JP7337430B1 - Elastic buffer - Google Patents

Elastic buffer Download PDF

Info

Publication number
JP7337430B1
JP7337430B1 JP2023079073A JP2023079073A JP7337430B1 JP 7337430 B1 JP7337430 B1 JP 7337430B1 JP 2023079073 A JP2023079073 A JP 2023079073A JP 2023079073 A JP2023079073 A JP 2023079073A JP 7337430 B1 JP7337430 B1 JP 7337430B1
Authority
JP
Japan
Prior art keywords
elastic
cushioning
pressure receiving
internal
impact energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023079073A
Other languages
Japanese (ja)
Inventor
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRIDGE BEARING MANUFACTURE CO., LTD.
Original Assignee
BRIDGE BEARING MANUFACTURE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRIDGE BEARING MANUFACTURE CO., LTD. filed Critical BRIDGE BEARING MANUFACTURE CO., LTD.
Priority to JP2023079073A priority Critical patent/JP7337430B1/en
Application granted granted Critical
Publication of JP7337430B1 publication Critical patent/JP7337430B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】吸収すべき衝撃エネルギーの変更に簡単に対応でき、全体の製造や交換の必要がなく簡単に製造し交換できる弾性緩衝体を提供する。【解決手段】弾性緩衝体1は、橋体3と橋台4との間に設けられ弾性部材からなり衝撃エネルギーの吸収と相対移動の変位量を規制する弾性緩衝体1で、弾性緩衝体1は、橋体3と橋台4のいずれか一方に基端部が取り付けられて内側に傾斜され先端部がいずれか他方の受圧部となる2つの側部緩衝部材10と、2つの側部緩衝部材10の間の空間に配置されていずれか一方に基端部が着脱可能に取り付けられ先端部がいずれか他方の受圧部となる内部緩衝部材20と、2つの受圧部と1つの受圧部とを着脱可能に連結する平板部材30と、を有し、内部緩衝部材20は、弾性緩衝体1が吸収する衝撃エネルギーにより調整されて構成される。【選択図】図1An object of the present invention is to provide an elastic shock absorber that can easily respond to changes in impact energy to be absorbed and that can be easily manufactured and replaced without the need for manufacturing or replacing the entire body. [Solution] An elastic buffer 1 is provided between a bridge body 3 and an abutment 4 and is made of an elastic member and absorbs impact energy and regulates the displacement amount of relative movement. , two side buffer members 10 whose proximal ends are attached to either the bridge body 3 or the abutment 4 and which are inclined inward and whose distal ends serve as pressure receiving parts of the other; and two side buffer members 10. An internal buffer member 20 is disposed in the space between the two pressure receiving parts, the base end is removably attached to one of them, and the distal end becomes a pressure receiving part of the other, and two pressure receiving parts and one pressure receiving part are attached and detached. The internal buffer member 20 is configured to be adjusted by the impact energy absorbed by the elastic buffer 1. [Selection diagram] Figure 1

Description

本発明は、弾性緩衝体に関する。 The present invention relates to elastic cushioning bodies.

地震などによって構造物である建築物や橋梁などが大きく変位する際の衝撃エネルギーの吸収や相対変位量を規制するため弾性緩衝体が用いられる。例えば、建築物では、上部構造物である建物と下部構造物である基礎との間にゴムなどの弾性を利用する弾性緩衝体が設置され、橋梁では、上部構造物と下部構造物との間にゴムなどの弾性を利用する弾性緩衝体を設置しており、弾性緩衝体により地震時の衝撃エネルギーの吸収と変位量の規制を行って構造物同士の衝突による損傷や落橋などを防止する。例えば、特許文献1には、変位ストッパーとして、弾性材料の2つの立ち上がり片を頭部に向かって傾斜させて頭部同士で連続させ、立ち上がり片の脚部の内側に三角形状の凸部を形成したものが開示されており、凸部を形成することで、最大荷重と初期剛性を高めるようにしている。 Elastic shock absorbers are used to absorb impact energy and regulate the amount of relative displacement when structures such as buildings and bridges are greatly displaced by an earthquake or the like. For example, in buildings, an elastic shock absorber using elasticity such as rubber is installed between the building, which is the upper structure, and the foundation, which is the lower structure. An elastic shock absorber that utilizes the elasticity of rubber and other materials is installed in the bridge to absorb impact energy during an earthquake and regulate the amount of displacement to prevent damage and collapse of bridges due to collisions between structures. For example, in Patent Document 1, as a displacement stopper, two rising pieces of an elastic material are inclined toward the head and connected to each other to form a triangular convex portion inside the legs of the rising piece. In this document, the maximum load and the initial rigidity are increased by forming convex portions.

また、例えば、特許文献2には、衝撃吸収構造として衝撃負荷方向に樹脂や金属で構成した六角筒状や円形筒状のものを複数組み合わせた壁構造を備える衝撃吸収材が開示されており、衝撃力により壁構造が圧縮変形し、座屈変形や永久変形することで衝撃エネルギーを吸収するようにしている。 Further, for example, Patent Document 2 discloses a shock absorbing material having a wall structure in which a plurality of hexagonal cylinders or circular cylinders made of resin or metal are combined in the shock load direction as a shock absorbing structure, The wall structure compressively deforms due to the impact force, and the impact energy is absorbed by buckling deformation and permanent deformation.

特開2019-116724号公報JP 2019-116724 A 特開平11-71714号公報JP-A-11-71714

これらの変位ストッパーや衝撃吸収材では、構造物の仕様に応じて吸収すべき衝撃エネルギーを設定し、その設定に応じて変位ストッパーや衝撃吸収材が設計・製造される。変位ストッパーでは、構造物の仕様の変更に応じて脚部内側の三角形状の凸部の変更が必要となって新たな成型金型などを用意し、変位ストッパー全体を製造しなければならず、既設の変位ストッパーを交換する場合には、変位ストッパー全体を交換しなければないという問題がある。 For these displacement stoppers and shock absorbers, the impact energy to be absorbed is set according to the specifications of the structure, and the displacement stoppers and shock absorbers are designed and manufactured according to the settings. In the case of displacement stoppers, it was necessary to change the triangular protrusions on the inside of the legs in response to changes in the specifications of the structure. When replacing an existing displacement stopper, there is the problem that the entire displacement stopper must be replaced.

また、金属や樹脂による筒状の壁構造を備える衝撃吸収材でも、吸収すべき衝撃エネルギーに応じて、同様に、壁構造全体を製造しなければならず、特に大きな地震後には、衝撃エネルギーを吸収し座屈変形や永久変形した衝撃吸収材全体を必ず交換しなければならないという問題がある。 In addition, even with shock absorbing materials that have a tubular wall structure made of metal or resin, the entire wall structure must be similarly manufactured according to the impact energy to be absorbed. There is a problem that the entire shock absorbing material that absorbs and undergoes buckling deformation or permanent deformation must be replaced.

本発明は、かかる従来技術の問題点に鑑みてなされたもので、吸収すべき衝撃エネルギーの変更に簡単に対応でき、全体の製造や交換の必要がなく簡単に製造し交換できる弾性緩衝体を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art, and provides an elastic cushioning body that can easily respond to changes in the impact energy to be absorbed and can be easily manufactured and replaced without the need for manufacturing or replacing the entirety. intended to provide

上記課題を解決するため本発明の弾性緩衝体は、
上部構造物と下部構造物との間に設けられ弾性部材からなり衝撃エネルギーの吸収と相対移動の変位量を規制する弾性緩衝体であって、
前記弾性緩衝体は、前記上部構造物と前記下部構造物のいずれか一方に基端部が取り付けられて内側に傾斜され先端部がいずれか他方の受圧部となる2つの側部緩衝部材と、2つの前記側部緩衝部材の間の空間に配置されて前記いずれか一方に基端部が着脱可能に取り付けられ先端部が前記いずれか他方の受圧部となる内部緩衝部材と、2つの前記側部緩衝部材の受圧部と前記内部緩衝部材の受圧部とを着脱可能に連結する平板部材と、を有し、
前記内部緩衝部材は、前記弾性緩衝体が吸収するべき衝撃エネルギーに応じて、変位(δ)と荷重(P)との関係が調整されて前記空間に配置される、
ことを特徴とする。
In order to solve the above problems, the elastic cushioning body of the present invention includes:
An elastic cushioning body that is provided between an upper structure and a lower structure and made of an elastic member and that absorbs impact energy and regulates the displacement amount of relative movement,
The elastic cushioning body includes two side cushioning members each having a base end attached to one of the upper structure and the lower structure, inclined inwardly, and a tip end serving as a pressure receiving portion of the other; an internal cushioning member arranged in a space between the two side cushioning members, having a base end detachably attached to one of the side cushioning members and having a tip end serving as a pressure receiving portion of the other of the two side cushioning members; a flat plate member detachably connecting the pressure-receiving portion of the internal cushioning member and the pressure-receiving portion of the internal cushioning member;
The internal cushioning member is arranged in the space with the relationship between the displacement (δ) and the load (P) being adjusted according to the impact energy to be absorbed by the elastic cushioning body.
It is characterized by

前記内部緩衝部材は、受圧方向の中間部に屈曲部を備えて形成されている、ことが好ましい。 It is preferable that the internal cushioning member is formed with a bent portion at an intermediate portion in the pressure receiving direction.

前記内部緩衝部材は、前記空間に複数並べて配置されている、ことが好ましい。 It is preferable that a plurality of the internal cushioning members are arranged side by side in the space.

前記上部構造物と前記下部構造物とは、前記上部構造物と橋台または橋脚とからなる橋梁であり、前記上部構造物と前記橋台または前記橋脚とのいずれかに受圧構造部材を取り付けて受圧可能に構成されている、ことが好ましい。 The superstructure and the substructure are bridges composed of the superstructure and abutments or piers, and pressure can be received by attaching a pressure-receiving structural member to either the superstructure, the abutments, or the piers. is preferably configured to

本発明の弾性緩衝体によれば、吸収すべき衝撃エネルギーの変更に簡単に対応でき、全体の製造や交換の必要もなく簡単に製造し交換することができる。 According to the elastic damping body of the present invention, it is possible to easily cope with changes in the impact energy to be absorbed, and it is possible to manufacture and replace the entire body without manufacturing or replacing it.

本発明の弾性緩衝体を橋梁に適用した一実施の形態にかかる緩衝前と緩衝状態の正面図である。FIG. 2 is a front view of an embodiment in which the elastic damping body of the present invention is applied to a bridge before and in a damping state; 本発明の弾性緩衝体にかかり、(a)は正面図、(b)は側面図である。It applies to the elastic buffer of this invention, (a) is a front view, (b) is a side view. 本発明の他の実施の形態の弾性緩衝体にかかり、(a)は正面図、(b)は側面図である。FIG. 3(a) is a front view and FIG. 3(b) is a side view of an elastic cushioning body according to another embodiment of the present invention; 本発明のさらに他の実施の形態の弾性緩衝体にかかり、(a)は正面図、(b)は側面図である。FIG. 10(a) is a front view and (b) is a side view of an elastic cushioning body according to still another embodiment of the present invention. 本発明の弾性緩衝体を橋梁に適用した他の一実施の形態にかかる緩衝前と緩衝状態の正面図である。FIG. 10 is a front view of another embodiment in which the elastic cushioning body of the present invention is applied to a bridge before and in a cushioning state; 本発明の弾性緩衝体の変位と荷重との関係の説明図である。FIG. 4 is an explanatory diagram of the relationship between the displacement and load of the elastic cushioning body of the present invention; 従来のゴム板を適用した橋梁の緩衝前と緩衝状態の正面図である。It is a front view of a bridge to which a conventional rubber plate is applied before and in a cushioning state. 従来の緩衝体を適用した橋梁の緩衝前と緩衝状態の正面図である。It is a front view of a bridge to which a conventional buffer is applied before and in a buffered state.

以下、本発明の弾性緩衝体の実施の形態について図面を参照して説明する。
弾性緩衝体1の一実施の形態は、例えば、図1および図2に示すように、橋梁2に適用されて上部構造物が橋体3とされ、下部構造物が橋台4とされる。
弾性緩衝体1は、橋体(上部構造物)3と橋台(下部構造物)4との間に設けられ弾性部材からなり衝撃エネルギーの吸収と相対移動の変位量を規制するためのものである。弾性緩衝体1は、橋体3と橋台4のいずれか一方に基端部11が取り付けられて内側に傾斜され先端部12がいずれか他方の受圧部13となる2つの側部緩衝部材10と、2つの側部緩衝部材10の間の空間14に配置されていずれか一方に基端部21が着脱可能に取りけられ先端部22がいずれか他方の受圧部23となる内部緩衝部材20と、2つの側部緩衝部材10の受圧部13と内部緩衝部材20の受圧部23とを着脱可能に連結する平板部材30と、を有し、内部緩衝部材20は、弾性緩衝体1が吸収する衝撃エネルギーにより調整されて空間14に配置されて構成される。
Hereinafter, embodiments of the elastic cushioning body of the present invention will be described with reference to the drawings.
One embodiment of the elastic damping body 1 is applied to a bridge 2, for example, as shown in FIGS.
The elastic buffer 1 is provided between a bridge body (upper structure) 3 and an abutment (lower structure) 4 and is made of an elastic member for absorbing impact energy and regulating the displacement amount of relative movement. . The elastic cushioning body 1 includes two side cushioning members 10 each having a base end portion 11 attached to either one of the bridge body 3 and the abutment 4 and inclined inward, and having a tip end portion 12 serving as a pressure receiving portion 13 of the other. , an internal cushioning member 20 which is disposed in the space 14 between the two side cushioning members 10, has a base end 21 detachably attached to one of them, and has a tip 22 serving as a pressure receiving portion 23 of the other. and a flat plate member 30 detachably connecting the pressure receiving portion 13 of the two side cushioning members 10 and the pressure receiving portion 23 of the internal cushioning member 20 , the internal cushioning member 20 being absorbed by the elastic cushioning body 1 . It is arranged and configured in the space 14 adjusted by the impact energy.

本実施の形態では、弾性緩衝体1が設けられる橋梁2は、上部構造物の橋体3と下部構造物の橋台4との間にゴム支承100が設置された免震構造とされており、ゴム支承100によって地震動に対し、地震エネルギーの吸収と水平方向の変位の吸収ができるように構成されている。
ゴム支承100は、例えば、積層弾性体101の上面に鋼板の上鋼製板102が設けられ、下面に鋼板の下鋼製板103が設けられるとともに、積層弾性体101に鉛プラグが装着され、積層弾性体101の外側がゴム被覆で覆われて構成されている。上鋼製板102および下鋼製板103が上部構造物の橋体3と下部構造物の橋台4との間にボルトを介して固定され、免震装置として用いられる。
In this embodiment, the bridge 2 on which the elastic damping body 1 is provided has a seismic isolation structure in which a rubber bearing 100 is installed between the bridge body 3 of the upper structure and the abutment 4 of the lower structure. The rubber bearing 100 is configured to absorb seismic energy and horizontal displacement against seismic motion.
In the rubber bearing 100, for example, an upper steel plate 102 is provided on the upper surface of a laminated elastic body 101, a lower steel plate 103 is provided on the lower surface, and a lead plug is attached to the laminated elastic body 101. The outer side of the laminated elastic body 101 is covered with a rubber coating. An upper steel plate 102 and a lower steel plate 103 are fixed via bolts between the bridge body 3 of the upper structure and the abutment 4 of the lower structure, and used as a seismic isolation device.

積層弾性体101は、例えば、形状が四角柱状に形成されるが、これに限定されるものでなく、円柱状など他の形状であってもよい。また、積層弾性体101は、弾性板および剛性板を積層して構成されている。積層される弾性板および剛性板の枚数は、特に限定するものではなく、必要な免震性能や設置スペースの高さなどの条件に合わせて適宜決定される。なお。ゴム支承100は、上記構成に限らず、一般に使用されているものであっても良い。また、橋梁2では、ゴム支承100に変えて他の支承を用いることもできる。 The laminated elastic body 101 is formed, for example, in the shape of a quadrangular prism, but is not limited to this, and may be in another shape such as a columnar shape. Moreover, the laminated elastic body 101 is configured by laminating an elastic plate and a rigid plate. The number of laminated elastic plates and rigid plates is not particularly limited, and is appropriately determined according to conditions such as the required seismic isolation performance and the height of the installation space. In addition. The rubber bearing 100 is not limited to the configuration described above, and may be one commonly used. Also, in the bridge 2, other bearings can be used in place of the rubber bearings 100. FIG.

免震構造とするゴム支承100を備えた橋梁2の橋体3と橋台4の擁壁4aとの間には、弾性緩衝体1が設けられ、地震時の衝撃エネルギーの吸収と変位量を規制し、橋体3と橋台4の擁壁4aとの衝突による橋体3および橋台4の損傷などを防止する。
弾性緩衝体1は、図1および図2(a),(b)に示すように、ゴムなどの弾性部材の2つの側部緩衝部材10を備える。側部緩衝部材10は、基端部11から先端部12に向かって内側に傾斜され、基端部11には、両側に突き出して取付部15が形成され、下部構造物の橋台4の擁壁4aの側面に取り付けられる。側部緩衝部材10は、先端部12が取付部15と平行な平坦面に形成されて受圧部13とされ、両側の受圧部13が1枚の鋼板などの金属の平板部材30に取り付けられ、垂直状態の平板部材30を介して上部構造物の橋体3の側面に当接、あるいは間隔を開けて対向するよう配置される。これにより、2つの側部緩衝部材10は、連結されて内側に横断面形状が台形状の空間14が形成される。平板部材30には、表面に座ぐり部(図示省略)が形成され、受圧部13に埋設された雌ねじ部(図示省略)にボルト(図示省略)で取り付けられ、ボルト頭部は、表面から引っ込んでおり、橋体3とボルト頭部が接触しないようにしてある。
なお、弾性緩衝体1のゴムなどの弾性材料は、何ら限定するものでなく、通常緩衝材として使用される天然ゴムやニトリルブタジエンゴムなどを広く用いることができる。
Between the bridge body 3 of the bridge 2 equipped with the rubber bearings 100 for seismic isolation and the retaining wall 4a of the abutment 4, an elastic buffer 1 is provided to absorb impact energy and regulate the amount of displacement during an earthquake. This prevents the bridge body 3 and the abutment 4 from being damaged due to collision between the bridge body 3 and the retaining wall 4a of the abutment 4.
As shown in FIGS. 1 and 2(a) and (b), the elastic cushioning body 1 includes two side cushioning members 10 made of elastic material such as rubber. The side cushioning member 10 is inclined inwardly from the base end 11 toward the tip end 12, and the base end 11 is formed with mounting portions 15 protruding to both sides, and is attached to the retaining wall of the abutment 4 of the lower structure. It is attached to the side of 4a. The side cushioning member 10 has a front end portion 12 formed on a flat surface parallel to the mounting portion 15 to form a pressure receiving portion 13, and the pressure receiving portions 13 on both sides are attached to a metal plate member 30 such as a steel plate, It is arranged so as to abut on the side surface of the bridge body 3 of the upper structure via the vertical flat plate member 30, or to face it with a gap. As a result, the two side cushioning members 10 are connected to form a space 14 having a trapezoidal cross section inside. A counterbore portion (not shown) is formed on the surface of the flat plate member 30, and is attached to a female screw portion (not shown) embedded in the pressure receiving portion 13 with a bolt (not shown). , so that the bridge body 3 and the bolt head do not come into contact with each other.
The elastic material such as rubber of the elastic cushioning body 1 is not limited at all, and natural rubber, nitrile-butadiene rubber, etc., which are usually used as cushioning materials, can be widely used.

弾性緩衝体1は、2つの側部緩衝部材10によって形成される台形状の空間14内に、
ゴムなどの弾性部材による内部緩衝部材20が配置され、基端部21に形成した取付部24にボルトを介して下部構造物の橋台4の擁壁4aの側面に取り付けられる。内部緩衝部材20の先端部22は受圧部23とされ、2つの側部緩衝部材10の受圧部13を連結する平板部材30に、平板部材30の表面に形成される座ぐり部(図示省略)と受圧部23に埋設された雌ねじ部(図示省略)を介してボルト(図示省略)で連結され、平板部材30を介して両側の受圧部13と中央部の受圧部23とが連結された平面状となっている。
The elastic cushioning body 1 is placed in the trapezoidal space 14 formed by the two side cushioning members 10,
An internal cushioning member 20 made of an elastic member such as rubber is arranged, and is attached to the side surface of the retaining wall 4a of the abutment 4 of the lower structure via bolts to the attachment portion 24 formed in the base end portion 21. As shown in FIG. A front end portion 22 of the internal cushioning member 20 serves as a pressure receiving portion 23, and a countersunk portion (not shown) formed on the surface of the flat plate member 30 connecting the pressure receiving portions 13 of the two side cushioning members 10. and the pressure-receiving portion 23 are connected by bolts (not shown) via female threads (not shown) embedded in the pressure-receiving portion 23, and the pressure-receiving portions 13 on both sides and the central pressure-receiving portion 23 are connected via the flat plate member 30 shape.

このように構成した弾性緩衝体1は、例えば、図1に示す橋梁2などの緩衝用として設置され、橋梁2の上部構造物の橋体3と下部構造物の橋台4との間に設けられる。
弾性緩衝体1は、橋体3の側面と対向するよう橋台4の擁壁4aの側面に取り付けられる。また、図5に示すように、上部構造物の橋体3に下方に突き出して受圧構造部材40を取り付ける。受圧構造部材40の側面41と橋台4の側面との間に弾性緩衝体1を対向するように設置して取り付けても良い。
なお、橋梁2を構成する下部構造物4は、橋台に限らず、橋脚であっても良い。
The elastic damping body 1 configured in this way is installed, for example, for damping purposes such as the bridge 2 shown in FIG. .
The elastic buffer 1 is attached to the side surface of the retaining wall 4a of the abutment 4 so as to face the side surface of the bridge body 3. As shown in FIG. Further, as shown in FIG. 5, a pressure-receiving structural member 40 is attached to the bridge body 3 of the upper structure so as to protrude downward. Between the side surface 41 of the pressure-receiving structural member 40 and the side surface of the abutment 4, the elastic cushioning body 1 may be installed so as to face each other.
The substructure 4 that constitutes the bridge 2 is not limited to an abutment, and may be a pier.

弾性緩衝体1を備える橋梁2で必要とされる特性について図6に示す変位δと荷重Pの関係を参照して検討する。
緩衝体は、地震発生時に大きな衝撃エネルギーを吸収する必要があるとともに、緩衝体からの反力が過大にならないようにする必要がある。変位開始時の大きな衝撃エネルギーを吸収するためには、緩衝材の初期の剛性を高める必要があり、図7に示すように、ゴム板だけの緩衝材50のように、変位δに対して大きな荷重Pが発生する傾きの大きな特性aを持つようにすることが考えられる。しかし、剛性の高いだけの特性aの緩衝材50とすると,変位量が小さく、緩衝材50からの反力が大きくなってしまう。
Characteristics required for the bridge 2 having the elastic buffer 1 will be examined with reference to the relationship between the displacement δ and the load P shown in FIG.
The buffer must absorb a large amount of impact energy when an earthquake occurs, and must prevent the reaction force from the buffer from becoming excessive. In order to absorb the large impact energy at the start of displacement, it is necessary to increase the initial stiffness of the cushioning material. As shown in FIG. It is conceivable to have a characteristic a with a large slope at which the load P is generated. However, if the cushioning material 50 has the characteristic a that is only high in rigidity, the amount of displacement will be small and the reaction force from the cushioning material 50 will be large.

一方、緩衝材60は、図8に示すように、岸壁に設置される防舷材と同様の構成であり、本願の弾性緩衝体1とは、内部緩衝部材20を有しない一体とされた両側2つの側部緩衝部材10だけの場合に相当する。緩衝材60は、その特性bを、図6中に示すように、変位δの増加にともない比例して荷重Pが増加したのち略一定になり、その後大きな変位δに対し荷重Pが再び増大する。緩衝材60は、ゴム板だけの緩衝材50に比較すると、船体が接触する変位開始直後は、船体に加わる荷重(反力)Pを小さくし、緩衝材60の初期の剛性が小さく傾きの小さい特性とし、船体が押し付けられる状態では変位δに対して荷重Pが一定になる荷重Pを確保して大きな衝撃エネルギーを吸収する。 On the other hand, as shown in FIG. 8, the cushioning material 60 has the same configuration as the fender installed on the wharf, and the elastic cushioning body 1 of the present application does not have the internal cushioning member 20. This corresponds to the case of only two side cushioning members 10 . As shown in FIG. 6, the cushioning material 60 has a characteristic b that becomes substantially constant after the load P increases in proportion to the increase in the displacement δ, and then the load P increases again for a large displacement δ. . The cushioning material 60 reduces the load (reaction force) P applied to the hull immediately after the start of displacement when the hull comes into contact with the cushioning material 50 made of only the rubber plate, and the initial stiffness of the cushioning material 60 is small and the inclination is small. As a characteristic, in a state where the hull is pushed, a constant load P is ensured with respect to the displacement δ, and large impact energy is absorbed.

これら緩衝材50,60に対し、弾性緩衝体1では、2つの側部緩衝部材10の間の空間14に内部緩衝部材20を配置し、基端部21の取付部24を側部緩衝部材10と同様に、橋台4の擁壁4aに取り付け、先端部22の受圧部23を平板部材30に取り付けておく。これにより、弾性緩衝体1は、その特性cを、図6中に示すように、平板部材30を介して地震時の大きな荷重P(衝撃エネルギー)が加わると、2つの側部緩衝部材10と内部緩衝部材20に同時に衝撃力が伝わり、内部緩衝部材20を設置した分だけ初期の剛性が高く(変位δに対する荷重Pの傾きが大きく)、地震時の大きな荷重Pによる衝撃エネルギーを吸収できるとともに、緩衝材60に比べて一定となる荷重Pを大きくして変位δを規制でき、橋体3と橋台4の擁壁4aとの衝突による損傷を防止することができる。 In contrast to these cushioning members 50 and 60, in the elastic cushioning body 1, the internal cushioning member 20 is arranged in the space 14 between the two side cushioning members 10, and the attachment portion 24 of the proximal end portion 21 is attached to the side cushioning member 10. , and the pressure receiving portion 23 of the tip portion 22 is attached to the flat plate member 30 . As a result, as shown in FIG. 6, the elastic cushioning body 1 has a characteristic c of two side cushioning members 10 when a large load P (impact energy) during an earthquake is applied via the flat plate member 30. The impact force is transmitted to the internal cushioning member 20 at the same time, and the initial rigidity is high (the inclination of the load P with respect to the displacement δ is large) due to the installation of the internal cushioning member 20, and the impact energy due to the large load P during an earthquake can be absorbed. , the displacement .delta. can be regulated by increasing the constant load P compared to the buffer material 60, and damage due to collision between the bridge body 3 and the retaining wall 4a of the abutment 4 can be prevented.

弾性緩衝体1では、内部緩衝部材20の変位δと荷重Pとの関係を弾性材料の選定や形状、内部緩衝部材20の厚さを変えて調整することで、弾性緩衝体1の変位δに対して略一定となる荷重Pの大きさを調整して特性dのようにすることができ、変形後の反力などを調整することができる。
さらに、弾性緩衝体1を設置する各々の橋梁に合わせて吸収すべき衝撃エネルギーや規制すべき変位量を変える場合には、2つの側部緩衝部材10を同一仕様としたまま、内部緩衝部材20の厚さを調整したり、使用する弾性材料の特性を変えることで、簡単に対応することができる。
また、弾性緩衝体1を交換する場合には、平板部材30を取り外した後、空間14内の内部緩衝部材20だけを取り外して簡単に交換することができる。
In the elastic cushioning body 1, by adjusting the relationship between the displacement δ of the internal cushioning member 20 and the load P by changing the selection and shape of the elastic material and the thickness of the internal cushioning member 20, the displacement δ of the elastic cushioning body 1 can be adjusted. On the other hand, it is possible to adjust the magnitude of the load P, which is substantially constant, so as to obtain characteristics d, and to adjust the reaction force after deformation.
Furthermore, when changing the impact energy to be absorbed or the amount of displacement to be regulated according to each bridge on which the elastic buffer 1 is installed, the two side shock-absorbing members 10 have the same specifications, and the internal shock-absorbing member 20 It can be easily dealt with by adjusting the thickness of or changing the properties of the elastic material used.
When replacing the elastic cushioning body 1, after removing the flat plate member 30, only the internal cushioning member 20 in the space 14 can be removed and replaced easily.

また、弾性緩衝体1Aは、図3に示すように、内部緩衝部材20Aの形状に変更を加えており、中間部に屈曲部25が形成してある。
このような屈曲部25を形成することで、弾性緩衝体1Aの荷重が大きくなると、直線状のものに比べて屈曲部25で座屈しやすくなり、これによって変形後増大した反力を抑えるように調整することができる。
In addition, as shown in FIG. 3, the elastic cushioning body 1A has a modified shape of the internal cushioning member 20A, and a bent portion 25 is formed in the intermediate portion.
By forming such a bent portion 25, when the load of the elastic cushioning body 1A increases, it becomes easier to buckle at the bent portion 25 compared to a straight one, thereby suppressing the reaction force increased after deformation. can be adjusted.

さらに、弾性緩衝体1Bは、図4に示すように、内部緩衝部材20Bを2つに分離したものを併設して構成したものであり、弓状に湾曲させたものを、隙間を空けて向かい合わせるように構成してある。内部緩衝部材20Bは、分離した両方の基端部21Bが例えば、1つの取付部24Bを介してボルトによって、例えば下部構造物の橋台4の擁壁4aの側面(図1参照)に取り付けられる。
このような分離した内部緩衝部材20Bを備えた弾性緩衝部材1Bによっても弾性緩衝体1Bの荷重Pが大きくなると、直線状のものに比べて湾曲させておくことで座屈のしやすさを調整でき、これによって変形後増大した反力を抑えるようにすることができ、初期の剛性を大きくしたり、反対に小さくするなどの調整を簡単にすることもできる。
Furthermore, as shown in FIG. 4, the elastic cushioning body 1B is constructed by separating two internal cushioning members 20B side by side. configured to fit. The internal cushioning member 20B is attached to the side surface of the retaining wall 4a of the abutment 4 of the substructure (see FIG. 1), for example, by means of bolts via one attachment portion 24B at both separated base ends 21B.
When the load P of the elastic cushioning member 1B becomes large even with such an elastic cushioning member 1B having the separated internal cushioning member 20B, the easiness of buckling is adjusted by bending compared to a straight one. This makes it possible to suppress the reaction force that increases after deformation, and makes it possible to easily adjust the initial stiffness, such as increasing or decreasing it.

なお、弾性緩衝体1,1A,1Bでは、内部緩衝部材20,20A,20Bだけを調整するようにしたが、これに限らず、2つの側部緩衝部材10の変位δと荷重Pとの関係を弾性材料の選定や形状、厚さなどを変えて調整することもでき、弾性緩衝体1,1A,1Bの全体の特性や変形後の反力を調整することができる。
また、側部緩衝部材10を2つに分離し、同一のものを対称に配置して構成することで、1つの側部緩衝部材10を製造し、反転して設置することで、弾性緩衝体1とすることができ、成形金型を小さく、単純にすることができ、効率的に製造することができる。
さらに、弾性緩衝体1は、橋梁2に適用する場合には、橋軸方向に設置する場合に加えて橋軸直角方向にも同一構成のものを設置することで、水平面内での衝撃エネルギーの吸収と変位量を規制することができ、橋体と橋台の衝突などの損傷や落橋などを防止することができる。
また、弾性緩衝体1は、橋梁に限らず、建築物に適用することもでき、建物と基礎との間や上下に分割された建物の間などに適用することもでき、水平面内での衝撃エネルギーの吸収と変位量を規制することができる。
In the elastic cushioning bodies 1, 1A, 1B, only the internal cushioning members 20, 20A, 20B are adjusted, but the relationship between the displacement δ of the two side cushioning members 10 and the load P is not limited to this. can be adjusted by changing the selection of the elastic material, the shape, the thickness, etc., and the overall characteristics of the elastic cushioning bodies 1, 1A, 1B and the reaction force after deformation can be adjusted.
In addition, by separating the side cushioning member 10 into two and symmetrically arranging the same ones, one side cushioning member 10 is manufactured, and by inverting and installing, an elastic cushioning body can be obtained. 1, the mold can be small and simple, and can be manufactured efficiently.
Furthermore, when the elastic damping body 1 is applied to the bridge 2, in addition to the case where it is installed in the direction of the bridge axis, by installing the one with the same configuration in the direction perpendicular to the axis, it is possible to reduce the impact energy in the horizontal plane. Absorption and displacement can be regulated, and damage such as collision between the bridge body and abutment, and collapse of the bridge can be prevented.
In addition, the elastic damping body 1 can be applied not only to bridges but also to buildings, such as between a building and a foundation or between buildings divided into upper and lower parts. Energy absorption and displacement can be regulated.

以上、実施の形態とともに、具体的に説明したように、本発明の弾性緩衝体1は、橋体(上部構造物)3と橋台(下部構造物)4との間に設けられ弾性部材からなり衝撃エネルギーの吸収と相対移動の変位量を規制する弾性緩衝体1であって、弾性緩衝体1は、橋体3と橋台4のいずれか一方に基端部11が取り付けられて内側に傾斜され先端部12がいずれか他方の受圧部13となる2つの側部緩衝部材10と、2つの側部緩衝部材10の間の空間14に配置されていずれか一方に基端部21が着脱可能に取り付けられ先端部22がいずれか他方の受圧部23となる内部緩衝部材20と、2つの側部緩衝部材10の受圧部13と内部緩衝部材20の受圧部23とを着脱可能に連結する平板部材30と、を有し、内部緩衝部材20は、弾性緩衝体1が吸収する衝撃エネルギーにより調整されて空間14に配置されて構成される。
かかる構成によれば、上部構造物3と下部構造物4とのいずれか一方に基端部11、他方に先端部12を受圧部13として内側に傾斜させた2つの側部緩衝部材10を取り付け、2つの側部緩衝部材10の間の空間14内に内部緩衝部材20の基端部2lを上部構造物3と下部構造物4とのいずれか一方に着脱可能に取り付け、先端部22を受圧部23として、2つの受圧部13と受圧部23の3つを平板部材30で連結してあり、地震時に、内部緩衝部材20により平板部材30を介して伝達される衝撃エネルギーを初期の剛性を高めて吸収することができるとともに、変位中の荷重を大きくせずに反力を抑えることができ、上部構造物3と下部構造物4の衝突による損傷を防止することができる。
また、内部緩衝部材20を別体として空間14内に着脱できるようにしてあるので、弾性緩衝体1の交換を内部緩衝部材20だけの交換で簡単に行うことができる。また、内部緩衝部材20の厚さや使用する弾性材料の変更で、初期の剛性や吸収エネルギーおよび反力の調整が簡単にできる。弾性緩衝体1は、側部緩衝部材10,内部緩衝部材20および平板部材30を分解して運搬することができ、取り扱いが容易であり、組み立てや設置も簡単に行うことができる。
As specifically described above together with the embodiments, the elastic damping body 1 of the present invention is provided between a bridge body (upper structure) 3 and an abutment (lower structure) 4 and comprises an elastic member. An elastic cushioning body 1 that absorbs impact energy and regulates the amount of displacement of relative movement. Two side shock-absorbing members 10 whose distal end 12 serves as the pressure receiving portion 13 of the other, and the space 14 between the two side shock-absorbing members 10, and the base end 21 can be detachably attached to one of the side shock-absorbing members 10. A flat plate member that detachably connects the pressure receiving portion 13 of the two side cushioning members 10 and the pressure receiving portion 23 of the internal cushioning member 20 with the internal cushioning member 20 attached to which the tip portion 22 becomes the pressure receiving portion 23 of the other. 30 , and the internal cushioning member 20 is arranged in the space 14 adjusted by the impact energy absorbed by the elastic cushioning body 1 .
According to such a configuration, two side cushioning members 10 are attached to one of the upper structure 3 and the lower structure 4, and the base end portion 11 is attached to either one of the upper structure 3 and the lower structure 4, and the tip portion 12 is inclined inward as a pressure receiving portion 13 to the other. , the base end portion 2l of the internal cushioning member 20 is detachably attached to either the upper structure 3 or the lower structure 4 in the space 14 between the two side cushioning members 10, and the tip portion 22 is pressure-receiving. As the portion 23, the two pressure receiving portions 13 and 23 are connected by a flat plate member 30, and the shock energy transmitted through the flat plate member 30 by the internal cushioning member 20 at the time of an earthquake is transferred to the initial rigidity. The load can be increased and absorbed, the reaction force can be suppressed without increasing the load during displacement, and damage due to collision between the upper structure 3 and the lower structure 4 can be prevented.
In addition, since the internal cushioning member 20 is separate and removable in the space 14, the elastic cushioning member 1 can be easily replaced by replacing the internal cushioning member 20 alone. Also, by changing the thickness of the internal cushioning member 20 and the elastic material used, it is possible to easily adjust the initial rigidity, absorbed energy, and reaction force. The elastic cushioning body 1 can be transported by disassembling the side cushioning member 10, the internal cushioning member 20, and the flat plate member 30, and is easy to handle, and can be easily assembled and installed.

内部緩衝部材20Aは、受圧方向の中間部に屈曲部25を備えて形成されている、ことが好ましい。かかる構成によれば、内部緩衝部材20Aの屈曲部25により弾性緩衝体1Aの初期の剛性や吸収エネルギーおよび反力の調整が簡単にできる。 It is preferable that the internal cushioning member 20A is formed with a bent portion 25 at an intermediate portion in the pressure receiving direction. According to this configuration, the bending portion 25 of the internal cushioning member 20A can easily adjust the initial rigidity, absorbed energy, and reaction force of the elastic cushioning member 1A.

内部緩衝部材20Bは、空間14に複数並べて配置されている、ことが好ましい。かかる構成によれば、内部緩衝部材20Bを基端部21Bの取付部24Bを介して空間14に取り付けることで、弾性緩衝体1Bの初期の剛性や吸収エネルギーおよび反力の調整を簡単に行うことができる。 A plurality of internal cushioning members 20B are preferably arranged side by side in the space 14 . According to this configuration, by attaching the internal cushioning member 20B to the space 14 via the attachment portion 24B of the base end portion 21B, it is possible to easily adjust the initial rigidity, absorbed energy, and reaction force of the elastic cushioning body 1B. can be done.

上部構造物3と下部構造物4とは、上部構造物3と橋台4または橋脚とからなる橋梁2であり、上部構造物3と橋台4または橋脚とのいずれかに受圧構造部材40を取り付けて受圧可能に構成されている、ことが好ましい。かかる構成によれば、上部構造物の橋体3と下部構造物の橋台4または橋脚とのいずれかに受圧構造部材40を取り付けることで、弾性緩衝体1の設置スペースの確保が容易で自由度が広がり、他の構造物との干渉を防止して設置することができる。 The superstructure 3 and the substructure 4 are the bridge 2 comprising the superstructure 3 and the abutment 4 or the pier. It is preferable to be configured to be able to receive pressure. According to this configuration, by attaching the pressure-receiving structural member 40 to either the bridge body 3 of the upper structure and the abutment 4 or pier of the lower structure, it is easy to secure the installation space for the elastic cushioning body 1, and the degree of freedom is increased. can be installed while preventing interference with other structures.

本発明は前述の実施形態に限られず、各構成要素については本発明の趣旨を逸脱しない範囲で適宜変更が可能である。 The present invention is not limited to the above-described embodiments, and each component can be modified as appropriate without departing from the scope of the present invention.

1 弾性緩衝体
2 橋梁
3 橋体(上部構造物)
4 橋台(下部構造物)
10 側部緩衝部材
11 基端部
12 先端部
13 受圧部
14 空間
15 取付部
20 内部緩衝部材
21 基端部
22 先端部
23 受圧部
24 取付部
25 屈曲部
30 平板部材
40 受圧構造部材
41 側面
20A 内部緩衝部材
20B 内部緩衝部材
21B 基端部
24B 取付部
100 ゴム支承
1 elastic buffer 2 bridge 3 bridge body (upper structure)
4 abutment (lower structure)
REFERENCE SIGNS LIST 10 side cushioning member 11 proximal end 12 distal end 13 pressure receiving portion 14 space 15 attachment portion 20 internal cushioning member 21 proximal end portion 22 distal end portion 23 pressure receiving portion 24 attachment portion 25 bending portion 30 flat plate member 40 pressure receiving structural member 41 side surface 20A Internal cushioning member 20B Internal cushioning member 21B Base end portion 24B Mounting portion 100 Rubber bearing

Claims (4)

上部構造物と下部構造物との間に設けられ弾性部材からなり衝撃エネルギーの吸収と相対移動の変位量を規制する弾性緩衝体であって、
前記弾性緩衝体は、前記上部構造物と前記下部構造物のいずれか一方に基端部が取り付けられて内側に傾斜され先端部がいずれか他方の受圧部となる2つの側部緩衝部材と、2つの前記側部緩衝部材の間の空間に配置されて前記いずれか一方に基端部が着脱可能に取り付けられ先端部が前記いずれか他方の受圧部となる内部緩衝部材と、2つの前記側部緩衝部材の受圧部と前記内部緩衝部材の受圧部とを着脱可能に連結する平板部材と、を有し、
前記内部緩衝部材は、前記弾性緩衝体が吸収するべき衝撃エネルギーに応じて、変位(δ)と荷重(P)との関係が調整されて前記空間に配置される、
ことを特徴とする弾性緩衝体。
An elastic cushioning body that is provided between an upper structure and a lower structure and made of an elastic member and that absorbs impact energy and regulates the displacement amount of relative movement,
The elastic cushioning body includes two side cushioning members each having a base end attached to one of the upper structure and the lower structure, inclined inwardly, and a tip end serving as a pressure receiving portion of the other; an internal cushioning member arranged in a space between the two side cushioning members, having a base end detachably attached to one of the side cushioning members and having a tip end serving as a pressure receiving portion of the other of the two side cushioning members; a flat plate member detachably connecting the pressure-receiving portion of the internal cushioning member and the pressure-receiving portion of the internal cushioning member;
The internal cushioning member is arranged in the space with the relationship between the displacement (δ) and the load (P) being adjusted according to the impact energy to be absorbed by the elastic cushioning body.
An elastic cushioning body characterized by:
前記内部緩衝部材は、受圧方向の中間部に屈曲部を備えて形成されている、
ことを特徴とする請求項1に記載の弾性緩衝体。
The internal cushioning member is formed with a bent portion at an intermediate portion in the pressure receiving direction,
The elastic cushioning body according to claim 1, characterized by:
前記内部緩衝部材は、前記空間に複数並べて配置されている、
ことを特徴とする請求項1に記載の弾性緩衝体。
A plurality of the internal cushioning members are arranged side by side in the space,
The elastic cushioning body according to claim 1, characterized by:
前記上部構造物と前記下部構造物とは、前記上部構造物と橋台または橋脚とからなる橋梁であり、前記上部構造物と前記橋台または前記橋脚とのいずれかに受圧構造部材を取り付けて受圧可能に構成されている、
ことを特徴とする請求項1~3のいずれか1項に記載の弾性緩衝体。
The superstructure and the substructure are bridges composed of the superstructure and abutments or piers, and pressure can be received by attaching a pressure-receiving structural member to either the superstructure, the abutments, or the piers. configured to
The elastic cushioning body according to any one of claims 1 to 3, characterized in that:
JP2023079073A 2023-05-12 2023-05-12 Elastic buffer Active JP7337430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023079073A JP7337430B1 (en) 2023-05-12 2023-05-12 Elastic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023079073A JP7337430B1 (en) 2023-05-12 2023-05-12 Elastic buffer

Publications (1)

Publication Number Publication Date
JP7337430B1 true JP7337430B1 (en) 2023-09-04

Family

ID=87882048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023079073A Active JP7337430B1 (en) 2023-05-12 2023-05-12 Elastic buffer

Country Status (1)

Country Link
JP (1) JP7337430B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317407A (en) 2001-04-23 2002-10-31 Kawaguchi Metal Industries Co Ltd Cushioning apparatus and bridge fall prevention device incorporating the apparatus
JP2005330688A (en) 2004-05-19 2005-12-02 Ps Mitsubishi Construction Co Ltd Aseismatic reinforcing method and structure for bridge
JP2006125100A (en) 2004-10-29 2006-05-18 Tokai Rubber Ind Ltd Quake-absorbing damper structure
JP2007032046A (en) 2005-07-26 2007-02-08 Hisaaki Otsuka Fully movable shoe bridge and vibration isolation trigger device
JP2008057169A (en) 2006-08-30 2008-03-13 Bridgestone Corp Buffering unit and impact receiving structure
JP2019116724A (en) 2017-12-26 2019-07-18 大和ハウス工業株式会社 Displacement stopper and base-isolated building

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317407A (en) 2001-04-23 2002-10-31 Kawaguchi Metal Industries Co Ltd Cushioning apparatus and bridge fall prevention device incorporating the apparatus
JP2005330688A (en) 2004-05-19 2005-12-02 Ps Mitsubishi Construction Co Ltd Aseismatic reinforcing method and structure for bridge
JP2006125100A (en) 2004-10-29 2006-05-18 Tokai Rubber Ind Ltd Quake-absorbing damper structure
JP2007032046A (en) 2005-07-26 2007-02-08 Hisaaki Otsuka Fully movable shoe bridge and vibration isolation trigger device
JP2008057169A (en) 2006-08-30 2008-03-13 Bridgestone Corp Buffering unit and impact receiving structure
JP2019116724A (en) 2017-12-26 2019-07-18 大和ハウス工業株式会社 Displacement stopper and base-isolated building

Similar Documents

Publication Publication Date Title
US5761856A (en) Vibration isolation apparatus
CN101865235B (en) Vibration isolation buffer for resisting strong impact
US9194452B2 (en) High stiffness vibration damping apparatus, methods and systems
KR100692956B1 (en) Bearing for supporting a structure and elastic device for the bearing
CN211522851U (en) Bridge anti-seismic and anti-falling beam support
CN112281641B (en) Grid damping support
KR102125691B1 (en) Buckling restrained brace with enhanced damping performance
JP7337430B1 (en) Elastic buffer
CN110847406A (en) Replaceable novel corrugated viscous spring combined mild steel damper
KR20110072410A (en) Seismic isolating apparatus
TWI490158B (en) Seismic isolation supporting device in traveling crane
JP7224101B2 (en) Displacement stopper and seismic isolation building
US20190145066A1 (en) Seismic isolation bearing for bridge and bridge using the same
JP3992410B2 (en) Seismic isolation device for roof frame
CN203238538U (en) Flat spring plate type rubber expansion joint
JP2007315523A (en) Base-isolation material
JP2000110887A (en) Base isolation device
KR101409400B1 (en) Laminated rubber bearing having hat-shaped steel damper
KR200289990Y1 (en) Structural bearing for bridge
KR20100073555A (en) Hybrid bearing using lead-tin alloy
CN103147392A (en) Steel bridge function separating shock-absorbing support
JP2017160652A (en) Buckling restraint type damper for bridge
JP7266468B2 (en) Seismic isolation structure
CN213804848U (en) Connecting piece for bailey bridge
CN216665181U (en) Assembled shock-absorbing structure and shear wall capable of restoring functions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7337430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150