JP3845211B2 - Low temperature underground tank structure - Google Patents

Low temperature underground tank structure Download PDF

Info

Publication number
JP3845211B2
JP3845211B2 JP30262698A JP30262698A JP3845211B2 JP 3845211 B2 JP3845211 B2 JP 3845211B2 JP 30262698 A JP30262698 A JP 30262698A JP 30262698 A JP30262698 A JP 30262698A JP 3845211 B2 JP3845211 B2 JP 3845211B2
Authority
JP
Japan
Prior art keywords
side wall
bottom plate
temperature
underground tank
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30262698A
Other languages
Japanese (ja)
Other versions
JP2000130698A (en
Inventor
孝次 相原
康雄 坪根
勝利 津田
昭一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Tokyo Gas Co Ltd
Original Assignee
Taisei Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo Gas Co Ltd filed Critical Taisei Corp
Priority to JP30262698A priority Critical patent/JP3845211B2/en
Publication of JP2000130698A publication Critical patent/JP2000130698A/en
Application granted granted Critical
Publication of JP3845211B2 publication Critical patent/JP3845211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温地下タンクの構造に関するものである。
【0002】
【従来の技術】
従来の低温地下タンクにおいて、耐水圧強度版形式のものは、底版の強度によって地下水圧に抵抗できるように設計してある。
その場合に、図3に示すように、タンクの側壁aと底版bとの接合部には目地cを設けて分離した構造を採用している。
【0003】
【本発明が解決しようとする課題】
目地を設ければ、目地が存在しない構造を構築する場合と比較してそれだけ施工の手数と材料を必要とする。そのために側壁と底版との接合部に目地を設けて分離せず、直接に剛結合するタイプも考えられるが、次のような問題がある。
<イ>タンクの側壁下端部には、低温の内容液の冷熱による温度応力、あるいは液圧、ガス圧などの外力によって円周方向軸引っ張り力が生じている。また、セメントの水和反応による水和熱によって、温度応力も生じている。
そのために、剛結合のタンクでは、側壁下端部に貫通クラックが生じたり、水密性が損なわれる可能性がある。
<ロ>水密性を確保するために、側壁下端部の外周に鉄板などを設置することも考えられるが、その場合には従来タイプの比べてコストが上昇するため利点が見いだせない。
<ハ>剛結合タイプの場合、土圧、水圧などの外力によって側壁下端部に応力が集中する。したがって多量の鉄筋を配筋する必要があるが、狭い空間での配筋作業は困難である。
そのために、側壁の厚さを大きくする必要が生じ、掘削量、材料が増加し、コストアップの原因となる。
【0004】
本発明は上記したような従来の問題を解決するためになされたもので、材料費、工事費を増加することなく、クラックの発生を抑制することができる、低温地下タンクの構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の低温地下タンクの構造は、側壁と底版と、側壁外周に設置した地下連壁とによって構成した低温地下タンクにおいて、側壁の下端と底版との間に目地を設けずに結合し、底版の外周の下縁部を、底版に影響する熱応力を緩和できる範囲で切り欠いて構成した、低温地下タンクを特徴としたものである。
【0006】
【本発明の実施の態様】
以下図面を参照しながら本発明の低温地下タンクの構造の実施例について説明する。
【0007】
<イ>タンクの構築。
低温地下タンクは、まず円筒状に地下連壁1を構築し、その内部を最深部まで掘削し、底版2のコンクリートを打設する。その後に側壁3のコンクリートを打設しつつ最上部までの構築を行い、屋根4を架設して完了する。
【0008】
<ロ>底版2と側壁3の結合部。
本発明の地下タンクにおいては、前記したように側壁3の下端と底版2との間には目地を設けることなく、剛結合の構造を採用する。
【0009】
<ハ>底版2外周の切り欠き。
一般に底版2は厚さの厚い円盤状であるが、本発明の底版2においては特に底版2の外周の下縁部を切り欠いて構成する。外周の下縁部を切り欠くことによって、底版2の外周の下縁部には切り欠き斜面5が形成される。
この切り欠き斜面5には不織布などを取り付けて縁切りを図るとともに、この部分に確実に水圧を作用させる。
【0010】
<ニ>切り欠き範囲の設定。
この底版2の外周の下縁部を切り欠いた切り欠き斜面5の範囲は、底版2に影響する熱応力を緩和できる範囲に設定する。
熱応力を緩和できる範囲とは、例えば側壁3と底版2の結合部の温度分布によって決定する。例えば側壁3、底版2、地下連壁1、周囲の地盤を含めて図 に示すような温度分布である場合に、所定の温度線を想定してその温度よりも高い温度を生じる可能性のある部分を、底版2から切り欠いて排除する。その結果、切り欠き斜面5が形成される。
この切り欠きによって、底版外周部と側壁下端部との平均温度の差を小さくし、温度収縮量の違いによる側壁下端部の円周方向軸引っ張り力を低減することができる。
【0011】
<ホ>PCケーブル。
側壁3の少なくとも下部には円周方向に、円周方向PCケーブル6を複数段に配置する。この円周方向PCケーブル6を緊張してプレストレスを導入する。
さらに場合によっては、鉛直方向に、鉛直方向PCケーブル7を配置し、鉛直方向にプレストレスを導入する。
【0012】
【本発明の効果】
本発明の低温地下タンクの構造は以上説明したようになるから、次のような効果を達成できる。
<イ>低温タンクでは内容液の冷熱によって温度応力が発生する。しかし本発明の低温タンクではこのような熱応力を緩和できる範囲を設定し、それ以上の温度応力を生じる範囲を切り欠いてある。
また、この切り欠き斜面に水圧を作用させることによって、その半径方向成分により側壁下端部に円周方向軸圧縮力が生じ、前記の低温の内容液による温度応力や液圧、ガス圧などの外力、およびセメントの水和反応による水和熱による温度応力により発生する円周方向軸引張力を低減することができる。
したがって底版2と側壁3の連結部分に貫通クラックを発生するといった可能性が低く、水密性を損なうことがない。
<ロ>温度応力を抑制するための構造が簡単であるから、特に鉄筋の量が増加することもなく、配筋作業に影響を与えるといった問題は発生しない。
<ハ>また切り欠き斜面5に応じた形状で掘削を行なえば、掘削量が減少することはあっても、従来のように床版や側壁3の厚さが増加して掘削量が増加するといった問題も生じない。
<ニ>側壁3と底版2との接合部に目地を介在させない、剛結合の構造である。したがって目地の形成のための材料や慎重な作業を要せず、経済的な構築を行なうことができる。
<ホ>側壁3の少なくとも下部には円周方向に円周方向PCケーブル6を複数段に配置して緊張してある。そのために円周方向軸引張力や、水和熱による温度応力による貫通クラックの発生を阻止でき、水密性を確保することができる。
さらに必要に応じて側壁下端部に鉛直PCケーブルを配置してプレストレスを導入すれば、鉛直方向の鉄筋の過密な配置を避けることができる。
【図面の簡単な説明】
【図1】本発明の低温地下タンクの構造の実施例の説明図。
【図2】温度分布の説明図。
【図3】側壁の下部にPCケーブルを配置した状態の説明図。
【図4】従来の低温地下タンクの構造の実施例の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a low temperature underground tank.
[0002]
[Prior art]
In conventional low-temperature underground tanks, the water pressure-resistant strength plate type is designed so that it can resist the groundwater pressure by the strength of the bottom plate.
In this case, as shown in FIG. 3, a structure in which a joint c is provided and separated at a joint portion between the side wall a and the bottom plate b of the tank is adopted.
[0003]
[Problems to be solved by the present invention]
If joints are provided, it requires more work and materials than construction of a structure without joints. For this reason, a type in which the joint between the side wall and the bottom plate is not separated by providing a joint, but is directly rigidly connected, is considered, but there are the following problems.
<B> A circumferential axial pulling force is generated at the lower end of the side wall of the tank due to temperature stress due to the cold heat of the low-temperature content liquid, or external force such as liquid pressure or gas pressure. In addition, temperature stress is also generated by heat of hydration due to cement hydration reaction.
Therefore, in the rigidly connected tank, there is a possibility that a through crack is generated at the lower end portion of the side wall or watertightness is impaired.
<B> In order to ensure watertightness, it may be possible to install an iron plate or the like on the outer periphery of the lower end of the side wall. However, in that case, the cost increases compared to the conventional type, and no advantage can be found.
<C> In the case of the rigid coupling type, stress concentrates on the lower end of the side wall due to external forces such as earth pressure and water pressure. Therefore, it is necessary to arrange a large amount of reinforcing bars, but it is difficult to arrange the bars in a narrow space.
Therefore, it is necessary to increase the thickness of the side wall, and the amount of excavation and the material increase, resulting in an increase in cost.
[0004]
The present invention has been made to solve the conventional problems as described above, and provides a structure of a low-temperature underground tank capable of suppressing the occurrence of cracks without increasing material costs and construction costs. With the goal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the low-temperature underground tank of the present invention is a low-temperature underground tank composed of a side wall, a bottom plate, and an underground continuous wall installed on the outer periphery of the side wall. It is characterized by a low-temperature underground tank that is joined with no joints in between, and the lower edge of the outer periphery of the bottom plate is cut out in a range that can alleviate the thermal stress that affects the bottom plate .
[0006]
[Embodiments of the present invention]
Embodiments of the structure of the low-temperature underground tank of the present invention will be described below with reference to the drawings.
[0007]
<I> Construction of tank.
The low-temperature underground tank first constructs an underground continuous wall 1 in a cylindrical shape, excavates the inside to the deepest part, and places concrete for the bottom slab 2. After that, the concrete up to the top is constructed while placing concrete on the side wall 3, and the roof 4 is installed and completed.
[0008]
<B> A connecting portion between the bottom plate 2 and the side wall 3.
In the underground tank of the present invention, as described above, a rigid connection structure is adopted without providing a joint between the lower end of the side wall 3 and the bottom plate 2.
[0009]
<C> Notches on the outer periphery of the bottom plate 2.
In general, the bottom plate 2 has a disk shape with a large thickness. However, the bottom plate 2 of the present invention is particularly configured by cutting out the lower edge portion of the outer periphery of the bottom plate 2. By cutting out the lower edge of the outer periphery, a notched slope 5 is formed at the lower edge of the outer periphery of the bottom plate 2.
A non-woven fabric or the like is attached to the notched slope 5 so as to cut the edge, and water pressure is reliably applied to this portion.
[0010]
<D> Setting of notch range.
The range of the notched slope 5 obtained by notching the lower edge portion of the outer periphery of the bottom slab 2 is set to a range in which the thermal stress affecting the bottom slab 2 can be relaxed.
The range in which the thermal stress can be relaxed is determined by, for example, the temperature distribution of the joint portion between the side wall 3 and the bottom plate 2. For example, when the temperature distribution is as shown in the figure including the side wall 3, bottom slab 2, underground connecting wall 1, and surrounding ground, there is a possibility that a temperature higher than that temperature may be generated assuming a predetermined temperature line. A portion is cut out from the bottom plate 2 and removed. As a result, a notched slope 5 is formed.
By this notch, the difference in average temperature between the outer peripheral portion of the bottom plate and the lower end portion of the side wall can be reduced, and the circumferential axial pulling force at the lower end portion of the side wall due to the difference in temperature shrinkage can be reduced.
[0011]
<E> PC cable.
A circumferential PC cable 6 is arranged in a plurality of stages in the circumferential direction at least at the lower part of the side wall 3. Prestress is introduced by tensioning the circumferential PC cable 6.
Further, in some cases, the vertical PC cable 7 is arranged in the vertical direction, and prestress is introduced in the vertical direction.
[0012]
[Effect of the present invention]
Since the structure of the low temperature underground tank of the present invention is as described above, the following effects can be achieved.
<A> In the low temperature tank, temperature stress is generated by the cold heat of the content liquid. However, in the low temperature tank of the present invention, a range in which such thermal stress can be alleviated is set, and a range in which more temperature stress is generated is cut out.
In addition, by applying water pressure to the notched slope, a radial axial component generates a circumferential axial compressive force at the lower end of the side wall, and external forces such as temperature stress, liquid pressure, gas pressure, etc. due to the low temperature content liquid. , And the circumferential axial tensile force generated by temperature stress due to heat of hydration due to the hydration reaction of cement can be reduced.
Therefore, there is a low possibility that a through crack is generated at the connecting portion between the bottom plate 2 and the side wall 3, and the watertightness is not impaired.
<B> Since the structure for suppressing the temperature stress is simple, the amount of reinforcing bars is not particularly increased, and the problem of affecting the bar arrangement work does not occur.
<C> Further, if excavation is performed in a shape corresponding to the cut-out slope 5, the excavation amount may decrease, but the thickness of the floor slab and the side wall 3 increases as in the conventional case and the excavation amount increases. Such a problem does not occur.
<D> A rigid connection structure in which no joint is interposed at the joint between the side wall 3 and the bottom plate 2. Therefore, an economical construction can be performed without requiring materials for forming joints and careful work.
<E> At least at the lower part of the side wall 3, circumferential PC cables 6 are arranged in a plurality of stages in the circumferential direction and are strained. Therefore, it is possible to prevent the occurrence of through cracks due to the circumferential axial tensile force and the temperature stress due to the heat of hydration, and to ensure the water tightness.
Furthermore, if a prestress is introduced by arranging a vertical PC cable at the lower end of the side wall as necessary, it is possible to avoid overly dense arrangement of reinforcing bars in the vertical direction.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a structure of a low-temperature underground tank according to the present invention.
FIG. 2 is an explanatory diagram of a temperature distribution.
FIG. 3 is an explanatory diagram showing a state in which a PC cable is arranged at the lower part of the side wall.
FIG. 4 is an explanatory view of an embodiment of a structure of a conventional low-temperature underground tank.

Claims (3)

側壁と底版と、側壁外周に設置した地下連壁とによって構成した低温地下タンクにおいて、
側壁の下端と底版との間に目地を設けずに結合し、
底版の外周の下縁部を、底版に影響する熱応力を緩和できる範囲で切り欠いて構成した、
低温地下タンクの構造。
In a low-temperature underground tank composed of a side wall, a bottom plate, and an underground connecting wall installed on the outer periphery of the side wall,
Join without providing a joint between the lower end of the side wall and the bottom plate,
The lower edge of the outer periphery of the bottom plate was cut out to the extent that thermal stress affecting the bottom plate could be relaxed .
Low temperature underground tank structure.
前記底版の外周の下縁部を切り欠く部分に形成される切り欠き斜面に縁切り材を配置したこと特徴とする、請求項1記載の低温地下タンクの構造。 2. The structure of a low-temperature underground tank according to claim 1 , wherein an edge-cutting material is arranged on a notched slope formed at a portion where the lower edge of the outer periphery of the bottom plate is notched . 側壁の少なくとも下部には円周方向に、円周方向PCケーブルを複数段に配置し、この円周方向PCケーブルを緊張して構成した、
請求項1又は2記載の低温地下タンクの構造。
The circumferential direction PC cable is arranged in a plurality of stages in the circumferential direction at least at the lower part of the side wall, and the circumferential direction PC cable is configured to be tensioned.
The structure of the low-temperature underground tank according to claim 1 or 2 .
JP30262698A 1998-10-23 1998-10-23 Low temperature underground tank structure Expired - Fee Related JP3845211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30262698A JP3845211B2 (en) 1998-10-23 1998-10-23 Low temperature underground tank structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30262698A JP3845211B2 (en) 1998-10-23 1998-10-23 Low temperature underground tank structure

Publications (2)

Publication Number Publication Date
JP2000130698A JP2000130698A (en) 2000-05-12
JP3845211B2 true JP3845211B2 (en) 2006-11-15

Family

ID=17911255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30262698A Expired - Fee Related JP3845211B2 (en) 1998-10-23 1998-10-23 Low temperature underground tank structure

Country Status (1)

Country Link
JP (1) JP3845211B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188164A (en) * 2000-12-22 2002-07-05 Taisei Corp Construction method for underground tank
JP5168960B2 (en) * 2007-03-16 2013-03-27 株式会社大林組 Underground cryogenic liquefied gas storage tank
JP5429537B2 (en) * 2009-07-29 2014-02-26 清水建設株式会社 Bottom plate structure of underground tank for cryogenic liquid storage
JP5877997B2 (en) * 2011-10-26 2016-03-08 鹿島建設株式会社 Method for underground storage of low-temperature liquefied gas and construction method of storage facility
JP5888727B2 (en) * 2011-12-08 2016-03-22 鹿島建設株式会社 Low temperature liquefied gas underground freezing controlled storage facility

Also Published As

Publication number Publication date
JP2000130698A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
TW490386B (en) Duct repairing material, repairing structure, and repairing method
EA002344B1 (en) Cellular stirrups and ties for structural members
KR20160005257A (en) Precast Coping, the Combination Structure of Column and Coping, and its Construction Method
CN110761322A (en) Cast-in-place pipe gallery side wall horizontal construction joint reinforcing structure and construction method thereof
US6254314B1 (en) Covering plate assembly for steel pipe piles
JP3845211B2 (en) Low temperature underground tank structure
KR101731493B1 (en) Insulation and bearing panel and its manufacturing and installation method
JP5351676B2 (en) Large section tunnel
JP3649717B2 (en) Joints and structures for joining steel pipe pile heads to concrete foundations
KR20150131904A (en) Tension for both steel and precast concrete structures and its production and construction methods
KR100375501B1 (en) liquefied natural gas lang storage tank side wall structure and method
JP5007367B1 (en) PC ground tank and its construction method
CN109779090A (en) Prefabricated shear wall, building structure and the construction method of the building structure
KR101213684B1 (en) wave type steel plate tunnel
CN210288159U (en) Split type precast concrete culvert&#39;s concatenation structure
JP3715025B2 (en) Final joint construction method for submerged boxes
KR200167832Y1 (en) Structures for composite corrugated steel concrete plate
RU2380494C1 (en) Butt joint of precast concrete columns with solid flooring
JPS5820768B2 (en) Installation method of embedded material on concrete slab substrate
JP3298053B2 (en) Underground tank structure
JP7450417B2 (en) Concrete parts and segments
JP4409982B2 (en) Renewal structure of final disposal site
JP3878357B2 (en) Box structure
JP3355438B2 (en) Underground tank structure
JP2017071997A (en) Connection structure for precast blocks, and structural body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150825

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees