JP3853872B2 - LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE - Google Patents

LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE Download PDF

Info

Publication number
JP3853872B2
JP3853872B2 JP13720996A JP13720996A JP3853872B2 JP 3853872 B2 JP3853872 B2 JP 3853872B2 JP 13720996 A JP13720996 A JP 13720996A JP 13720996 A JP13720996 A JP 13720996A JP 3853872 B2 JP3853872 B2 JP 3853872B2
Authority
JP
Japan
Prior art keywords
laminate
laminated
cloth
leg
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13720996A
Other languages
Japanese (ja)
Other versions
JPH09316825A (en
Inventor
直人 御船
安志 西本
信康 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Shibata Industrial Co Ltd
Original Assignee
Railway Technical Research Institute
Shibata Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Shibata Industrial Co Ltd filed Critical Railway Technical Research Institute
Priority to JP13720996A priority Critical patent/JP3853872B2/en
Publication of JPH09316825A publication Critical patent/JPH09316825A/en
Application granted granted Critical
Publication of JP3853872B2 publication Critical patent/JP3853872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁や高速道路の桁と脚との間の緩衝材等の構造物の連結部や緩衝部に用いる積層体の製造方法およびその積層体さらにその積層体を用いた免震構造に関する。
【0002】
【従来の技術】
例えば、高速道路の脚にかかる桁の端部の構造は、図7に示す構造となっている。図において、1は脚、2は桁であり、桁2の端部には設置部3が突出形成されており、この設置部3が脚1の上面にゴムによる免震材4を介して設置され、相対向する桁2同志の端部は連結材5によって連結されている。6は脚1に形成した落桁防止壁である。
【0003】
【発明が解決しようとする課題】
このような桁と脚の構造の設置部と落桁防止壁のような箇所において、地震等の場合、桁が前後に移動するようなことが発生するが、その運動を減衰させたり受けたりすることができず、わずかな揺れで桁を移動させてしまったり、位置がずれてしまったりすることがある。
【0004】
また、脚の上面に配置した免震材は、ゴム性であるために初期のばね性を高める構造にすると荷重が作用したときの変形モードが漸増型となるために初期の対応は可能でもエネルギーの吸収量が効率的でないという問題がある。
【0005】
【課題を解決するための手段】
そこで本発明は、積層体を、布状体に弾性材を圧延接着したものを加熱しない状態で所望数積層し、その積層方向に直交する方向から圧力を載荷し、その後に、成型用金型に装填して加熱反応させる製造方法を特徴とする。
また、天然、合成、金属もしくはそれらの混合等の繊維による布状体を、天然ゴム、合成ゴム、合成樹脂等の弾性材と交互に加熱しない状態で所望数積層し、その積層状態を載荷方向に直交する方向に布状体を弾性材が交互になるように積層させ、それに圧力を載荷した状態で加硫した上記方法により製造した積層体である。
また、上記積層体を、その積層状態が載荷方向に直交する方向になるように橋脚や高速道路の脚と桁間に配置して免震構造とする。
【0006】
【発明の実施の形態】
以下に本発明の実施の形態例を図面を用いて説明する。
図1は桁と脚の構造の設置部の説明図、図2は支承材の断面図、図3は斜視図、図4は加熱前のブロック成型体の説明図であり、図4に示す如く、天然、合成、金属もしくはそれらの混合等による繊維による布状体7を、天然ゴム、合成ゴム、合成樹脂等の弾性材8と交互になるように所望数積層した構造であり、その積層するに際し、布状体7の片面もしくは両面に弾性材8を圧延接着したものを積層した構造である。
【0007】
このような積層体で桁2と脚1の落桁防止壁6の間に支承材9を配置する。
この支承材9は、断面形状V型の長尺体であり、脚部10を落桁防止壁6に固定して頭部11を桁2の設置部3端面に当接させるものである。
そこで、この支承材9の積層状態は、頭部11および脚部10に平行に形成した構造とする。なお、この積層状態は、すべての積層間隔が同一である必要はなく、部分によって積層間隔をかえることは自由であり、例えば、頭部11から脚部10にかけて順次に積層間隔を変えることは有効である。
【0008】
また、必要に応じて脚部10にフランジ状に形成した固着部12内には固定用の金属板13を埋設したり、図5に示す如く、脚部10に係止突起14を形成してこの係止突起14を落桁防止壁6に埋設して取り付けるようにしてもよい。
このような積層構造にする方法は、ゴム単体とは異なり布状体7と弾性材8との積層材であるために、押し出し機や圧入機による成形はできない。そこでまず、上記の布状体7に弾性材8を圧延接着して必要幅の帯状体にし、この帯状体を脚部や頭部等に合致した形状に裁断して必要な枚数もしくは所定の形状となるように積層してブロックとする(図4)。
【0009】
このように積層したブロックに、積層方向と直交する方向から圧力を載荷する(予圧工程)。この場合の圧力は、少なくとも加熱(加硫)反応時の載荷圧力を上回る圧力であり、例えば80kg/cm2 程度である。
こうして圧力を載荷したブロックを成型用金型に装填し、以降はゴムの加硫工程と同様の工程により製品が完成する。
【0010】
なお、固着部12内に金属板13を設ける場合には、上記の積層工程中に埋設しておいてもよい。
このようにした積層体を支承材として用いることにより、支承材に荷重が載荷した場合、初期は脚部10がその荷重を分担して受持ち、そのためばね性も高くなる。この場合には断面内に埋設された布状体7が弾性材8の剪断方向の変位を拘束するためにその剪断方向に硬いばねを実現することができる。このばねは積層の積層間隔や布状体7の繊維の材質を変えることにより可変である。
【0011】
さらに、圧縮荷重を載荷すると頭部11が脚部10の間に入り込むような変形がはじまり荷重が上昇せずに変位のみが進行する座屈変形がはじまる。この場合に、頭部11に埋設してある布状体7間に弾性材8が浸透して入り込んでいるために荷重を負担している脚部10の自立性を損なうのを防止することができる。
なお、このような座屈変形を実現するために布状体7の伸び率が10%以上あるとよい。
【0012】
積層方向に対して傾斜する方向の荷重が作用して剪断方向に分力が発生する荷重が作用した場合は、従来のゴム製の場合では分力が作用した側の脚部が屈服変形となるのに対し、本発明では、分力方向に平行に変形する。このことは、断面内に埋設した布状体7間の弾性材8のみが変形を受け持つ積層材の基本的な変形が出現することによってわかる。
【0013】
さらに、荷重を載荷したとき、ゴム単体の場合は脚部の中に頭部が入り込んだ状態が進行するために反力のみが上昇することになり、例えば、桁の移動がこの領域まで達した場合には桁に損害を発生させることになる。しかし、本発明によると、頭部の限界変形状態になると、内部に積層した布状体7の引張破断が作用して極限状態を定量化することができ、しかも、与えられた過大なエネルギーを布状体7の破断に消費していくことにより、たとえ内部で破断が進行しても反力が上昇しないために桁に損害を与えることがない(図6参照)。
【0014】
このような本発明によると、ゴム単体のものに比べて約3倍程度のエネルギー吸収量を有することができ、これは、もしこの支承材をゴム単体で作ると本発明の支承材の3倍の材料容積を必要とすることになる。
したがって、支承材をゴム単体で作ることも可能であるが、上記積層体に比べて大型のもとなるが、施工箇所に応じては使用できないことはない。
【0015】
このように本発明による支承材は、吸収エネルギーが大きいために小型化が可能となり、設置容積が少なくてすむと共に取り付け作業性がよい。
なお、支承材には上記の断面形状V型の長尺体の他に多くの形態のものや使用目的のものがあるが、それらの多くの使用目的や形態の支承材において対応することができ、例えば脚10と桁2の設置部3の間に配置する板状の免震材4をこの積層体で形成することにより上記と同様な作用・効果が得られる。
【0016】
【発明の効果】
以上詳細に説明した本発明によると、載荷方向に直交する方向に布状体を弾性材と交互になるように積層した積層材で構成したことにより、ゴム単体の支承材に比較して、荷重載荷の初期には布状体が弾性材の剪断方向の変位を拘束するために、載荷方向に直交する方向に硬いばね性を発揮するために大きなエネルギー吸収量が実現できる効果を有する。
【0017】
また、断面形状V型の支承材として使用した場合には、上記の硬いばね性の発揮と共に頭部に荷重がかかると頭部が脚部間に入り込むように変形が始まり荷重が上昇せずに変位のみが進行して座屈変形がおきることになり、大きなエネルギーの吸収が可能となる効果を有する。
また、この支承材に荷重が載荷して限界変形状態になると、弾性材に埋設した布状体に引張破断が作用することにより、極限状態を定量化することが可能となり、しかも、与えられた過大なエネルギーを内部の布状体の破断に消耗することになり、たとえ内部で破断が進行しても反力が上昇しないために接続物体側に対して安全であるという効果を有する。
【図面の簡単な説明】
【図1】桁と脚の構造の設置部の説明図
【図2】支承材の断面図
【図3】斜視図
【図4】加熱前のブロック成型体の説明図
【図5】係止突起を設けた形態の説明図
【図6】反力と圧縮量の関係を示すグラフ
【図7】桁と脚の構造の設置部の従来例の説明図
【符号の説明】
1 脚
2 桁
3 設置部
4 免震材
6 落桁防止壁
7 布状体
8 弾性材
9 支承材
10 脚部
11 頭部
18 支承材
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method of manufacturing a laminated body used for a connecting part or a buffering part of a structure such as a cushioning material between a bridge or a highway girder and a leg, and the laminated body, and further to a seismic isolation structure using the laminated body .
[0002]
[Prior art]
For example, the structure of the end of the girder on the leg of the highway is the structure shown in FIG. In the figure, 1 is a leg, 2 is a girder, and an installation part 3 protrudes from the end of the girder 2, and this installation part 3 is installed on the upper surface of the leg 1 via a seismic isolation material 4 made of rubber. The opposite ends of the opposite beams 2 are connected by a connecting member 5. Reference numeral 6 denotes a falling beam prevention wall formed on the leg 1.
[0003]
[Problems to be solved by the invention]
In places such as girder and leg structure installation places and falling girder prevention walls, in the event of an earthquake, etc., the girder may move back and forth, but the movement is attenuated or received. Cannot be moved, and the digit may be moved or the position may be shifted by slight shaking.
[0004]
In addition, since the seismic isolation material placed on the upper surface of the leg is rubber, if the structure increases the initial spring property, the deformation mode when the load is applied becomes a gradually increasing type, so the initial response is possible, but the energy There is a problem that the amount of absorption is not efficient.
[0005]
[Means for Solving the Problems]
Therefore, the present invention is to stack a desired number of laminates in a state in which an elastic material is rolled and bonded to a cloth-like body without heating, load pressure from the direction orthogonal to the lamination direction, and then mold It is characterized by a production method in which it is loaded and reacted by heating.
In addition, a desired number of fabric-like bodies made of natural, synthetic, metal, or a mixture thereof are laminated without being heated alternately with elastic materials such as natural rubber, synthetic rubber, and synthetic resin. The laminate is manufactured by the above-described method in which cloth-like bodies are laminated so that elastic materials are alternated in a direction orthogonal to, and vulcanized in a state where pressure is loaded thereon.
Further, the laminated body is disposed between the bridge pier or the expressway leg and the girder so that the laminated state is in a direction perpendicular to the loading direction to form a seismic isolation structure.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view of an installation part of a structure of a girder and a leg, FIG. 2 is a sectional view of a support material, FIG. 3 is a perspective view, and FIG. 4 is an explanatory view of a block molded body before heating, as shown in FIG. , A structure in which a desired number of fabric-like bodies 7 made of natural, synthetic, metal, or a mixture thereof are alternately laminated with elastic materials 8 such as natural rubber, synthetic rubber, and synthetic resin. In this case, the cloth-like body 7 has a structure in which one or both surfaces of the cloth-like body 7 are bonded by rolling and bonding the elastic material 8.
[0007]
A bearing member 9 is arranged between the beam 2 and the falling beam prevention wall 6 of the leg 1 in such a laminate.
The support member 9 is a long body having a V-shaped cross section, and the leg portion 10 is fixed to the falling beam prevention wall 6 and the head portion 11 is brought into contact with the end surface of the installation portion 3 of the beam 2.
Therefore, the laminated state of the support member 9 is a structure formed in parallel with the head portion 11 and the leg portion 10. In this lamination state, it is not necessary for all the lamination intervals to be the same, and it is free to change the lamination interval depending on the part. For example, it is effective to change the lamination interval sequentially from the head 11 to the leg 10. It is.
[0008]
Further, if necessary, a fixing metal plate 13 is embedded in the fixing portion 12 formed in a flange shape on the leg portion 10, or a locking projection 14 is formed on the leg portion 10 as shown in FIG. You may make it attach this latching protrusion 14 by being embedded in the falling beam prevention wall 6. FIG.
Since the method of making such a laminated structure is a laminated material of the cloth-like body 7 and the elastic material 8 unlike a single rubber, it cannot be molded by an extruder or a press-fitting machine. Therefore, first, the elastic material 8 is rolled and bonded to the cloth-like body 7 to form a belt-like body having a necessary width, and the belt-like body is cut into a shape matching the leg portion, the head, etc. As shown in FIG.
[0009]
Pressure is loaded on the thus laminated blocks from a direction orthogonal to the lamination direction (preloading step). The pressure in this case is a pressure that exceeds at least the loading pressure during the heating (vulcanization) reaction, and is, for example, about 80 kg / cm 2 .
In this way, the block loaded with pressure is loaded into a molding die, and thereafter, the product is completed by the same process as the rubber vulcanization process.
[0010]
In addition, when providing the metal plate 13 in the fixing | fixed part 12, you may embed | buy in said lamination process.
By using such a laminated body as a support material, when a load is loaded on the support material, the leg portion 10 shares the load in the initial stage, so that the spring property is also improved. In this case, since the cloth-like body 7 embedded in the cross section restrains the displacement of the elastic member 8 in the shearing direction, a hard spring in the shearing direction can be realized. This spring can be changed by changing the stacking interval of the stacks and the material of the fibers of the cloth-like body 7.
[0011]
Furthermore, when a compressive load is loaded, a deformation that causes the head 11 to enter between the leg portions 10 starts, and a buckling deformation in which only the displacement proceeds without the load increasing starts. In this case, since the elastic material 8 penetrates and enters between the cloth-like bodies 7 embedded in the head 11, it is possible to prevent impairing the independence of the leg 10 that bears the load. it can.
In addition, in order to implement | achieve such buckling deformation, it is good for the elongation rate of the cloth-like body 7 to be 10% or more.
[0012]
When a load that inclines with respect to the laminating direction is applied and a load that generates a component force in the shearing direction is applied, in the case of a conventional rubber product, the leg on the side on which the component force is applied deforms in a bent manner. On the other hand, in this invention, it deform | transforms in parallel with a component force direction. This can be seen by the appearance of the basic deformation of the laminated material in which only the elastic material 8 between the cloth-like bodies 7 embedded in the cross section is responsible for the deformation.
[0013]
Furthermore, when a load is loaded, in the case of rubber alone, the state where the head enters the leg portion proceeds, so only the reaction force rises. For example, the movement of the girder reaches this region. In some cases, the digit will be damaged. However, according to the present invention, when the head is in the limit deformation state, the ultimate state can be quantified by the tensile fracture of the cloth-like body 7 laminated inside, and the excessive energy given can be obtained. By consuming the rupture of the cloth-like body 7, even if the rupture progresses inside, the reaction force does not increase, so that the girder is not damaged (see FIG. 6).
[0014]
According to the present invention, the amount of energy absorption can be about three times that of a single rubber, which is three times that of the present invention if the support is made of a single rubber. The material volume is required.
Therefore, the support material can be made of rubber alone, but it is larger than the laminated body, but it cannot be used depending on the construction location.
[0015]
As described above, the bearing material according to the present invention can be reduced in size because of the large absorbed energy, and the installation volume is small and the mounting workability is good.
In addition to the above-described V-shaped elongated body having a cross-sectional shape, there are many forms and usage purposes. For example, by forming the plate-shaped seismic isolation material 4 disposed between the leg 10 and the installation portion 3 of the beam 2 with this laminated body, the same operation and effect as described above can be obtained.
[0016]
【The invention's effect】
According to the present invention described in detail above, it is composed of a laminated material in which a cloth-like body is laminated alternately with an elastic material in a direction orthogonal to the loading direction, so that the load is compared with that of a single rubber bearing material. Since the cloth-like body restrains the displacement of the elastic material in the shearing direction at the initial stage of loading, it has an effect that a large energy absorption amount can be realized in order to exhibit a hard spring property in a direction perpendicular to the loading direction.
[0017]
In addition, when used as a V-shaped bearing member, when the load is applied to the head with the above-mentioned hard spring performance, deformation starts so that the head enters between the legs, and the load does not increase. Only the displacement proceeds and buckling deformation occurs, which has the effect of absorbing large energy.
In addition, when a load is loaded on this support material and a limit deformation state is reached, the ultimate state can be quantified by applying a tensile fracture to the cloth-like body embedded in the elastic material, and given Excessive energy is consumed for the breakage of the internal cloth-like body, and even if the breakage progresses inside, the reaction force does not increase.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an installation part of a structure of a girder and a leg. FIG. 2 is a sectional view of a support material. FIG. 3 is a perspective view. FIG. 4 is an explanatory view of a block molded body before heating. FIG. 6 is a graph showing the relationship between the reaction force and the compression amount. FIG. 7 is an explanatory diagram of a conventional example of an installation part of a girder and leg structure.
DESCRIPTION OF SYMBOLS 1 Leg 2 Girder 3 Installation part 4 Seismic isolation material 6 Falling girder prevention wall 7 Cloth body 8 Elastic material 9 Support material 10 Leg 11 Head 18 Support material

Claims (3)

布状体に弾性材を圧延接着したものを加熱しない状態で所望数積層し、その積層方向に直交する方向から圧力を載荷し(予圧工程)、その後に、成型用金型に装填して加硫反応させることを特徴とする積層体の製造方法。A desired number of rolls of elastic material rolled and bonded to a cloth-like body are stacked without heating, and pressure is applied from the direction perpendicular to the stacking direction (preloading step), and then loaded into a molding die. A method for producing a laminate , characterized by causing a sulfur reaction. 天然、合成、金属もしくはそれらの混合等の繊維による布状体を、天然ゴム、合成ゴム、合成樹脂等の弾性材と交互に加熱しない状態で所望数積層し、その積層状態を載荷方向に直交する方向に布状体と弾性材が交互になるように積層させ、それに圧力を載荷させた状態で加硫した請求項1の方法により製造した積層体A desired number of fabrics made of natural, synthetic, metal or mixed fibers are laminated without being heated alternately with elastic materials such as natural rubber, synthetic rubber, and synthetic resin, and the laminated state is orthogonal to the loading direction. A laminate produced by the method of claim 1, wherein cloth and elastic materials are alternately laminated in a direction to be vulcanized, and vulcanized in a state where pressure is loaded thereon. 請求項2による積層体を、その積層状態が載荷方向に直交する方向になるように橋梁や高速道路の脚と桁間に配置した免震構造。 A seismic isolation structure in which the laminated body according to claim 2 is arranged between a bridge or a highway leg and a girder so that the laminated state is in a direction perpendicular to the loading direction.
JP13720996A 1996-05-30 1996-05-30 LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE Expired - Fee Related JP3853872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13720996A JP3853872B2 (en) 1996-05-30 1996-05-30 LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13720996A JP3853872B2 (en) 1996-05-30 1996-05-30 LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE

Publications (2)

Publication Number Publication Date
JPH09316825A JPH09316825A (en) 1997-12-09
JP3853872B2 true JP3853872B2 (en) 2006-12-06

Family

ID=15193347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13720996A Expired - Fee Related JP3853872B2 (en) 1996-05-30 1996-05-30 LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE

Country Status (1)

Country Link
JP (1) JP3853872B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853011B2 (en) * 1997-04-02 2006-12-06 横浜ゴム株式会社 Fall prevention device for bridges
JP2001303518A (en) * 2000-04-25 2001-10-31 Shibata Ind Co Ltd Pressing member
CN107401111B (en) * 2017-07-01 2019-08-02 温州市华宏建设有限公司 A kind of municipal administration bridge shockproof structure and method
CN110485270B (en) * 2019-09-16 2024-04-02 莆田学院 Bridge anti-seismic device provided with hillock type flexible stop blocks
JP7337430B1 (en) * 2023-05-12 2023-09-04 株式会社ビー・ビー・エム Elastic buffer

Also Published As

Publication number Publication date
JPH09316825A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
KR100316196B1 (en) Isolation Device and Isolation System
JP5226950B2 (en) Improved sandwich plate with formwork
WO1998026195A1 (en) Impact absorber made of resin
KR890700473A (en) Honeycomb panel
JP3853872B2 (en) LAMINATE MANUFACTURING METHOD, LAMINATE BY THE SAME, AND SEISMIC-BASED STRUCTURE USING THE LAMINATE
KR19990071517A (en) A molded panel having an integrally formed open cell lattice
RU2394686C2 (en) System for vinyl floor covering with reinforcement by segmented woven or nonwoven fiberglass mat
CN110566620A (en) Negative-stiffness unit-cell honeycomb vibration damping structure
JP2004169715A (en) Sliding bearing
GB1561774A (en) Composite panel and method of making same
JP3114624B2 (en) Seismic isolation device
JPS579339A (en) Laminated leaf spring
JP2021088824A (en) Buckling restrained building material and method for manufacturing buckling restrained building material
JP3298782B2 (en) Buffer honeycomb core and method of manufacturing the same
JPS6350322Y2 (en)
JP3988849B2 (en) Seismic isolation device
JP4021154B2 (en) Seismic reinforcement and its manufacturing method
WO2024106427A1 (en) Structure and method for manufacturing same
JPH08184126A (en) Frp structural material
JP7498931B2 (en) Structure and manufacturing method thereof
JP2008292000A (en) Vibration isolation device
JP2005350937A (en) Reinforcing structure and reinforcing member for building or structure
CN110774409B (en) Production method of precast beam with end grooves
KR200451522Y1 (en) Elastic bearing structure for bridge
JPH0544120Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees