissipation board Expired - Fee Related JP5873244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047140A JP5873244B2 (en) 2011-03-04 2011-03-04 Heat dissipation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047140A JP5873244B2 (en) 2011-03-04 2011-03-04 Heat dissipation board

Publications (2)

Publication Number Publication Date
JP2012186242A JP2012186242A (en) 2012-09-27
JP5873244B2 true JP5873244B2 (en) 2016-03-01

Family

ID=47016067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047140A Expired - Fee Related JP5873244B2 (en) 2011-03-04 2011-03-04 Heat dissipation board

Country Status (1)

Country Link
JP (1) JP5873244B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297845B2 (en) * 2014-01-28 2018-03-20 公益財団法人鉄道総合技術研究所 Superconducting coil and manufacturing method thereof
JP6297844B2 (en) * 2014-01-28 2018-03-20 公益財団法人鉄道総合技術研究所 Manufacturing method of superconducting coil winding shaft
JP6315705B2 (en) * 2015-03-11 2018-04-25 公益財団法人鉄道総合技術研究所 Heat dissipation board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194252A (en) * 1985-02-19 1986-08-28 日東紡績株式会社 Inorganic fiber fabric and its production
JPS61213142A (en) * 1985-03-19 1986-09-22 日東紡績株式会社 Substrate for printed wiring
JPH01250456A (en) * 1988-03-31 1989-10-05 Agency Of Ind Science & Technol Substrate having three-dimensional multi-layer structure for fiber-reinforced composite material or such
JP2001122672A (en) * 1999-10-20 2001-05-08 Ngk Insulators Ltd Member for heatsink and electronic substrate module for electronic instrument using the same as heatsink
JP2002046137A (en) * 2000-08-04 2002-02-12 Nippon Graphite Fiber Corp Method for manufacturing thermally conductive sheet
JP2002151811A (en) * 2000-11-13 2002-05-24 Suzuki Sogyo Co Ltd Substrate for wiring board
JP2003166178A (en) * 2001-11-29 2003-06-13 Toyobo Co Ltd Heat-releasing sheet
JP3958120B2 (en) * 2002-06-10 2007-08-15 三菱電機株式会社 High thermal conductive composite material and honeycomb sandwich panel using this as a skin material
JP4645726B2 (en) * 2008-05-19 2011-03-09 パナソニック電工株式会社 Laminated board, prepreg, metal foil clad laminated board, circuit board, and circuit board for LED mounting
JP5473413B2 (en) * 2008-06-20 2014-04-16 株式会社半導体エネルギー研究所 Wiring substrate manufacturing method, antenna manufacturing method, and semiconductor device manufacturing method
JP2010053224A (en) * 2008-08-27 2010-03-11 Kyocera Chemical Corp Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member

Also Published As

Publication number Publication date
JP2012186242A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5718374B2 (en) Light emitting electronic fabric having a light diffusing member
JP6571000B2 (en) Thermally conductive composite and method for producing the same
JP2009054145A5 (en)
JP5554920B2 (en) Three-layer heating fabric knitted integrally
JP5873244B2 (en) Heat dissipation board
KR100957218B1 (en) light emitting diode unit
WO2010007662A1 (en) Heat-resistant cushion material for forming press
JP2012186241A (en) Heat conductive sheet
JP2001044332A (en) Semiconductor device
JP5959697B2 (en) Thermally conductive sheet
KR101173147B1 (en) Fabric reinforcement for composites and fiber reinforced composite prepreg having the fabric reinforcement
JP2013170344A (en) Composite using unidirectional carbon fiber prepreg fabric and copper foil laminate sheet using the same
KR101488280B1 (en) Circuit board
CN105269841B (en) Device for absorbing heat
KR20140131453A (en) Printed circuit board
US11906254B2 (en) Heat sink with carbon-nanostructure-based fibres
JP6315705B2 (en) Heat dissipation board
KR20150027005A (en) Plate type heat dissipation device and electronic device with the same
CN106414569B (en) Thermally conductive sheet and method for producing thermally conductive sheet
US20220034602A1 (en) Heat exchanger
JP3833421B2 (en) Heat dissipation sheet
JP7460039B1 (en) Laminated Structure
KR20150044781A (en) Printed circuit board and manufacturing method thereof
KR20140134480A (en) Printed circuit board
KR101478805B1 (en) Flexible printed circuit board based on fiber and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees