JP2001303518A - Pressing member - Google Patents

Pressing member

Info

Publication number
JP2001303518A
JP2001303518A JP2000124761A JP2000124761A JP2001303518A JP 2001303518 A JP2001303518 A JP 2001303518A JP 2000124761 A JP2000124761 A JP 2000124761A JP 2000124761 A JP2000124761 A JP 2000124761A JP 2001303518 A JP2001303518 A JP 2001303518A
Authority
JP
Japan
Prior art keywords
hard plate
load
elastic body
pressing member
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000124761A
Other languages
Japanese (ja)
Inventor
Shinjiro Nishikawa
信二郎 西川
Yasushi Nishimoto
安志 西本
Yoshikazu Kotani
美和 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibata Industrial Co Ltd
Original Assignee
Shibata Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibata Industrial Co Ltd filed Critical Shibata Industrial Co Ltd
Priority to JP2000124761A priority Critical patent/JP2001303518A/en
Publication of JP2001303518A publication Critical patent/JP2001303518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a support member provided between the structural bodies of a structure such as a building or a bridge has little mitigating effect of impact force due to a high spring property in the vertical direction, constrains the movement of a bridge girder for the structural body, e.g. the bridge, transmits the excessive impact force between the structural bodies, thus causes the breakage of the structural body. SOLUTION: Hard plates and elastic bodies are stacked and buried in turn in an elastic body, and the rupture value or the plastic deformation value of the hard plates is determined in advance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋脚と橋桁間等の
構造物間に設置する高耐震性能を有する押圧材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressing member having high seismic performance installed between structures such as a pier and a bridge girder.

【0002】[0002]

【従来の技術】従来、橋脚と橋桁間には鉛直方向には安
定したばね剛性と車輌の進行による桁端部の回転吸収効
果を発揮し、水平(剪断)方向には雰囲気温度の変化に
よる橋桁の伸縮に追随する移動性を兼ね備えた支承構造
が必要とされ、これを実現するものとして図12に示す
ようなゴム10の中に鋼板20を埋設した押圧材30が
ある。
2. Description of the Related Art Conventionally, a bridge girder between a pier and a bridge girder exhibits a stable spring stiffness in a vertical direction and a rotation absorbing effect of a girder end due to advancing of a vehicle, and a change in ambient temperature in a horizontal (shear) direction. In order to realize this, there is a pressing member 30 in which a steel plate 20 is embedded in a rubber 10 as shown in FIG.

【0003】この押圧材30は、鉛直荷重が作用した場
合には鋼板20間のゴム10の横歪み変位を鋼板20と
ゴム10の接着力で拘束することにより高ばね化し、水
平荷重が作用した場合には鋼板間のゴムが水平方向に変
位することで低ばね化するものである。この押圧材から
なるゴム支承は兵庫県南部地震の被災後の調査結果によ
ると、押圧材自体は被災を受けなかったケースがほとん
どであったことから、地震後に示された「兵庫県南部地
震により被災した道路橋の復旧に係る仕様」(平成7年
2月、日本道路協会)でもゴム支承による押圧材の設置
が推奨されている。
When a vertical load is applied to the pressing member 30, the lateral strain displacement of the rubber 10 between the steel plates 20 is restrained by the adhesive force between the steel plate 20 and the rubber 10, so that the pressing member 30 becomes high spring and a horizontal load is applied. In such a case, the rubber between the steel plates is displaced in the horizontal direction to lower the spring. According to the survey results after the Hyogoken-Nanbu Earthquake, most of the rubber bearings made of this pressed material did not suffer any damage. The specification related to the restoration of a damaged road bridge ”(February 1995, Japan Road Association) also recommends the installation of a pressing material using rubber bearings.

【0004】[0004]

【発明が解決しようとする課題】しかし、兵庫県南部地
震では高速道路橋や鉄道橋および一般道路橋等において
支承部や上下部連結構造の損傷や取付部材に破壊が発生
し、なかには橋桁の落下や復旧不能な損傷の至ったケー
スが発生するなど、いままでの耐震設計の設計荷重を上
回る大地震の巨大な力の猛威を見せつけた。そこで、こ
の地震を教訓として様々な検討が行われ、なかでも道路
橋構造物では地震力を軽減する緩衝材の必要性や橋桁の
落下を防止する装置に付加される緩衝材の役割を考慮し
たシステムの構造の必要性が求められた。
However, the Hyogoken-Nanbu Earthquake caused damage to bearings and upper and lower connecting structures and breakage of mounting members on highway bridges, railway bridges, and general road bridges. In some cases, irreparable damage occurred, and the magnitude of a large earthquake that exceeded the design load of the conventional seismic design was shown. Therefore, various studies were conducted using this earthquake as a lesson, and in particular, in the case of road bridge structures, the necessity of cushioning materials to reduce seismic force and the role of cushioning materials added to devices to prevent bridge girders from falling were considered. The need for a system structure was required.

【0005】そこで、今後の耐震設計ではゴム押圧材自
体の高強度化あるいは設計として採用する地震力を大と
するかが考えられるが、一方でゴム押圧材においてはゴ
ムの最低保証荷重や変形量の設定だけではゴム押圧材の
最終荷重が構造物を上回り、当該部の構造物を予測を超
えて大きく破損したり、橋桁の移動量が大きくなり過ぎ
るという問題があきらかとなってきた。
Therefore, in future seismic design, it is conceivable to increase the strength of the rubber pressing material itself or to increase the seismic force used as a design. On the other hand, in the rubber pressing material, the minimum guaranteed load and deformation amount of rubber are considered. With only the setting of, the final load of the rubber pressing member exceeds the structure, and the structure of the portion concerned is damaged more than expected, and the movement of the bridge girder becomes too large.

【0006】[0006]

【発明が解決しようとする手段】そこで本発明は、弾性
体内に硬質板を弾性体と交互となるように積層埋設し、
硬質板の破断値あるいは塑性変形値を予め定めた構造と
した。このような構造によると、弾性体の内部に破断値
点あるいは塑性変形値を定めた硬質板を積層させて押圧
材としたことにより、設計地震力以上の地震時慣性力を
浮けた場合には、鉛直方向では弾性体の歪力による硬質
板の破壊により最大受圧荷重を明確化すると共に制御
し、かつ、弾性体支承の緩衝効果により橋脚に伝わる荷
重を低減化し、かつ、本押圧材が破壊することで橋桁の
連続した動きを防止し、特定の橋脚に大きな地震時に慣
性力が集中することにより当該橋脚が破壊することを防
止する機能が発揮されることになる。
Therefore, according to the present invention, a hard plate is laminated and embedded in an elastic body so as to alternate with the elastic body.
The structure was such that the fracture value or plastic deformation value of the hard plate was determined in advance. According to such a structure, when a hard plate with a rupture value point or a plastic deformation value is laminated inside the elastic body and used as a pressing material, if the seismic inertia force greater than the design seismic force is raised, In the vertical direction, the maximum pressure-receiving load is clarified and controlled by the destruction of the hard plate due to the strain force of the elastic body, and the load transmitted to the pier is reduced by the cushioning effect of the elastic body bearing, and the pressing material is broken By doing so, the function of preventing continuous movement of the bridge girder and preventing the pier from being destroyed due to concentration of inertia force at the time of a large earthquake on a specific pier will be exhibited.

【0007】また、押圧材の破壊時には弾性体の歪エネ
ルギーに硬質板の破壊や接着剥離に伴うエネルギーが消
費されることとなることから、大きなエネルギーの吸収
効果を極めて靱性の高い性能を発揮することにもなり、
いずれの場合でも最高受圧(破壊)荷重や最大変形量が
定量化され、それらのポイントを構造物の終極強度や終
極状態における変形量以下に設定することが可能である
ことから、設計時の地震力を上回る地震力に対して橋の
上下部構造の損傷を防止するために有効である「支承ヒ
ューズ論」を設計地震力に対する安全性を確保しつつ地
震時の橋の不確実さを除去するかたちで合理的に実現す
ることができる。
[0007] Further, when the pressing member is broken, the strain energy of the elastic body consumes the energy associated with the destruction of the hard plate and the peeling of the adhesive, so that a large energy absorbing effect is exerted and extremely high toughness is exhibited. It also means
In any case, the maximum pressure (breaking) load and maximum deformation are quantified, and it is possible to set those points below the ultimate strength of the structure and the deformation in the final state. Designing a "supporting fuse theory" that is effective to prevent damage to the upper and lower structures of the bridge against seismic force exceeding the force Removes the uncertainty of the bridge during an earthquake while ensuring safety against seismic force It can be realized rationally in the form.

【0008】[0008]

【発明の実施の形態】以下に本願発明の実施の形態を図
面を用いて説明する。図1は断面説明図、図2は鉛直荷
重による硬質板の塑性変形を示す説明図、図3は橋脚と
橋桁間の支承に用いた例の説明図、図4は橋桁の落橋防
止装置に使用した例の説明図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of a cross section, FIG. 2 is an explanatory view showing plastic deformation of a hard plate due to a vertical load, FIG. 3 is an explanatory view of an example used for bearing between a pier and a bridge girder, and FIG. 4 is used for a bridge girder prevention device FIG.

【0009】一般的なゴム材質に荷重が作用した場合の
縦歪と横歪の比率(ポアソン比)は0.5とされ、ま
た、同じゴム材質でも圧縮ばねは荷重が作用した場合に
荷重を受ける受圧面積と荷重が作用しない自由面積の比
率で表される形状率により変化することが知られ、内部
に拘束材を使用した場合はその表面を受圧面積に加算さ
れるため圧縮ばねが向上することも知られている。
When a load is applied to a general rubber material, the ratio between the longitudinal strain and the transverse strain (Poisson's ratio) is set to 0.5, and even when the same rubber material is used, the compression spring applies a load when a load is applied. It is known that it changes depending on the shape ratio expressed by the ratio of the received pressure receiving area and the free area where the load does not act. When a restraining material is used inside, the surface is added to the pressure receiving area, so the compression spring improves. It is also known.

【0010】そこで、天然ゴム、合成ゴムもしくは弾性
を有する合成樹脂等の弾性材1の内部に金属、樹脂もし
くはFRP等からなる硬質板2を、その弾性材1と交互
になるように互いに接着した状態で積層して積層体によ
る押圧材3を構成する。この積層体による押圧材3の積
層状態は圧縮方向に直交する方向に配置するもので、弾
性材1と硬質板2は接着しており、しかも圧縮ばねの作
用が正確に発揮されるために弾性材1と硬質板2の積層
間隔が正確に保たれている。
Therefore, a hard plate 2 made of metal, resin, FRP or the like is adhered to an elastic material 1 such as natural rubber, synthetic rubber or synthetic resin having elasticity so as to alternate with the elastic material 1. The pressing members 3 are formed by laminating in a state. The laminated state of the pressing member 3 by this laminated body is arranged in a direction orthogonal to the compression direction. The elastic member 1 and the hard plate 2 are adhered to each other. The laminating interval between the material 1 and the hard plate 2 is accurately maintained.

【0011】圧縮方向のばねに関する因子は、硬質板2
の積層間隔、弾性材1および硬質板2のそれぞれの材質
がある。この積層体に圧縮荷重が作用した場合、荷重の
進行と共に硬質板2間の弾性材1の横歪みが進行し、内
部に埋設した硬質板2には鉛直荷重に加えて弾性材1の
歪力が作用する。そして、より一層の荷重が加わって歪
み変位が進行した場合には、埋設した硬質板2が変形限
界に達し、図2に示す如く塑性変形することになる。硬
質板2の塑性変形が開始すると、鉛直荷重の上昇は変形
量の増加と比較して急激に低く抑えられる。
The factors relating to the spring in the compression direction are:
And the respective materials of the elastic material 1 and the hard plate 2. When a compressive load is applied to the laminated body, the lateral strain of the elastic member 1 between the hard plates 2 progresses with the progress of the load, and the hard plate 2 embedded therein has a strain force of the elastic member 1 in addition to the vertical load. Works. When a further load is applied and the strain displacement proceeds, the embedded hard plate 2 reaches the deformation limit, and undergoes plastic deformation as shown in FIG. When the plastic deformation of the hard plate 2 starts, the increase in the vertical load is suppressed sharply lower than the increase in the amount of deformation.

【0012】図5は積層体の圧縮性能特性を示すグラフ
であり、荷重に着目した場合、上記通常の押圧材では荷
重に関する規格値は最低保証値しか与えないため、設計
荷重を上回る荷重が作用すると押圧材の破壊前に構造物
が損傷することがある。本願発明はこの点に注目して押
圧材3を弾性体支承の設計荷重超で破壊することによ
り、押圧材3がヒューズ的に作用し、構造物の損傷を回
避することができる。
FIG. 5 is a graph showing the compressive performance characteristics of the laminated body. When attention is paid to the load, the standard value regarding the load is given only the minimum guaranteed value with the above-mentioned ordinary pressing material. Then, the structure may be damaged before the destruction of the pressing member. By paying attention to this point, the invention of the present application breaks the pressing member 3 by exceeding the design load of the elastic bearing, so that the pressing member 3 acts like a fuse and damage to the structure can be avoided.

【0013】図6〜図11は内部の硬質板に応力集中現
象を発生させることによりさらに破壊点を明確化および
制御した例であり、図6、図7は硬質板2の一部に溝等
による破壊部4を、図8、図9は強度の弱い材質を連結
して形成した破壊部4を、また図10、図11は不連続
に孔を設けて破壊部4を構成したものでてあり、この不
連続な孔も表裏開放状態でもよいが弾性材1で封止した
状態としておくと硬質板の水密性が保てる。
FIGS. 6 to 11 show examples in which the stress concentration phenomenon is generated in the inner hard plate to further clarify and control the breaking point. FIGS. 6 and 7 show grooves and the like in a part of the hard plate 2. 8 and 9 show the fractured part 4 formed by connecting materials having low strength, and FIGS. 10 and 11 show the fractured part 4 formed by discontinuous holes. Yes, the discontinuous holes may be open front and back, but if they are sealed with the elastic material 1, the water tightness of the hard plate can be maintained.

【0014】上記いずれの場合も、弾性材1の歪力が当
該の硬質板2を破断することにより最大受圧荷重を明確
化および制御した押圧材となる。本押圧材3によると、
例えば図3に示す如く、橋脚5と橋桁6の間の押圧材3
として使用した場合には、鉛直方向荷重に対して荷重が
過大な場合には内部の硬質板2が破壊することによりエ
ネルギー吸収効果を発揮し、衝撃荷重の発生を抑止する
とにより橋の上下部運動の破壊を合理的に防止すること
になる。
In any of the above cases, the strain force of the elastic member 1 ruptures the hard plate 2 to make the pressing member clarify and control the maximum pressure receiving load. According to the main pressing member 3,
For example, as shown in FIG. 3, a pressing member 3 between a pier 5 and a bridge girder 6 is provided.
When used as a vertical load, when the load is excessive with respect to the vertical load, the internal hard plate 2 breaks to exhibit an energy absorbing effect, and suppresses the generation of an impact load, thereby lowering the height of the bridge. Will be reasonably prevented.

【0015】このように本押圧材3は、作用した外部の
エネルギーに対して弾性材1の歪エネルギーに加えて硬
質板2の破壊エネルギーが加算されることになるため大
きなエネルギーの吸収量を示すと共にきわめて高い靱性
を発揮し、しかも最大受圧荷重(反力)は最初の上限値
を超えることなく、かつ定量化が可能であることから最
大反力を構造物の終局強度あるいは耐力以下に設定する
ことにより、構造物を破壊から守るための緩衝材として
使用することが可能となり、「支承ヒューズ論」の不確
実性を除去して実践することができ、橋の上下部構造の
過大な損傷を防止するための構築に欠かせない緩衝材と
なる。
As described above, the pressing member 3 exhibits a large amount of energy absorption because the breaking energy of the hard plate 2 is added to the external energy that has been applied, in addition to the strain energy of the elastic member 1. The maximum reaction force is set to be less than the ultimate strength or proof strength of the structure because the maximum pressure receiving load (reaction force) does not exceed the initial upper limit and can be quantified. As a result, it can be used as a cushioning material to protect the structure from destruction, it can be practiced by removing the uncertainty of "supporting fuse theory", and excessive damage to the upper and lower structure of the bridge It is an indispensable cushioning material for construction to prevent it.

【0016】[0016]

【発明の効果】以上詳細に説明した本発明によると、弾
性体内に硬質板を弾性体と交互となるように積層埋設
し、鉛直方向に定められた値以上の圧縮荷重が作用した
場合に硬質板が破断するようにして破断荷重を予め定め
た構造としたことにより、破壊点を定量化および制御す
ることができ、これによって、鉛直方向には押圧材の下
部にある部材例えば橋梁において橋脚に伝わる地震等に
よる過大な荷重がかかった場合に定められた値以上の圧
縮荷重で押圧材の支持力がなくなることにより荷重を低
減化することができ、これによって質量の小型化および
分散化をはかり、大質量の荷重が構造体の基本的な部分
つまり橋梁においては橋脚の破壊を防ぐことができる効
果を有する。
According to the present invention described in detail above, a hard plate is buried in an elastic body alternately with the elastic body, and when a compressive load exceeding a predetermined value is applied in the vertical direction, the hard plate is hardened. The break point can be quantified and controlled by employing a structure in which the breaking load is set in advance so that the plate breaks, whereby the member below the pressing member in the vertical direction, for example, the bridge pier in the bridge When an excessive load due to a transmitted earthquake, etc. is applied, the load can be reduced by losing the supporting force of the pressing material with a compressive load exceeding the specified value, thereby reducing the mass and dispersing the mass. In addition, a large mass load has an effect of preventing breakage of a pier in a basic portion of a structure, that is, a bridge.

【0017】いずれの場合でも、最高負荷(破壊)荷重
を定量化し、構造物の終局強度や耐力以下に設定するこ
とが可能となることから、大地震において橋の上下部構
造の損害を大幅に軽減するために有効となる。
In any case, the maximum load (breaking) load can be quantified and set to a value lower than the ultimate strength or proof strength of the structure. It is effective to reduce.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態例を示す断面説明図FIG. 1 is an explanatory sectional view showing an embodiment;

【図2】鉛直荷重による硬質板の塑性変形を示す説明図FIG. 2 is an explanatory view showing plastic deformation of a hard plate due to a vertical load.

【図3】橋脚と橋桁間の支承に用いた例の説明図FIG. 3 is an explanatory view of an example used for bearing between a pier and a bridge girder.

【図4】橋桁の落橋防止装置に使用した例の説明図FIG. 4 is an explanatory view of an example used in a bridge girder prevention device for a bridge girder.

【図5】積層体の圧縮性能特性を示すグラフFIG. 5 is a graph showing compression performance characteristics of a laminate.

【図6】他の硬質板の構成例を示す平面図FIG. 6 is a plan view showing a configuration example of another hard plate.

【図7】同側面図FIG. 7 is a side view of the same.

【図8】他の硬質板の構成例を示す平面図FIG. 8 is a plan view showing a configuration example of another hard plate.

【図9】同側面図FIG. 9 is a side view of the same.

【図10】他の硬質板の構成例を示す平面図FIG. 10 is a plan view showing a configuration example of another hard plate.

【図11】同側面図FIG. 11 is a side view of the same.

【図12】従来例を示す説明図FIG. 12 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 弾性材 2 硬質板 3 押圧材 4 破壊部 DESCRIPTION OF SYMBOLS 1 Elastic material 2 Hard plate 3 Pressing material 4 Breaking part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小谷 美和 兵庫県明石市魚住町中尾1058番地 シバタ 工業株式会社内 Fターム(参考) 2D059 AA03 AA05 GG01 GG05 GG30 GG35 GG56 3J048 AA01 BA08 BC09 CB07 DA01 DA04 EA38 3J059 AA10 BA43 BC04 BC06 GA42 3J066 AA26 AA30 BA04 BB04 BD10 BE06 BF11 BF20 BG02 BG04 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Miwa Kotani 1058 Nakao, Uozumi-cho, Akashi-shi, Hyogo F-term in Shibata Industry Co., Ltd. (reference) 2D059 AA03 AA05 GG01 GG05 GG30 GG35 GG56 3J048 AA01 BA08 BC09 CB07 DA01 DA04 EA38 3J059 AA10 BA43 BC04 BC06 GA42 3J066 AA26 AA30 BA04 BB04 BD10 BE06 BF11 BF20 BG02 BG04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 弾性体内に硬質板を弾性体と交互となる
ように積層埋設し、硬質板の破壊値を予め定めた構造と
したことを特徴とする押圧材。
1. A pressing member characterized in that a hard plate is laminated and buried in an elastic body so as to be alternated with the elastic body, and the breaking value of the hard plate is set in advance.
【請求項2】 弾性体内に硬質板を弾性体と交互となる
ように積層埋設し、硬質板の塑性変形値を予め定めた構
造としたことを特徴とする押圧材。
2. A pressing member, wherein a hard plate is laminated and buried in an elastic body so as to be alternated with the elastic body, and a plastic deformation value of the hard plate is set in advance.
【請求項3】 弾性体内に硬質板を弾性体と交互となる
ように積層埋設し、剪断方向に所定の荷重が作用した場
合に積層部が破断するようにその破断荷重を予め定めた
構造としたことを特徴とする押圧材。
3. A structure in which a hard plate is laminated and buried in an elastic body so as to alternate with the elastic body, and a breaking load is predetermined so that the laminated portion is broken when a predetermined load is applied in a shearing direction. Pressing material characterized by doing.
【請求項4】 請求項1、請求項2もしくは請求項3に
おいて、硬質板の一部に破壊部を形成し、鉛直方向の破
断荷重を定めたことを特徴とする押圧材。
4. A pressing material according to claim 1, wherein a breaking portion is formed in a part of the hard plate and a breaking load in a vertical direction is determined.
【請求項5】 請求項1、請求項2もしくは請求項3に
おいて、硬質板を合成樹脂板としたことを特徴とする押
圧材。
5. The pressing member according to claim 1, wherein the hard plate is a synthetic resin plate.
【請求項6】 請求項1、請求項2もしくは請求項3に
おいて、弾性体をゴムとしたことを特徴とする押圧材。
6. The pressing member according to claim 1, wherein the elastic body is rubber.
JP2000124761A 2000-04-25 2000-04-25 Pressing member Pending JP2001303518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124761A JP2001303518A (en) 2000-04-25 2000-04-25 Pressing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124761A JP2001303518A (en) 2000-04-25 2000-04-25 Pressing member

Publications (1)

Publication Number Publication Date
JP2001303518A true JP2001303518A (en) 2001-10-31

Family

ID=18634847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124761A Pending JP2001303518A (en) 2000-04-25 2000-04-25 Pressing member

Country Status (1)

Country Link
JP (1) JP2001303518A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184256A (en) * 1986-02-07 1987-08-12 Bridgestone Corp Vibration isolating device
JPH06221357A (en) * 1993-01-25 1994-08-09 Bridgestone Corp Laminated rubber body lined with rubber
JP3029896U (en) * 1996-04-08 1996-10-11 オイレス工業株式会社 Laminated rubber bearing device
JPH09269034A (en) * 1996-03-29 1997-10-14 Oiles Ind Co Ltd Lead enclosing laminated rubber support
JPH09316825A (en) * 1996-05-30 1997-12-09 Railway Technical Res Inst Supporting material and its manufacture
JPH10140524A (en) * 1996-11-08 1998-05-26 Shibata Ind Co Ltd Supporting material
JP2000097270A (en) * 1998-07-21 2000-04-04 Tokai Rubber Ind Ltd Base isolation rubber lamination body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184256A (en) * 1986-02-07 1987-08-12 Bridgestone Corp Vibration isolating device
JPH06221357A (en) * 1993-01-25 1994-08-09 Bridgestone Corp Laminated rubber body lined with rubber
JPH09269034A (en) * 1996-03-29 1997-10-14 Oiles Ind Co Ltd Lead enclosing laminated rubber support
JP3029896U (en) * 1996-04-08 1996-10-11 オイレス工業株式会社 Laminated rubber bearing device
JPH09316825A (en) * 1996-05-30 1997-12-09 Railway Technical Res Inst Supporting material and its manufacture
JPH10140524A (en) * 1996-11-08 1998-05-26 Shibata Ind Co Ltd Supporting material
JP2000097270A (en) * 1998-07-21 2000-04-04 Tokai Rubber Ind Ltd Base isolation rubber lamination body

Similar Documents

Publication Publication Date Title
CN105926794B (en) The assembled mild steel damper optimized using stress isobar
CN207958966U (en) A kind of Self-resetting spring retainer buffering anti-fall girder construction of Antivibration block
US8196368B2 (en) Ductile seismic shear key
JP2008138833A (en) Damper device, method of designing damper device, vibration control structure, vibration control method
JP2002061282A (en) Columnar reinforced concrete construction member
CN107964868A (en) A kind of Self-resetting spring retainer buffers the anti-fall girder construction of Antivibration block
KR100540929B1 (en) Bridge protection device and sacrificial member, sacrificial member restraint device, bridge reinforcement method using the same
JP2001303518A (en) Pressing member
JP2002070943A (en) Seismic isolation sliding bearing device
JP2009068295A (en) Elevated structure
JPWO2003027416A1 (en) Structure reinforcement structure, reinforcement material, seismic isolation device, and reinforcement method
JP3989093B2 (en) Fall bridge prevention device
JP2005330688A (en) Aseismatic reinforcing method and structure for bridge
JP2005127031A (en) Supporting side block
JPH02104834A (en) Response control device
JPH10140524A (en) Supporting material
JP2000314107A (en) Bearing equipment for bridge
JPH0262668B2 (en)
JP2000017887A (en) Earthquake-resistant building
JP4253952B2 (en) Ground anchor head structure
JPH10132025A (en) Shock eliminating body and shock eliminating structure using the same
JP2001049619A (en) Bridge fall preventing apparatus
JP2000073314A (en) Rubber bearing device
JPS6334276B2 (en)
KR200271596Y1 (en) A Bridge-Seat for prventing super structure from falling up

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707