JP3855264B2 - 非貫通孔の深さ検査方法 - Google Patents

非貫通孔の深さ検査方法 Download PDF

Info

Publication number
JP3855264B2
JP3855264B2 JP2002115297A JP2002115297A JP3855264B2 JP 3855264 B2 JP3855264 B2 JP 3855264B2 JP 2002115297 A JP2002115297 A JP 2002115297A JP 2002115297 A JP2002115297 A JP 2002115297A JP 3855264 B2 JP3855264 B2 JP 3855264B2
Authority
JP
Japan
Prior art keywords
inspection
hole
depth
workpiece
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002115297A
Other languages
English (en)
Other versions
JP2003315022A (ja
Inventor
信彦 戸高
弘樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002115297A priority Critical patent/JP3855264B2/ja
Publication of JP2003315022A publication Critical patent/JP2003315022A/ja
Application granted granted Critical
Publication of JP3855264B2 publication Critical patent/JP3855264B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワークに形成した非貫通孔(いわゆる盲孔)の深さを検査する検査技術の技術分野に属する。本発明は、穿孔工程でドリルやニードル(針)を使わず、レーザーやウォータージェットあるいは電子ビーム、イオンビームやプラズマジェットで穿孔する場合のように、非貫通孔の深さが一義的に定まりにくい場合には特に有効である。
【0002】
【従来の技術】
従来技術1としては、図7に示すように、レーザー光線でワークに穿孔していき、穿孔中の孔の先端からワークの裏側に漏れ出す透過光を光センサーで検知したならば穿孔を停止する方法があった。このような方法は、特開平10−85966号公報などに開示されている。
【0003】
しかし、このような穿孔方法では、レーザー光線がワークの裏側に透過して漏れ出るほどにまで、非貫通孔の先端部がワークの裏面に近づいていることが必要である。それゆえ、非貫通孔の深さは貫通直前の寸止め状態にならざるを得ず、非貫通孔の深さを任意に設定することはできなかった。
【0004】
また、非貫通孔の深さを精密に寸止め状態とするためには、光センサからのフィードバック制御装置を必要とし、このフィードバックシステムが高価なために設備投資がかさんでしまっていた。
【0005】
そこで、非貫通孔の深さを自由に設定できない不都合を解消するために、特開2000−205466号公報では、加工用レーザーパルスと測定用レーザーパルスとをほぼ同軸に発射して、両レーザーパルスが互いに干渉しないようにした技術(従来技術2)が開示されている。
【0006】
この従来技術2は、非貫通孔の深さを任意に設定することができるばかりではなく、穿孔と並行して深さ測定がなされるので非貫通孔が深くなりすぎることがない点でも優れた技術であった。しかしながら、測定用レーザーパルス装置と、両レーザーパルスを同期させるための制御装置とが必要になるので、従来技術2においても、やはり設備投資がやや高価になってしまいがちであるという不都合があった。
【0007】
なお、参考技術として、特開2000−238603号公報には、針孔の先端が部材を貫通していることを光学的に確認する技術が開示されている。しかし、この技術は非貫通孔には適用できないので、本発明の従来技術からは外れているものと考えられる。
【0008】
また、同公報の技術では、エアバッグ用の破口を生じる蓋を形成する用途などに適用するには、次の二つの点で不都合がある。第一に、ニードル(刺し針)を使ってワークとしての樹脂板に穿孔するので、穿孔する表面側では、貫通孔の根本開口部周辺に盛り上がりが生じ、この盛り上がりがエアバッグ展開時に破片となって飛散してしまうことが、乗員保護の上で不都合である。第二に、ニードル穿孔では、レーザ穿孔に比べるとどうしても貫通孔の内径が大きくならざるを得ないので、隣接する貫通孔との距離も大きく取らざるを得なくなる。その結果、貫通孔の間の破断部が大きくなってしまうので、エアバッグ展開時に飛散する破片がさらに生じやすくなるうえに、破断面のギザギザの突起が大きくなってしまうことが、乗員保護の上で不都合である。
【0009】
【発明が解決しようとする課題】
そこで本発明は、従来技術1とは異なって非貫通孔の深さを任意に設定することができながら、従来技術1および従来技術2よりも加工用の設備投資を安価にすることができる「非貫通孔の深さ検査方法」を提供することを解決すべき課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するために、発明者は以下の手段を発明した。
【0011】
(第1手段)
本発明の第1手段は、ワークの加工部にその表面からその内部の所定深さにまで達する非貫通孔を形成する穿孔工程と、このワークの表面とこの表面に背向する裏面とのうち一方に向けて光を照射し他方から漏れ出る光を観測してこの孔の深さを検査する検査工程とを有する、非貫通孔の深さ検査方法である。ただし、出願人は、このことをもって公知の前提条件とは位置づけしない。なぜならば、ワークの裏面から光を照射して表面の孔の開口から漏れる光を検出する技術を開示した文献は、少なくとも発明者および出願人の調査では発見されていないからである。
【0012】
ここで、ワークの加工部における表面および裏面は、穿孔工程での便宜上の表裏の区別であって、製品を使用する状態など、他の状態での表裏とは全く関係がない。
【0013】
さて、本手段の主たる特徴は、次の三点にある。
【0014】
第一に、前述の穿孔工程および検査工程に加えて、予備工程なる工程をさらに有することである。この予備工程とは、ワークの一部分を前記非貫通孔の穿孔部分がもつ厚さ以下の所定の厚さにした検査領域と、前記ワークと同じ材料からなり少なくとも一部は前記非貫通孔の穿孔部分よりも薄い所定の厚さに試験片とのうち、少なくとも一方である検査部を設ける工程のことである。
【0015】
すなわち、検査部は、ワークの一部であってその加工部と一体である検査領域と、加工部のあるワークとは別体である試験片とのうち、ふつうはいずれか一方である。そして、検査部が検査領域であっても試験片であっても、検査部は加工部と少なくとも穿孔に係わる性質に関して同等の性質を持つ同じ材料からなり、検査部の厚さは、加工部の厚さ以下ないしそれ未満である。
【0016】
第二に、前記穿孔工程は、前記加工部と同等の条件で前記検査部にも穿孔する工程であることである。
【0017】
第三に、前記検査工程は、前記予備工程以降に、前記検査部の前記一方から前記他方へ漏れた前記光を観測して、前記加工部における前記非貫通孔の深さと前記検査部の厚さとの長短を判定する工程であることである。
【0018】
ここで、予備工程と穿孔工程との前後関係は問わず、予備工程の後に穿孔工程がなされても良いし、逆に穿孔工程の後に予備工程がなされても良い。あるいは、ワークが成形される際に同時に非貫通孔も形成されるような製造方法もあり、予備工程と穿孔工程とが同時に行われてもよい。
【0019】
また、検査工程は、穿孔工程の後に行われるのが普通ではあるが、これに限定されるものではない。すなわち、穿孔工程でレーザ穿孔を行いながら、同時にそのレーザ光を裏面から観測すれば、穿孔工程と検査工程とは同時に行われる。なお、加工部と検査部とが別部分になっている場合には、穿孔工程と検査工程とは相前後して行われる。この際、検査部の穿孔を先にすれば、検査工程が穿孔工程に先立って行われることになる。逆に、加工部と検査部とが一部重複しているような場合には、検査工程は穿孔工程の少なくとも一部と同時に行われる。
【0020】
この説明で示唆されているように、検査部がワークの一部である検査領域である場合には、加工部のうち少なくとも一部が検査部と重複している場合もあり得る。
【0021】
本手段では、穿孔工程で、加工部と同等の条件で検査部にも穿孔がなされる。それゆえ、検査部には、加工部と同じ深さで孔が穿たれる。その結果、加工部での非貫通孔の深さが、検査部の穿孔部分の厚さよりも浅ければ検査部にも非貫通孔が形成され、逆に検査部の穿孔部分の厚さよりも深ければ検査部には貫通孔が形成される。すなわち、検査部に穿たれた孔の深さが検査部の厚さよりも浅い場合には、検査部には他方側に肉が残って非貫通孔となる。逆に、この孔の深さが検査部の厚さよりも深い場合には、穿孔工程で検査部に孔が貫通し、この孔は貫通孔になる。
【0022】
そして検査工程では、穿孔された検査部の表裏両面うち一方から光を照射し、検査部の他方から漏れ出た光を観測する。すると、ワークが透明な材料からなる場合でない限り、検査部に穿孔された孔が非貫通孔であれば光は検知されない。それゆえ、このことをもって検査部の厚さよりも加工部での非貫通孔の穿孔深さの方が浅いことが分かる。逆に、検査部に貫通孔が開口していれば貫通孔を通ってきた光が検知されるので、このことをもって検査部の厚さよりも加工部の非貫通孔の穿孔深さの方が深いことが分かる。
【0023】
すなわち、前述のように加工部と検査部とでは同等の条件で穿孔されるから、穿孔深さは同等であると確信を持って推定することができる。それゆえ、検査部を穿孔してその孔が検査部を貫通したか否かを光を通して判定すれば、検査部の穿孔部分の厚さと、加工部に形成された非貫通孔の深さとのうち、いずれが厚いか薄いか、長短の判別が着く。こうして、検査部の厚さを適正に設定しておけば、穿孔工程で開けた孔が検査部を貫通したか否かをもって、加工部に形成された非貫通孔の深さが検査部の厚さよりも長いか短いかを、極めて容易に判定できるようになる。
【0024】
しかも、この方法によれば、前述の従来技術1とは異なり、貫通孔の穿孔深さを貫通直前の寸止め状態にする必要がないので、加工部の厚さに対して任意に設定した非貫通孔の深さを検査することができるようになる。
【0025】
また、前述の従来技術1および従来技術2とも異なり、光センサで検知した光量に基づいて穿孔装置をフィードバック制御する高価な制御装置が不要であり、フィードバックなしに穿孔工程を行うことができる。その結果、穿孔工程に要する時間を短縮することができるうえに、穿孔工程に使用する穿孔システムの設備投資が大幅に軽減される。具体的に言うと、発明者は、穿孔システムの構成に要する設備投資は半減ないし7割減になるものとみている。
【0026】
したがって、本手段の非貫通孔の深さ検査方法によれば、次の三つの効果が得られるようになる。
【0027】
第一に、前述の従来技術1とは異なり、加工部において非貫通孔の穿孔深さを貫通直前の寸止め状態にする必要がないので、加工部の厚さに対して任意に設定した非貫通孔の深さを検査することができるようになるという効果がある。
【0028】
第二に、従来技術1および従来技術2とは異なり、フィードバックなしに穿孔工程を行うことができるので、穿孔工程に要する時間を短縮することができるようになるという効果がある。
【0029】
第三に、従来技術1および従来技術2とは異なり、フィードバック制御装置が不要になるので、穿孔工程に使用する穿孔システムの設備投資が大幅に軽減されるという効果がある。
【0030】
(第2手段)
本発明の第2手段は、前述の第1手段において、前記検査部は、前記非貫通孔の前記所定深さの許容最小値に相当する厚さを持つ第一検査部と、前記非貫通孔の前記所定深さの許容最大値に相当する厚さを持つ第二検査部とのうち、少なくとも一方を持つことを特徴とする。
【0031】
本手段では、第一検査部で貫通孔が開いたか否かを光学的に検知すれば、加工部での非貫通孔の深さが許容最小値を超えているか否かが判定できる。同様に、第二検査部で貫通孔が開いたか否かを検知すれば、加工部での非貫通孔の深さが許容最大値を超えているか否かを判定することができる。
【0032】
それゆえ、第一検査部および第二検査部の両方が検査部に備わっている方が、加工部で非貫通孔の深さが所定の許容範囲に収まっていることを高い信頼性をもって推定するうえで望ましい。すなわち、比較的薄い第一検査部には貫通孔が形成されている一方、比較的厚い第二検査部には非貫通孔が形成されているのであれば、加工部に形成された非貫通孔の深さは、許容最小値と許容最大値との間の許容範囲に収まっていることが分かる。したがって、検査部に第一検査部および第二検査部の両方があれば、加工部では非貫通孔の深さが寸法公差の許容範囲に収まっていることを、検査部で間接的に検査することができる。
【0033】
逆に、非貫通孔の深さの許容最小値に相当する厚さをもつ第一検査部に、孔が貫通しておらず、非貫通孔が形成されている場合には、加工部でも非貫通孔の深さが許容最小値に達していないほど浅すぎることが分かる。一方、非貫通孔の深さの許容最大値に相当する厚さをもつ第二検査部に、孔が貫通してしまっており、貫通孔が形成されている場合には、加工部でも非貫通孔の深さが許容最大値を超えて深すぎることが分かる。いずれの場合にも、ワークは寸法公差を満たしていない不良品として製品から外されることであろう。
【0034】
なお、第一検査部と第二検査部とのうち一方だけが検査部に備わっている場合もあり得る。もちろん、第一検査部だけがあるのは、加工部での非貫通孔の深さが許容最小値を超えていれば、非貫通孔がいくらか深すぎても構わない場合に適当である。逆に、第二検査部だけがあるのは、加工部での非貫通孔の深さが許容最大値に達してさえいなければ、非貫通孔がいくらか浅すぎても構わない場合に適当である。
【0035】
余談ながら、加工部が第一検査部および第二検査部のうち一方を兼ねていても良い。加工部が第一検査部を兼ねている場合には、(本発明の範囲を外れるが)加工部には全て貫通孔が開いていることであろう。逆に、加工部が第二検査部を兼ねている場合には、加工部の全ての穿孔部分で光学検査を行うことにより、加工部には貫通孔が無く、加工部に穿たれた孔は全て非貫通孔であることが確実に保証される。
【0036】
したがって本手段によれば、前述の第1手段の効果に加えて、非貫通孔深さの寸法公差において、許容最小値および許容最大値のうち少なくとも一方が保証されるという効果がある。
【0037】
(第3手段)
本発明の第3手段は、前述の第1手段において、前記検査部は、前記非貫通孔の前記所定深さの許容範囲をカバーする範囲でその厚さが連続的または段階的に変化する傾斜検査部であり、前記穿孔工程は、この傾斜検査部のうちその厚さが異なる複数部分に穿孔する工程であることを特徴とする。
【0038】
本手段では、検査部が傾斜検査部であり、そのうち厚さが異なる複数の部分に加工部と同じ条件で穿孔されるので、加工部に形成された非貫通孔の深さをより精密に推定することが可能になる。
【0039】
たとえば、前述の第2手段において、第一検査部と第二検査部との間に三段階の厚さの違いがある部分があり、第一検査部から第二検査部に至るまでに傾斜検査部の厚さが五段階に分かれているものと仮定しよう。もちろん、どの段階の検査部にも、穿孔工程では加工部と同じ条件で孔が穿たれるものとする。すると、検査工程で、傾斜検査部のうちどれだけの厚さの部分にまで孔が貫通しているかを検査すれば、加工部での非貫通孔の深さがおおよそ五段階で把握できるようになる。
【0040】
あるいは、検査部が、非貫通孔深さの許容範囲をカバーする範囲でその厚さが連続的に変化する傾斜検査部であり、穿孔工程で、傾斜方向に沿って多数の孔が穿たれるものと仮定する。すると、傾斜検査部のうちどの程度の厚さの部分まで孔が貫通しているかを検査すれば、加工部に形成された非貫通孔の深さをかなり細かく段階的に推定することができる。
【0041】
たとえば、傾斜検査部の厚さが、非貫通孔の許容最大値を少し超える厚さから許容最小値を少し下回る厚さにまで連続的に平らな斜面を形成してテーパーしているものとしよう。この範囲に等間隔で百箇所穿孔すれば、非貫通孔から貫通孔へどの厚さの部分で遷移しているかを検査することによって、加工部に形成された非貫通孔の深さを約百段階で推定することが可能になる。
【0042】
いずれの場合にも、穿孔工程ですでに加工部に穿孔済みであればそのワークには対応することができないが、次のワークの穿孔深さをどの程度調整すればよいかが分かるので、次のワークでは非貫通孔深さをより適正な程度に調整していくことができる。ただし、穿孔工程で加工部に先立って傾斜検査部から穿孔を始め、次の第4手段のように穿孔工程と並行して検査工程が行われるのであれば、そのワーク自体の加工部の穿孔深さに検査結果を反映することもできる。
【0043】
したがって本手段によれば、前述の第1手段の効果に加えて、所望の段階精度で加工部に形成された非貫通孔の穿孔深さを推定することが可能になり、その結果、穿孔工程での穿孔深さを適正に調節していくことができるようになるという効果がある。
【0044】
(第4手段)
本発明の第4手段は、前述の第1手段において、前記穿孔工程は、レーザー光線によって前記ワークに穿孔する工程であり、前記検査工程は、このレーザー光線が前記ワークの前記検査部を貫通するか否かを検出する工程であることを特徴とする。
【0045】
本手段では、穿孔工程でワークの検査部にレーザー穿孔がなされるにあたり、これと並行してレーザー光線が検査部を貫通するか否かを検出する検査工程が行われる。それゆえ、穿孔工程の後に別途で検査工程を行う必要がなくなり、その分だけ工数が低減される。
【0046】
したがって本手段によれば、前述の第1手段の効果に加えて、穿孔工程および検査工程の全体として工数が低減され、より速く穿孔加工およびその検査が進むという効果がある。
【0047】
(第5手段)
本発明の第5手段は、前述の第1手段において、前記検査工程は、前記検査部から漏れ出た前記光を散乱性の半透明体および乱反射面とのうちいずれかである散乱手段で受光し、この散乱手段から発散した散乱光を検知する工程であることを特徴とする。
【0048】
ここで、散乱性の半透明体としては、磨りガラス、トレーシングペーパー、白色の薄い樹脂シートなどがあり、極論すれば白い薄紙でも構わない。一方、散乱性の乱反射面としては、白色のセラミックス板、白色の塗装が施された板材などがあり、極論すれば白色の紙であっても構わない。
【0049】
本手段では、ワークの検査部に開いた貫通孔を通ってきた光を直接検知するのではなく、その散乱光を検知するので、受光範囲が拡がる。その結果、検査員が目視により検査する場合であっても、あるいはCCDなどの光センサで自動的に検査する場合であっても、受光部(すなわち検査員の肉眼または光センサ)の位置について許容範囲が拡がる。その結果、受光部の位置に関してロバスト性が向上し、検査の信頼性が高まる。特に、検査員が肉眼で検査する場合においては、光センサのように受光部を固定しておくことが困難であるので、検査員が頭をかなり動かしても依然として目視確認できるようになり、検査員の疲労軽減効果は大きい。
【0050】
したがって本手段によれば、前述の第1手段の効果に加えて、検査員の肉眼や光センサの受光範囲が拡がるという効果がある。その結果、検査の信頼性が向上するうえに、特に検査員による目視検査の場合には高い疲労軽減効果が得られるという効果がある。
【0051】
【発明の実施の形態】
本発明の「非貫通孔の深さ検査方法」を実施する形態については、当業者に実施可能な理解が得られるよう、以下の実施例で明確かつ十分に説明する。
【0052】
[実施例1]
(実施例1の構成)
本発明の実施例1としての非貫通孔の深さ検査方法は、ワーク1の加工部Bにその表面1aからその内部の所定深さにまで達する非貫通孔21を形成する穿孔工程(図1参照)と、ワーク1の表面1aに向けて光を照射し、他方から漏れ出る光を観測してこの孔の深さを検査する検査工程(図2参照)とを有する。本実施例の検査方法は、ワーク1の一部分を非貫通孔21の穿孔部分がもつ厚さT0以下の所定の厚さT1,T2にした検査領域である検査部Cを設ける予備工程をさらに有する。
【0053】
ここで、前記穿孔工程は、ワーク1の加工部Bと同等の条件で検査部Cにも穿孔する工程である。一方、前記検査工程は、前記予備工程以降に、検査部Cの表面1aから裏面1b’,1b”へ漏れた光を観測して、加工部Bにおける非貫通孔21の深さと検査部Cの厚さT1,T2との長短を判定する工程である。さらに、検査部Cは、非貫通孔21の所定深さの許容最小値に相当する厚さT1を持つ第一検査部C1と、非貫通孔21の所定深さの許容最大値に相当する厚さT2を持つ第二検査部C2とを持つ。
【0054】
すなわち、本実施例は、第一に予備工程としてワーク1を成形する成形工程と、第二にワーク1にレーザー穿孔する穿孔工程(図1参照)と、第三にワーク1に開いた貫通孔20を光学的に見つける検査工程(図2参照)との三つの工程からなる、非貫通孔の深さ検査方法である。
【0055】
第一に、予備工程としての成形工程は、図1に示すように、ワーク1の主要部に、所定の深さの非貫通孔21を形成すべき部分である加工部Bを設け、ワーク1の端部に、非貫通孔21の穿孔部分がもつ厚さ以下の所定の厚さにした検査領域である検査部Cを設ける工程である。
【0056】
ワーク1は、ポリプロピレン系の熱可塑性樹脂からなり、所定の厚さに形成された板材である。ワーク1を形成する樹脂は黒色の微細な顔料を多量に含んで黒色をしており、ワーク1の透明度は極めて低い。そして、ワーク1には、図1に示すように、非貫通孔21が形成されるべき主要部である加工部Bと、非貫通孔21の深さを検査するためにワーク1の端部に設けられていて加工部Bよりも板厚が薄い検査部Cとが形成されている。
【0057】
ここで、ワーク1の加工部Bの板厚T0は、非貫通孔21の許容最大深さよりも厚く成形されている。逆に言うと、非貫通孔21の深さの許容最大値は、加工部Bの板厚T0よりも浅く設定されている。それゆえ、後述する穿孔工程が正常であり、非貫通孔21の深さその許容最大値を越えていなければ、加工部Bには非貫通孔21だけが穿孔され、貫通孔20が穿孔されることはない。
【0058】
一方、検査部Cは、非貫通孔21の所定深さの許容最小値に相当する厚さT1を持つ第一検査部C1と、非貫通孔21の所定深さの許容最大値に相当する厚さT2を持つ第二検査部C2とを持つ。
【0059】
このように、加工部Bと検査部Cとでは板厚が違うので、ワーク1の表面1aは一様な平面であるが、ワーク1の裏面には、加工部Bの裏面1bと検査部Cの裏面1b’,1b”との間に段差がある。さらに、検査部Cのうち、第一検査部C1の裏面1b’と第二検査部C2の裏面1b”との間にも段差がある。それゆえ、ワーク1の厚さは、加工部B(厚さT0)、第二検査部C2(厚さT2)、そして第一検査部C1(厚さT1)の順に、段階的に薄くなっていくが、これらの段差部では応力集中が生じないように緩やかに段差が着いている。
【0060】
第二に、穿孔工程は、同じく図1に示すように、ワーク1の加工部Bに、その表面1aからその内部の所定深さにまで達する非貫通孔21を形成する工程である。そして、穿孔工程は、加工部Bと同等の条件で、第一検査部C1および第二検査部C2からなる検査部Cにも穿孔する工程である。
【0061】
なお、図1では模式的に、第一検査部C1および第二検査部C2にそれぞれ二箇所ずつ穿孔されるようになっているが、実際には適当な数(数カ所程度)の穿孔がなされる。また、穿孔には、スラブ型の炭酸ガスレーザー加工機が使用され、同加工機は、加工部Bの一端から他端まで所定の口径で所定範囲の深さの非貫通孔21を、多数、所定ピッチで穿孔した後、そのまま検査部Cにも同じ条件で複数個の孔を穿孔する。
【0062】
ここで、ワーク1のうち任意の部分に一つの非貫通孔21を穿孔する際には、レーザー加工機はその一点に留まり、短いレーザーパルスを多数の所定回数だけワーク1の表面1aからワーク1の内部に打ち込んで、穿孔していく。この際、レーザー照射を受けた黒色樹脂は、照射部分が瞬時に昇温し、蒸発した高温のガスと炭化した微粒子とに分解して、孔の根本の開口部から自然に吹き出される。一回のパルスで穿孔される深さや、穿孔径は、レーザーパルスの出力(ワット数)およびパルス幅(持続時間)と、ワーク1を形成している樹脂の性質とで概ね決まる。それゆえ、加工部Bなどの一箇所に所定回数のレーザーパルスの照射を行えば、所定範囲でのばらつきこそあれ、所定深さの非貫通孔21が形成される。なお、非貫通孔21および貫通孔20の根本部分では、表面1aでの開口径がワーク内部の孔の内径よりもやや大きくなるだけで、ニードル穿孔とは異なって開口部の周囲に盛り上がりが形成されることはない。
【0063】
すなわち、穿孔工程では、加工部Bと同じ条件で検査部Cにも穿孔がなされるので、穿孔工程が正常であって穿孔深さがその許容範囲ないし管理幅Ttに収まっていれば、次のようになる。先ず、非貫通孔21の所定深さの許容最大値に相当する厚さT2を持つ第二検査部C2は、表面1aから裏面1b”のすぐ手前まで穿孔され、裏面1b”にまでは孔が貫通しないので、第二検査部C2には非貫通孔21が形成される。次に、非貫通孔21の所定深さの許容最小値に相当する厚さT1を持つ第一検査部C1は、表面1aから裏面1b’にまで貫通して穿孔され、第一検査部C1には貫通孔20が開く。
【0064】
第三に、検査工程は、図2に示すように、ワーク1の表面1aに向けて光を照射し、裏面1b,1b’1b”から漏れ出る光を観測してこれらの孔の深さを検査する工程である。より詳しくは、検査工程は、前記予備工程以降に、検査部Cの表面1aから裏面1b’,1b”へ漏れた光を観測して、加工部Bにおける非貫通孔21の深さと検査部Cの厚さとの長短を判定する工程である。
【0065】
すなわち、検査工程では、検査用光源として直棒状の蛍光灯FLが使用され、検査員が肉眼Eでワーク1の貫通孔20を通じて漏れ出る光を観測し、非貫通孔21の深さが適正な範囲に収まっているかどうかの目視判定が行われる。ワーク1は、蛍光灯FLの光が貫通孔20を通して検査員の肉眼Eに入射するように、位置と姿勢とを合わせて蛍光灯FLと検査員の肉眼Eとの間に置かれる。
【0066】
その結果、検査部Cのうち貫通孔20が形成された部分から蛍光灯FLの光が目視確認でき、非貫通孔21が形成されている部分では光が目視できないので、検査員は瞬時に非貫通孔21と貫通孔20とを見分けることができる。そして、第一検査部C1には所定の位置の全てに貫通孔20が開いていて光が視認でき、逆に第二検査部C2では光が視認できない場合に限って、ワーク1の検査結果を合格とする。これ以外の場合には、加工部Bにおいて非貫通孔21の深さが所定の許容範囲Ttに入っていないものと推定し、検査結果を不合格として、ワーク1の非貫通孔21の深さを管理することができるようになっている。
【0067】
なお、本実施例では、第一検査部C1および第二検査部C2だけではなく、加工部Bも併せて目視検査される。これは、例外的な不具合が生じて加工部Bで孔が貫通しているようなことがないことを確認するためである。
【0068】
(実施例1の作用効果)
本実施例の非貫通孔の深さ検査方法は、以上のように構成されているので、以下のような作用効果を発揮する。
【0069】
先ず、穿孔工程では、再び図1に示すように、前述のように加工部Bと全く同等の条件で検査部Cにもレーザー穿孔がなされるから、第一検査部C1および第二検査部C2からなる検査部Cにも、加工部Bと同じ深さで孔が穿たれる。その結果、加工部Bでの非貫通孔21の深さが、検査部Cの穿孔部分の厚さよりも浅ければ、検査部Cにも非貫通孔21が形成される。逆に、検査部Cの厚さよりも穿孔深さが深ければ、検査部Cには貫通孔20が形成される。すなわち、検査部Cに穿たれた孔の深さが、検査部Cの厚さよりも浅い場合には、検査部Cには裏面1b”の側に肉が残って非貫通孔21が形成される。逆に、穿孔深さが検査部Cの厚さよりも深い場合には、穿孔工程で検査部Cの裏面1b’をも孔が貫通し、この孔は貫通孔20になる。
【0070】
次に、検査工程では、再び図2に示すように、穿孔された検査部Cの表面1aの側から蛍光灯FLで光を照射し、貫通孔20を通じて検査部Cの裏面1b’,1b”から漏れ出た光を、検査員が肉眼Eで目視観測する。すると、前述のようにワーク1は光をほとんど通さない黒色樹脂からなるので、検査部Cに穿孔された孔が非貫通孔21であれば光は視認されない。それゆえ、このことをもって、検査部Cのうち第二検査部C2の厚さよりも、加工部Bでの非貫通孔21の穿孔深さの方が浅いことが分かる。一方、検査部Cのうち第一検査部C1には、貫通孔20が開口しているので、貫通孔20を通ってきた光が視認されるので、このことをもって第一検査部C1の厚さよりも加工部Bの非貫通孔21の穿孔深さの方が深いことが分かる。
【0071】
すなわち、前述のように、加工部Bと検査部Cとでは、ワーク1の材質は同じであり、そのうえ同等の条件でレーザー穿孔されるから、穿孔されるべき深さは所定のばらつきにの範囲内で同等であると確信を持って推定することができる。それゆえ、検査部Cを穿孔してその孔が検査部Cを貫通したか否かを光を通して判定すれば、検査部Cの穿孔部分の厚さと、加工部Bに形成された非貫通孔21の深さとのうち、いずれが厚いか薄いか、長短の判別が着く。こうして、検査部Cの厚さを適正に設定しておけば、穿孔工程で開けた孔が検査部Cを貫通したか否かをもって、加工部Bに形成された非貫通孔21の深さが検査部Cの厚さよりも長いか短いかを、極めて容易に判定できるようになる。
【0072】
さらに、検査部Cは、加工部Bに形成されるべき非貫通孔21の深さの許容最小値に相当する厚さT1をもつ第一検査部C1と、加工部Bに形成されるべき非貫通孔21の深さの許容最大値に相当する厚さT2をもつ第二検査部C2との二つの部分からなる。それゆえ、第一検査部C1で貫通孔20が開いたか否かを光学的に検知すれば、加工部Bでの非貫通孔21の深さが許容最小値T1を越えているか否かが判定できる。同様に、第二検査部C2で貫通孔20が開いたか否かを検知すれば、加工部Bでの非貫通孔21の深さが許容最大値T2を越えているか否かを判定することができる。
【0073】
換言すれば、第一検査部C1および第二検査部C2の両方が検査部Cに備わっているので、加工部Bで非貫通孔21の深さが所定の許容範囲Ttに収まっていることを高い信頼性をもって推定することができる。すなわち、比較的薄い板厚T1をもつ第一検査部C1には貫通孔20が形成されている一方、比較的厚い板厚T2をもつ第二検査部C2には非貫通孔21が形成されているのであれば、加工部Bに形成された非貫通孔21の深さは、許容最小値T1と許容最大値T2との間の許容範囲Ttに収まっていることが分かる。その結果、検査部Cに第一検査部C1および第二検査部C2の両方が備わっているので、加工部Bでも非貫通孔21の深さが寸法公差の許容範囲Ttに収まっていることを、検査部Cで間接的に検査して保証することができる。
【0074】
このことは、同じく図2に示すように、加工部Bに穿孔された非貫通孔21の先端が、許容最小値T1と許容最大値T2との間の許容範囲Ttに収まっていることから明らかである。
【0075】
逆に、非貫通孔21の深さの許容最小値に相当する厚さT1をもつ第一検査部C1に、孔が貫通しておらず、非貫通孔21が形成されている場合には、加工部Bでも非貫通孔21の深さが許容最小値に達していないほど浅すぎることが分かる。一方、非貫通孔21の深さの許容最大値T2に相当する厚さをもつ第二検査部C2に、孔が貫通してしまっており、貫通孔20が形成されている場合には、加工部Bでも非貫通孔21の深さが許容最大値を超えて深すぎることが分かる。あるいは、第一検査部C1にたった一つでも貫通孔20が形成されており、第二検査部C2にたった一つでも非貫通孔21が形成されている場合には、加工部Bでの非貫通孔21の穿孔深さにばらつきが大きく、許容範囲ないし管理幅Ttに収まっていないことが分かる。いずれの場合にも、ワーク1は非貫通孔21の寸法公差を満たしていない不良品として、製品になるのを待たずに加工ラインから外されることであろう。
【0076】
しかも、本実施例によれば、前述の従来技術1とは異なり、貫通孔20の穿孔深さを貫通直前の寸止め状態にする必要がないので、加工部Bの厚さに対して任意に設定した非貫通孔21の深さを検査することができるようになる。
【0077】
また、前述の従来技術1および従来技術2とも異なり、光センサで検知した光量に基づいて穿孔装置をフィードバック制御する高価な制御装置が不要であり、フィードバックなしに穿孔工程を行うことができる。その結果、穿孔工程に要する時間を短縮することができるうえに、穿孔工程に使用する穿孔システムの設備投資が大幅に軽減される。具体的には、発明者は、穿孔システムの構成に要する設備投資は半減するものとみている。
【0078】
なお、発明者が実験したところによれば、検査員の肉眼Eによる目視確認は、極めて短時間で判定ができるだけではなく、信頼性も極めて高いことが分かっている。それゆえ、大量生産しないのであれば、判定用の光センサシステム一式を揃える設備投資を控え、検査工程は検査員による目視確認に頼ることも有力な選択肢である。
【0079】
したがって、本実施例の非貫通孔の深さ検査方法によれば、次の四つの効果が得られるようになる。
【0080】
第一に、前述の従来技術1とは異なり、加工部Bにおいて非貫通孔21の穿孔深さを貫通直前の寸止め状態にする必要がないので、加工部Bの厚さに対して任意に設定した非貫通孔21の深さを検査することができるようになるという効果がある。逆に言うと、加工部Bの厚さT0は第二検査部C2の板厚T2に比べてどれだけ大きく設計されていても良く、極論すると加工部Bはブロックであっても構わないという効果がある。
【0081】
第二に、非貫通孔21の穿孔深さ管理が容易になるという効果がある。すなわち、加工部Bにおける非貫通孔21の穿孔深さが、第一検査部C1の板厚T1と第二検査部C2の板厚T2との間の許容範囲ないし管理幅Ttに収まっていると、十分に高い信頼性をもって推定される製品だけが、検査工程にパスする。それゆえ、非貫通孔21の穿孔深さに関する不良品は、検査工程で容易に排除されるという効果がある。
【0082】
第三に、従来技術1および従来技術2とは異なり、フィードバックなしに穿孔工程を行うことができるので、穿孔工程に要する時間を短縮することができるようになるという効果がある。その結果、穿孔工程および検査工程に要する時間の合計は、従来技術1および従来技術2の穿孔工程に要する時間よりも、概ね半減するという効果がある。
【0083】
第四に、従来技術1および従来技術2とは異なり、フィードバック制御装置が不要になるので、穿孔工程に使用する穿孔システムの設備投資が大幅に軽減されるという効果がある。この効果は、設備投資が半減ないし三分の一に減るくらいに大きなものと推測される。
【0084】
なお、段差のある検査部Cは、製品の端部に隠れるなどして美観上や機能上の不都合がなければ、そのまま残して置いてもよい。逆に、検査部Cを残しておくと不都合がある場合には、検査部Cをワーク1から切り落としても構わない。あるいは、当初から検査部Cをワーク1の加工部Bとは独立した試験片としておき、穿孔工程ではワーク1と並べて穿孔し、検査工程ではこの試験片だけを検査するなどしても良い。
【0085】
(実施例1の変形態様1)
本実施例の変形態様1として、図3に示すように、検査工程は、検査部Cから漏れ出た光を、散乱性の半透明体としての磨りガラスFなる散乱手段で受光し、磨りガラスFを透過した散乱光を検知する工程である、非貫通孔の深さ検査方法の実施が可能である。磨りガラスFは、ワーク1の裏面1bに近接して置かれることが望ましいが、ワーク1の裏面1bと接触してしまっては汚れるので、ワーク1の裏面1bから少し離して置かれている。
【0086】
本変形態様では、ワーク1の第一検査部C1および第二検査部C2からなる検査部Cに開いた貫通孔20を通ってきた光を直接目視するのではなく、磨りガラスFを透過した散乱光を見るので受光範囲が拡がる。すなわち、検査員は磨りガラスFの裏面にある輝点Pを目視すれば良くなり、検査員が目視により検査していても、検査員の肉眼Eの位置について許容範囲が拡がる。
【0087】
その結果、検査員の肉眼Eの位置に関してロバスト性が向上して、検査員による検査の信頼性が高まる。すなわち、前述の実施例1と同じく、本変形態様でも検査員が肉眼Eで検査しており、光センサのように受光部を固定しておくことは困難である。しかし、本変形態様では、検査員が頭をかなり動かしても、磨りガラスF上の輝点Pを依然として目視確認できるようになるので、検査員が得る疲労軽減効果は大きい。
【0088】
したがって本変形態様によれば、前述の実施例1の効果に加えて、検査員の肉眼Eの受光範囲が拡がって検査の信頼性が向上するという効果があるうえに、検査員の高い疲労軽減効果が得られるという効果がある。
【0089】
なお、散乱性の半透明体としては、磨りガラスFの他にも、トレーシングペーパー、白色の薄い樹脂シートなどを採用することもでき、極論すれば白い薄紙であっても構わない。
【0090】
逆に、散乱性の半透明体の代わりに、乱反射面をもつ散乱手段で、検査部Cから漏れ出た光を受け、乱反射面から乱反射された散乱光を検知するようにしても良い。ここで、散乱性の乱反射面としては、白色のセラミックス板、白色の塗装が施された板材などがあり、極論すれば白色の紙であっても構わない。
【0091】
この際、乱反射面はワーク1の裏面1bに近接して置くことが望ましいが、そうすると検査員の頭部が入る場所がなくなってしまう。それでは不都合なので、乱反射面は45°ほど傾けておき、検査員は横方向から(図2の紙面に垂直な方向から)のぞき込むようにすると良い。
【0092】
また、検査用光源として、一本の蛍光灯FLを使うだけではなく、複数の蛍光灯や電灯を検査用光源に使い、検査用光源とワーク1との間にも、磨りガラスFなど散乱性の透過板を置いておくとよい。こうすると、検査部Cの非貫通孔21および貫通孔20が一直線に並んでいない場合にも、対応できるようになる。すなわち、ワーク1に穿孔された全ての非貫通孔21および貫通孔20に、平行な検査用光線が入射するようになり、検査員が一瞥するだけで検査工程が完了してしまうという効果がある。もちろん、検査用光源とワーク1との間に磨りガラスFが装置されるのであれば、検査用光源は蛍光灯FLである必要はなく、点光源などであっても差し支えない。
【0093】
さらに、前述の実施例1および本変形態様において、検査員の肉眼Eを光センサシステムで置き換えて検査工程の自動化を図ったさらなる変形態様も可能である。この光センサシステムは、レーザー加工機をフィードバック制御するものではなく、単に検査工程で明暗を判別するだけものであるから、たいした設備投資費にはならない。また、光センサとしては、直線状に配列されたCCDや面状に多数の画素が配列されたCCDなど、必要に応じて多様な種類の光センサから適正に選択したものを使えばよい。このように検査工程が自動化された変形態様では、いくらかの設備投資費はかかるものの、人件費までもが低減されるという効果がある。
【0094】
(実施例1の変形態様2)
本実施例の変形態様2として、図4に示すように、穿孔工程は、レーザー光線によってワーク1に穿孔する工程であり、検査工程は、このレーザー光線がワーク1の検査部Cを貫通するか否かを検出する工程である、非貫通孔の深さ検査方法の実施が可能である。
【0095】
本変形態様では、前述の実施例1と同様に、穿孔工程では、ワーク1の検査部Cにレーザー穿孔がなされる。一方、前述の実施例1とは異なり、この穿孔工程と並行してレーザー光線が検査部Cを貫通するか否かを検出する検査工程が行われることが、本変形態様の特徴である。
【0096】
レーザー加工機からワーク1に照射されたレーザー光線は、もしもワーク1を貫通してしまうと、レーザー加工機の軸線の延長線上にありワーク1の裏面1bの側に配置された光学ガラスGに斜めに入射する。光学ガラスは、透明度が高い薄い平面ガラスであって、レーザー光線が45°で入射するように傾けて固定されている。レーザー光線が光学ガラスに入射すると、レーザー光線のうち大半は光学ガラスを透過してしまい、ほんの一部だけが反射されて光センサ装置Sに入射する。
【0097】
ここで、本変形態様の装置構成では、レーザー加工機と光学ガラスGと光センサ装置Sとの位置および姿勢が、互いに精密に決まっていないといけないから、これらはベッドに固定されている。そして、ワーク1の表面1aのうち穿孔されるべき箇所がレーザー光線に当たる位置にくるように、ワーク1が自動的に順次移動していくように移動装置(図略)が設計されている。
【0098】
光センサ装置Sは、入射したレーザー光線を磨りガラスや光学フィルタなどを通してさらに減衰させたうえで、内蔵の光センサで受光し、受光レベルが所定の閾値を越えるとレーザー光線を検知した旨の信号を発するようになっている。それゆえ、非貫通孔21の先端がワーク1の裏面1b,1b’,1b”に近接し、わずかに透過光が漏れた程度では光センサ装置Sは受光信号を発することがない。その結果、光センサから受光信号が発せられるのは、レーザー穿孔中にワーク1に貫通孔20が開いた場合だけである。
【0099】
つまり、加工部Bに穿孔中に光センサSから受光信号がでれば、加工部Bに貫通孔20が開いてしまったことを意味するから、その段階でワーク1は不良品と判断されて加工ラインから外される。同様に、第二検査部C2に穿孔中に光センサSから受光信号がでれば、第二検査部C2に貫通孔20が開いてしまい、加工部Bでの穿孔深さが深すぎたことを意味するから、やはりその段階でワーク1は不良品と判断されて加工ラインから外される。逆に、第一検査部C1で任意の貫通孔20の穿孔完了に至っても光センサ装置Sから受光信号がでないままであれば、加工部Bでの穿孔深さが不足していたものと見なされ、ワーク1は不良品と見なされる。
【0100】
すなわち、本変形態様では、穿孔工程の後に別途で検査工程を行う必要がなくなり、その分だけ工数が低減される。そればかりではなく、加工部Bや第二検査部C2の穿孔工程中であっても、穿孔工程の途中で不良品を発見して加工ラインから外すことができるので、不良品にその後の無用な穿孔工程を続ける必要がなくなり、さらに工数が低減される。
【0101】
したがって本変形態様によれば、前述の実施例1がもつ四つの効果に加えて、並行して進められる穿孔工程および検査工程の全体として工数が低減され、より速く穿孔加工およびその検査が進むという効果がある。
【0102】
なお、レーザー加工機の状態を一定保つことができ、レーザー光線の出力が十分に安定しているのであれば、第一検査部C1、第二検査部C2、そして加工部Bの順にレーザー穿孔していっても構わない。こうすると、加工部Bに先立って検査部Cがレーザー穿孔されながら検査されるので、早い段階で不良品の判定がなされ、工程の無駄がさらになくなるという効果がある。
【0103】
(実施例1の変形態様3)
本実施例の変形態様3として、前述の実施例1、その変形態様1および変形態様2において、ワーク1の表裏を逆転させた非貫通孔の深さ検査方法を実施することもできる。すると、レーザー穿孔が行われる表面に検査部Cの段差があり、裏面を面一にした状態で穿孔工程および検査工程が実施される。
【0104】
本変形態様では、非貫通孔21および貫通孔20の根本の開口がある穿孔工程での表面を、製品状態では裏面として多数の開口を隠し、製品状態での表面には穿孔工程での段差のない裏面をもってくることができる。その結果、第一検査部C1の貫通孔20が形成する小さないくつかの開口が、美観や機能のうえで不都合を起こさなければ、面一の表面をもつ製品ができあがる。もちろん、第一検査部C1の貫通孔20が不都合であれば、第一検査部C1だけをワーク1から切り離しても良い。
【0105】
(実施例1の変形態様4)
本実施例の変形態様4として、前述の実施例1、その変形態様1または変形態様3において、穿孔工程と検査工程とでワーク1の表裏を逆転させた非貫通孔の深さ検査方法を実施することもできる。本変形態様でも、貫通孔20を通ってくる蛍光灯FLの光は検知できるから、特に不都合が生じることはなく、前述の実施例1などと同様の作用効果が得られる。
【0106】
[実施例2]
(実施例2の構成)
本発明の実施例2として、図5に示すように、ワーク1が傾斜検査部C’をもつことを特徴とする非貫通孔の深さ検査方法を実施することができる。ここで、ワーク1は、加工部Bに隣り合う検査部として、非貫通孔21の所定深さの許容範囲Ttをカバーする範囲でその厚さが連続的に変化する傾斜検査部C’をもつ。そして穿孔工程は、傾斜検査部C’のうちその厚さが異なる複数部分に穿孔する工程である。
【0107】
すなわち、本実施例では、ワーク1の形状が実施例1と異なり、板厚T0をもつ加工部Bの端部には、板厚がT0からT3にまで連続的に変化する斜面で裏面1cが形成された傾斜検査部C’が続いている。ここで、傾斜検査部C’の最大板厚T0および最小板厚T3と、非貫通孔21の穿孔深さの許容最小値T1および許容最大値T2との関係は、T3<T1<T2<T0である。
【0108】
そして、非貫通孔21の穿孔深さの許容範囲ないし管理幅Ttに相当する板厚をもつ部分は、所定の幅の許容範囲Ctを、傾斜検査部C’の中央部付近に形成している。このことからも、傾斜検査部C’での板厚が、非貫通孔21の所定深さの許容範囲Ttをカバーする範囲でその厚さが連続的に変化していることは、明らかである。
【0109】
(実施例2の作用効果)
本実施例では、傾斜検査部C’が、非貫通孔21深さの許容範囲Ttをカバーする範囲でその厚さが連続的に変化する平らな斜面であり、穿孔工程では、その傾斜方向に沿って多数の孔が穿たれる。すると、傾斜検査部C’のうちどの程度の厚さの部分まで穿孔されているかを検査すれば、加工部Bに形成された非貫通孔21の深さをかなり細かく段階的に推定することができる。
【0110】
すなわち、傾斜検査部C’の厚さは、非貫通孔21の穿孔深さの許容最大値T2を所定分だけ越える厚さT0から、許容最小値T1を所定分だけ下回る厚さT3にまで連続的に平らな斜面を形成してテーパーしている。穿孔工程では、この範囲に等間隔で多数箇所に穿孔されているので、検査工程では、傾斜検査部C’のうちどの厚さの部分で、非貫通孔21から貫通孔20へ遷移しているかが検査される。すると、傾斜検査部C’のうち非貫通孔21から貫通孔20へ遷移している部分の厚さをもって、加工部Bに形成された非貫通孔21の深さとみなし、非貫通孔21の穿孔深さを比較的精密に推定することが可能になる。
【0111】
検査工程での検査結果は、穿孔工程ですでに加工部Bに穿孔済みであるから、そのワーク1には対応することができない。しかし、次のワーク1の穿孔深さをどの程度調整すればよいかが分かるので、次のワーク1では非貫通孔21の穿孔深さをより適正な程度に調整していくことができる。
【0112】
ここで、非貫通孔21から貫通孔20への遷移位置が、傾斜検査部C’のうち所定の幅の許容範囲Ctに収まっていれば、加工部Bでも非貫通孔21の穿孔深さは許容範囲Ttに収まっているものと推定される。さらに、この遷移位置が、許容範囲Ctの中央部にあれば、非貫通孔21の穿孔深さは、許容最小値T1と許容最大値T2とのちょうど真ん中にあり、最も好ましい状態であるといえる。逆に、この遷移位置が許容範囲Ctの中央部を外れていれば、どちらの向きにどれだけ外れているかを観測することによって、非貫通孔21の穿孔深さをどの程度調整すべきかが明らかになる。
【0113】
なお、傾斜検査部C’に所定ピッチで形成された互いに隣り合う孔の間に生じる傾斜検査部C’の厚さの差よりも、非貫通孔21の穿孔深さのばらつきの方が大きい場合には、非貫通孔21から貫通孔20への遷移が行きつ戻りつ徐々に起こることもあり得る。このような場合には、遷移位置を一箇所に特定しがたく、ある程度の幅を持って遷移位置を特定せざるを得ない。しかし、その幅のある遷移位置が許容範囲Ctに収まっていれば、非貫通孔21の穿孔深さも所望の許容範囲ないしは管理幅Ttに収まっているものと推定される。
【0114】
したがって本実施例によれば、前述の実施例1の四つの効果に加えて、精度良く加工部Bに形成された非貫通孔21の穿孔深さを推定することが可能になり、その結果、穿孔工程での穿孔深さを適正に調節していくことができるようになるという効果がある。
【0115】
(実施例2の各種変形態様)
本実施例の非貫通孔の深さ検査方法に対しても、前述の実施例1に対するその変形態様1ないし変形態様4に対応する各種の変形態様を実施することができ、各変形態様に固有の作用効果が得られる。
【0116】
さらに、穿孔工程で、傾斜検査部C’の傾斜方向に対して所定の角度をもった斜め方向に沿って穿孔されるようにした変形態様の実施も可能である。本変形態様によれば、互いに隣り合う孔の位置での板厚の差が小さくなり、より精密に穿孔深さを測定することができるようになる。すなわち、傾斜検査部C’の幅を増やして傾きを小さくしなくても、傾斜検査部C’の幅を増やすことなく、同様の効果が得られる。
【0117】
[実施例3]
(実施例3の構成および作用)
本発明の実施例3として、図6に示すように、自動車のエアバッグを収容する部分の蓋板をワーク1とする非貫通孔の深さ検査方法の実施も可能である。ワーク1は、非貫通孔21を穿孔すべき加工部Bの中央部分に、非貫通孔21の穿孔深さのうち許容最小値に相当する板厚T1の第一検査部C1を有する。
【0118】
すなわち、ワーク1は、エアバッグの展開時には上下に扉が開くように開いてほぼ矩形の破口を生じるように、H字状の脆弱部を形成する目的で、所定の内径をもつ非貫通孔21がH字状に所定ピッチで並んでいる。それゆえ、図6中の左右両端部の非貫通孔21から上下方向(図6の紙面に垂直な方向)に、図示しない多数の非貫通孔21からなる列が左右一対、形成されている。また、ワーク1のうち、水平に並んで穿孔される図示の加工部Bには、その中央に所定の幅で板厚が薄い第一検査部C1が形成されている。一方、実施例1とは異なって、本実施例のワーク1には、第二検査部C2は形成されていない。
【0119】
ここで、左右両側のある一対の加工部Bの中央部に、最も板厚が薄い第一検査部C1を配置したのは、エアバッグが展開する際にその膨張力を受けて、加工部Bの中央部から破口が開き始めることを意図してのことである。
【0120】
なお、穿孔工程で第一検査部C1の裏面1b’には複数の貫通孔20が開口するが、検査工程が終了した後で、第一検査部C1の裏面1b’には、軟質樹脂からなるロゴなどの飾りプレートが貼り付けられる。飾りプレートを貼り付けるのは、これらの貫通孔20が製品状態では乗員から見えないようにして美感を向上させるためである。また、飾りプレートの材料に軟質樹脂を採用したのは、エアバッグの展開時に裂けた飾りプレートが乗員に触れても、乗員に傷を負わせないようにとの配慮である。
【0121】
さて、予備工程では、ワーク1が前述の所定形状に形成される。ワーク1を形成している材料は、前述の実施例1と同様に、黒色のポリプロピレン系熱可塑性樹脂である。ワーク1の形状は、第一検査部C1を除いてほぼ一定の厚さをもち、裏面1bに向かって凸のごく緩やかな二次曲面を形成している板材である。なお、ワーク1が製品としての蓋板となった状態では、非貫通孔21も開口している穿孔工程での表面1aが裏側になり、一方、穿孔工程での裏面1bが乗員から見える表側になる。
【0122】
それゆえ、ワーク1の裏面1bには、皮革状の美観を呈する絞(シボ=grain)なる凹凸が形成されている。一方、ワーク1の表面1aは平滑である。そして、ワーク1の板厚T0は、表面1aから裏面1bの凹凸の平均高さの面までを言うものとする。
【0123】
次に、穿孔工程では、実施例1と同様にレーザー加工機によるレーザー穿孔が行われる。この際、非貫通孔21は、エアバッグの展開時にワーク1が容易に破口を生じることができるように、裏面1bのごく近傍にまで達していることが望ましい。その一方で、ワーク1が製品となりエアバッグの蓋板として設置されているときに、乗員から開口が見えては美観を損ねてしまう。そこで、非貫通孔21の先端は、裏面1bに達しない範囲で適度に裏面1bに近く設定されていることが望ましい。
【0124】
具体的には、非貫通孔21の穿孔深さは、その平均値を板厚T0よりも0.35mm小さく設計し、その平均値の上下に±0.20mmの許容範囲を設けることにした。すなわち、非貫通孔21の穿孔深さの許容最大値T2は、ワーク1の板厚T0よりも0.15mmだけ小さい値であり、逆に許容最小値T1は、ワーク1の板厚T0よりも0.55mmだけ小さい値である。それゆえ、非貫通孔21の穿孔深さの許容範囲ないし管理幅Ttは、0.4mmである。
【0125】
なお、前述の±0.20mmなる許容範囲は、成型時に生じるワーク1の基材特性のばらつきと、レーザー加工機の精度限界(約±0.1mm)と、ワーク1の裏面1bのシボ粗さとを勘案して定めた設計値である。
【0126】
また、穿孔工程では、各非貫通孔21は、内径はわずか0.2mm程度で形成されるが、表面1aの開口部だけは内径0.3mm程度に拡がって形成される。そして、非貫通孔21のピッチは0.5mmであるから、互いに隣り合う非貫通孔21の間はわずかに0.3mmだけ離れている。もちろん、第一検査部C1にも加工部Bと同様の条件でレーザー穿孔されるから、貫通していること以外は非貫通孔21と同じ内径やピッチをもった多数の貫通孔20が、第一検査部C1に形成される。
【0127】
ここで、従来技術の項で紹介したニードル穿孔では、非貫通孔21の内径は小さくできても0.5mmどまりであるから、穿孔工程でレーザ加工を施す本実施例の方がより細い非貫通孔21をより緻密に形成することができる。それゆえ、自然に互いに隣り合う非貫通孔21および貫通孔20の間の肉が薄くなる分だけ、破口を生じた際に飛び散る破片はより小さくなるうえに、破断面のギザギザもより小さくなり、乗員を傷つけにくくなる。また、本実施例では、ニードル穿孔とは異なって、非貫通孔21および貫通孔20の根本の開口部に樹脂の盛り上がりが生じないので、この盛り上がりが破片となって飛散して乗員の目に入るような不都合がない。
【0128】
最後に、検査工程では、同じく図3に示すように、検査用光源として蛍光灯を3本使って貫通孔20と非貫通孔21との判別を目視検査する。
【0129】
すなわち、実施例1と同様に水平方向に渡して加工部Bの非貫通孔21と第一検査部C1の貫通孔20との内部に向かって光を照射する蛍光灯FLに加え、縦に2本の蛍光灯FL1,FL2を並べて用いる。これら2本の蛍光灯FL1,FL2は、H字状に形成される脆弱部の両側にある縦の線に沿って並んだ加工部(図略)に形成された非貫通孔21の内部に光を照射する検査用光源である。これら3本の蛍光灯FL,FL1,FL2は、ワーク1の表面1aの側から全ての貫通孔20および非貫通孔21の内部を照射するように配置されている。
【0130】
一方、ワーク1の裏面1bに近接して磨りガラスFが配置されており、磨りガラスFの背後から検査員が肉眼Eで輝点Pを目視確認することによって、貫通孔20が形成されている位置の検査が行われる。
【0131】
すなわち、磨りガラスFのうち、第一検査部C1の背後にあたる部分にだけ、同程度の大きさおよび輝度の輝点Pが等間隔で並んでおり、他の部分に輝点Pが視認されなければ、レーザー穿孔に関する検査は合格である。
【0132】
一方、第一検査部C1に当たる部分に輝点Pの欠落があれば、多くの場合には非貫通孔21の深さも不足しているものと推定されるので、検査結果は不合格となろう。逆に、第一検査部C1に当たる部分以外で輝点Pが認められれば、多くの場合には非貫通孔21が深すぎ、脆弱部が強度不足に陥っていることが推定されるので、やはり検査結果は不合格になることであろう。
【0133】
ただし、加工部Bに生じた貫通孔の数少なく、それらの開口が微細で美観に影響がなく、ワーク1が適正な強度試験にも耐えることができれば、検査工程での検査結果を覆すこともあるかもしれない。この辺の合否のボーダーラインをどこに引くかは、製造者が抱く品質管理に関する考え方によっていくらか異なってくる設計事項であろう。
【0134】
(実施例3の効果)
本実施例では、前述のように、非貫通孔21の穿孔深さの許容最小値T1にあたる厚さをもつ第一検査部C1だけがあり、加工部Bは穿孔深さの許容最大値T2よりも厚い。それゆえ、第一検査部C1を光学検査することにより、全ての貫通孔20が適正にワーク1の第一検査部C1を貫通していることが確認される。また、加工部Bの全ての穿孔部分にも光学検査を行うことにより、加工部Bには貫通孔20が無いことが確認されれば、加工部Bに穿たれた孔は全て非貫通孔21であることが確実に保証される。
【0135】
その結果、前述の実施例1が発揮する四つの効果とほぼ同様の効果が得られるうえに、本実施例に特有な次のような効果が得られる。
【0136】
第一に、エアバッグ作動時に破口を生じるH字状の脆弱部のうち、ちょうど中央部に、貫通孔20があって板厚が他の部分よりも薄い第一検査部C1があるので、破口は脆弱部のうち第一検査部C1がある中央部から始まる。その結果、製品(エアバッグの蓋板)となったワーク1は、中央部から生じた破口が左右にほぼ対称形に拡がっていき、偏りのないスムースな開口部が得られるという効果がある。
【0137】
第二に、レーザー穿孔された非貫通孔21および貫通孔20は非常に細く、配列のピッチも細かく形成されている。それゆえ、エアバッグの作動時にワーク1の破口から生じる破片は極めて小さくごく少ないうえに、破口のギザギザがごく細かいので、破片の散乱や破口の接触によって乗員を傷つけることがよりよく防止されるという効果がある。
【0138】
(実施例3の各種変形態様)
本実施例の非貫通孔の深さ検査方法に対しても、前述の実施例1に対するその変形態様1ないし変形態様4に対応する各種の変形態様を実施することができ、各変形態様に固有の作用効果が得られる。
【図面の簡単な説明】
【図1】 実施例1の穿孔工程を示す断面模式図
【図2】 実施例1の検査工程を示す断面模式図
【図3】 実施例1の変形態様1の検査工程を示す断面模式図
【図4】 実施例1の変形態様2の穿孔検査方法を示す断面模式図
【図5】 実施例2の検査工程を示す断面模式図
【図6】 実施例3の検査工程を示す断面模式図
【図7】 従来技術1の穿孔深さ検出方法を示す模式図
【符号の説明】
1:ワーク(非貫通孔を形成される被加工物)
1a:表面(穿孔工程での表面であり製品としての表裏とは無関係)
1b:裏面(穿孔工程での裏面であり製品としての表裏とは無関係)
1b’:第一検査部の裏面
1b”:第二検査部の裏面
1c:傾斜検査部の傾斜した裏面
20:貫通孔 21:非貫通孔
B:加工部(ワークのうち穿孔される部分)
C:検査部(ワークのうち穿孔のうえ検査される部分)
C1:第一検査部(非貫通孔深さの許容最小値に相当する厚み部分)
C1:第二検査部(非貫通孔深さの許容最大値に相当する厚み部分)
C’:傾斜検査部(非貫通孔深さの許容範囲をカバー)
Ct:傾斜検査部の許容範囲
T0:加工部の板厚
T1:第一検査部の板厚(非貫通孔深さの許容最小値に相当)
T2:第二検査部の板厚(非貫通孔深さの許容最大値に相当)
T3:傾斜検査部の端部板厚(T3<T1<T2<T0)
Tt:非貫通孔深さの許容範囲(穿孔深さの管理幅、Tt=T2−T1)
E:検査員の肉眼 F:磨りガラス
FL,FL1,FL2:直棒状の蛍光灯(検査用光源)
G:光学ガラス P:輝点 S:光センサ装置

Claims (5)

  1. ワークの加工部に、その表面からその内部の所定深さにまで達する非貫通孔を形成する穿孔工程と、
    このワークの表面とこの表面に背向する裏面とのうち一方に向けて光を照射し、他方から漏れ出る光を観測してこの孔の深さを検査する検査工程と、
    を有する非貫通孔の深さ検査方法であって、
    前記ワークの一部分を前記非貫通孔の穿孔部分がもつ厚さ以下の所定の厚さにした検査領域と、前記ワークと同じ材料からなり少なくとも一部は前記非貫通孔の穿孔部分よりも薄い所定の厚さをもつ試験片とのうち、少なくとも一方である検査部を設ける予備工程をさらに有し、
    前記穿孔工程は、前記加工部と同等の条件で前記検査部にも穿孔する工程であり、
    前記検査工程は、前記予備工程以降に、前記検査部の前記一方から前記他方へ漏れた前記光を観測して、前記加工部における前記非貫通孔の深さと前記検査部の厚さとの長短を判定する工程であることを特徴とする、
    非貫通孔の深さ検査方法。
  2. 前記検査部は、前記非貫通孔の前記所定深さの許容最小値に相当する厚さを持つ第一検査部と、前記非貫通孔の前記所定深さの許容最大値に相当する厚さを持つ第二検査部とのうち、少なくとも一方を持つ、
    請求項1記載の非貫通孔の深さ検査方法。
  3. 前記検査部は、前記非貫通孔の前記所定深さの許容範囲をカバーする範囲でその厚さが連続的または段階的に変化する傾斜検査部であり、
    前記穿孔工程は、この傾斜検査部のうちその厚さが異なる複数部分に穿孔する工程である、
    請求項1記載の非貫通孔の深さ検査方法。
  4. 前記穿孔工程は、レーザー光線によって前記ワークに穿孔する工程であり、
    前記検査工程は、このレーザー光線が前記ワークの前記検査部を貫通するか否かを検出する工程である、
    請求項1記載の非貫通孔の深さ検査方法。
  5. 前記検査工程は、前記検査部から漏れ出た前記光を、散乱性の半透明体および乱反射面とのうちいずれかである散乱手段で受光し、この散乱手段から発散した散乱光を検知する工程である、
    請求項1記載の非貫通孔の深さ検査方法。
JP2002115297A 2002-04-17 2002-04-17 非貫通孔の深さ検査方法 Expired - Fee Related JP3855264B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115297A JP3855264B2 (ja) 2002-04-17 2002-04-17 非貫通孔の深さ検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115297A JP3855264B2 (ja) 2002-04-17 2002-04-17 非貫通孔の深さ検査方法

Publications (2)

Publication Number Publication Date
JP2003315022A JP2003315022A (ja) 2003-11-06
JP3855264B2 true JP3855264B2 (ja) 2006-12-06

Family

ID=29533690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115297A Expired - Fee Related JP3855264B2 (ja) 2002-04-17 2002-04-17 非貫通孔の深さ検査方法

Country Status (1)

Country Link
JP (1) JP3855264B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027834A (ko) * 1999-09-16 2001-04-06 김대원 양자공명자화육각수의 제조장치
JP2008233054A (ja) * 2007-03-23 2008-10-02 Midori Techno Park:Kk 測定装置および測定方法
US8389892B2 (en) * 2009-05-20 2013-03-05 Ethicon, Inc. X-ray microscopy for characterizing hole shape and dimensions in surgical needles
CN103245300B (zh) * 2012-02-13 2016-08-10 深南电路有限公司 Pcb板控深钻孔检验装置及检验方法
CN105702594B (zh) * 2014-11-25 2018-09-04 深南电路有限公司 检测封装基板钻头和控深精度的装置及方法
CN112763486B (zh) * 2020-11-30 2022-05-10 成都飞机工业(集团)有限责任公司 一种基于线激光扫描的复材壁板阵列孔检测方法

Also Published As

Publication number Publication date
JP2003315022A (ja) 2003-11-06

Similar Documents

Publication Publication Date Title
JP3855264B2 (ja) 非貫通孔の深さ検査方法
CN101329456A (zh) 检测设备
TW504569B (en) Optical inspection of laser vias
CN109311122A (zh) 用于借助脉冲激光束通过在覆盖材料上进行材料去除来引入限定的弱化线的方法
WO2018188899A1 (de) Verfahren zum einbringen einer definierten schwächungslinie mit einem gepulsten laserstrahl durch materialabtrag an einem überzugsmaterial
JP4599507B2 (ja) ガラス板の形状測定方法及び形状測定装置
JP3235398B2 (ja) レーザ溶接の貫通検知方法およびその装置
JPH06241740A (ja) 電縫管溶接ビード切削不良・欠陥検出方法
JP2694929B2 (ja) レーザービーム加工用加工孔貫通検知装置
JP2005533657A (ja) 薬剤用のレーザー穴あけ装置
US20050105774A1 (en) Method for verifying a perforation pattern serving as a security characteristic
KR20130042380A (ko) 조수석 에어백 도어 모듈 및 검사방법
JP3225922U (ja) ガラス基板の分断縁検査装置
JP5622338B2 (ja) 半導体デバイス製造過程における異物とキズ痕との判別検査方法
JP3224054U (ja) ガラス基板の分断縁検査装置
JP7251904B2 (ja) レーザ加工方法及レーザ加工装置
CN113731830A (zh) 一种激光打孔中空滤嘴检测装置及检测方法
US5563700A (en) Method and apparatus for testing the material integrity of a converted can end
JPH05196579A (ja) 異物検査装置
JP4501997B2 (ja) レーザ溶接のモニタリング方法
CN100451542C (zh) 加工余留厚度的测定方法
JP6921250B2 (ja) 移動するシートの表面を検査する方法およびデバイス
JP3098369U (ja) 発泡シート材のピンホール検査装置
JPH06123711A (ja) ハマ欠け検出方法及び装置
JP4108550B2 (ja) 加工残厚の測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060903

LAPS Cancellation because of no payment of annual fees