JP5168960B2 - Underground cryogenic liquefied gas storage tank - Google Patents

Underground cryogenic liquefied gas storage tank Download PDF

Info

Publication number
JP5168960B2
JP5168960B2 JP2007069077A JP2007069077A JP5168960B2 JP 5168960 B2 JP5168960 B2 JP 5168960B2 JP 2007069077 A JP2007069077 A JP 2007069077A JP 2007069077 A JP2007069077 A JP 2007069077A JP 5168960 B2 JP5168960 B2 JP 5168960B2
Authority
JP
Japan
Prior art keywords
storage tank
liquefied gas
side wall
performance
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069077A
Other languages
Japanese (ja)
Other versions
JP2008232187A (en
Inventor
健 白砂
英芳 伊藤
博文 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007069077A priority Critical patent/JP5168960B2/en
Publication of JP2008232187A publication Critical patent/JP2008232187A/en
Application granted granted Critical
Publication of JP5168960B2 publication Critical patent/JP5168960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、メタン、プロパン、窒素、水素、ブタン等の低温液化ガスを貯蔵する地下式低温液化ガス貯槽に関する。   The present invention relates to an underground low-temperature liquefied gas storage tank for storing low-temperature liquefied gases such as methane, propane, nitrogen, hydrogen, and butane.

メタン等の液化ガスを貯蔵する地下式低温液化ガス貯槽は、一般的に、図に示すように、地盤内に形成された空洞部の周縁部に設置された側壁部31と、空洞部の底部に設置された底版32と、側壁部31の上に設置された屋根33とから構成されている。そして、側壁部31は、安定して地盤空洞部を確保するための外圧耐荷構造物である、例えば、地中連続壁34と、その内周に設けられた側壁躯体35と、側壁躯体35の内周面に取り付けられた保冷材36と、この保冷材36の内周面を覆うように設置されたメンブレン37とから構成されており、これら各構成部材は以下に示す性能を有するものである(非特許文献1参照)。 As shown in FIG. 7 , the underground low-temperature liquefied gas storage tank for storing liquefied gas such as methane generally has a side wall portion 31 installed at the periphery of the cavity portion formed in the ground, The bottom plate 32 is installed at the bottom, and the roof 33 is installed on the side wall 31. And the side wall part 31 is an external pressure load-bearing structure for securing a ground cavity part stably, for example, the underground continuous wall 34, the side wall case 35 provided in the inner periphery, and the side wall case 35 It is comprised from the cold insulating material 36 attached to the internal peripheral surface, and the membrane 37 installed so that the internal peripheral surface of this cold insulating material 36 may be covered, These each structural member has the performance shown below. (Refer nonpatent literature 1).

(1)外圧耐荷構造物の地中連続壁34は、地盤の土圧及び地下水圧を支持する外圧耐荷性能及び地盤からの地下水等の流入を制限する止水性能を有する。
(2)側壁躯体35は、メンブレン37が液化ガスから受ける貯蔵圧を支持する内圧耐荷性能、液化ガスが漏れた際に拡散を防止する性能及び地中連続壁34と同様に、地盤の土圧及び地下水圧を支持する外圧耐荷性能を有する。
(3)保冷材36は、外部と液化ガスとの熱の出入りを遮断する断熱性能とともに、貯蔵圧を側壁躯体35に伝達する内圧伝達性能を有する。
(4)メンブレン37は、熱収縮・熱膨張を吸収するためのひだ状のコルゲーションを備え、液化ガスを内包して密閉する気密・液密性能を有する。
「LNG地下式貯槽指針 JGA指−107−02」、社団法人日本ガス協会、2002年8月改訂版発行
(1) The underground continuous wall 34 of the external pressure load-bearing structure has an external pressure load-proof performance that supports the earth pressure and groundwater pressure of the ground and a water stop performance that restricts the inflow of groundwater and the like from the ground.
(2) The side wall housing 35 has an internal pressure load-bearing performance that supports the storage pressure that the membrane 37 receives from the liquefied gas, a performance that prevents diffusion when the liquefied gas leaks, and a ground pressure of the ground as well as the underground continuous wall 34. And it has an external pressure load resistance performance that supports the groundwater pressure.
(3) The cold insulating material 36 has an internal pressure transmission performance for transmitting the storage pressure to the side wall housing 35 as well as a heat insulation performance for blocking heat flow between the outside and the liquefied gas.
(4) The membrane 37 has a pleated corrugation for absorbing heat shrinkage and thermal expansion, and has airtight / liquidtight performance for enclosing and sealing a liquefied gas.
“LNG underground storage tank guideline JGA finger-107-02”, Japan Gas Association, revised edition issued in August 2002

しかしながら、上述した側壁部31は、外圧耐荷構造物である地中連続壁34と貯液性能など異なった性能を有する側壁躯体35と保冷材36とメンブレン37とが一体化するように構築されているために、例えば、メンブレン37が損傷して貯槽内の流体が漏れた場合に、メンブレン37自体に不良箇所があって損傷したのか、側壁躯体35の変形等の外的要因によりメンブレン37が損傷したのかがわからないので、損傷の原因が特定できないという問題点があった。そして、原因が特定できないために、修復に時間がかかるという問題点があった。   However, the above-described side wall 31 is constructed such that the underground continuous wall 34 which is an external pressure load-bearing structure, the side wall housing 35 having different performance such as the liquid storage performance, the cold insulation 36 and the membrane 37 are integrated. Therefore, for example, when the membrane 37 is damaged and the fluid in the storage tank leaks, the membrane 37 itself is damaged due to a defective portion or due to external factors such as deformation of the side wall housing 35. There was a problem that the cause of the damage could not be specified because I did not know what happened. And since the cause could not be specified, there was a problem that it took time to repair.

また、例えば、地下水がコンクリートからなる側壁躯体35内を通過してしまうと、保冷材36は止水性能を有していないために、地下水がメンブレン37に接触することで断熱性能の低下や地下水の凍結膨張により、メンブレン37の損傷を引き起こす可能性があるという問題点があった。つまり、いずれか一つの性能(ここでは、止水性能)が低下すると他の性能(ここでは、断熱性能、液密・気密性能)にも連鎖的に影響を及ぼしてしまい、一度に多くの性能が低下してしまうという問題点があった。   Further, for example, if the groundwater passes through the side wall housing 35 made of concrete, the cold insulation 36 does not have water-stopping performance. There is a problem in that the membrane 37 may be damaged by the freezing and expansion. In other words, if any one of the performances (here, water stoppage performance) decreases, the other performances (here, heat insulation performance, liquid tightness / air tightness performance) will be chained, and many performances will be performed at once. There was a problem that would decrease.

そこで、本発明は、上記のような従来の問題に鑑みなされたものであって、地下式低温液化ガス貯槽に要求される性能を地下式低温液化ガス貯槽を構成する構造物が分割して負担し、いずれか一つの性能が低下しても他の性能に影響を及ぼすことが無く、かつ、損傷等の異常の原因特定を容易にする地下式低温液化ガス貯槽を提供することを目的とする。 Accordingly, the present invention has been made in view of the above-described conventional problems, and the performance required for the underground cryogenic liquefied gas storage tank is divided by the structure constituting the underground cryogenic liquefied gas storage tank. and, one of performance without affecting other performance decreases, and aims to provide an underground low-temperature liquefied gas savings tank to facilitate the abnormality cause certain damage such as To do.

前記目的を達成するため、本発明の地下式低温液化ガス貯槽は、地盤内に構築される地下式低温液化ガス貯槽であって、地盤内に形成された空洞部の内壁を覆うように設置され、地盤の土圧及び地下水圧を単独で支持することが可能で地下水の浸入を防ぐ止水性能を有する、底版を含まない側壁構造物と、前記側壁構造物の内方の底部地盤上に直接又は排水層を介して設置され、前記液化ガスを貯蔵するために必要な気密・液密性、断熱性及び自立性を有する内側貯槽とを互いに独立の構造物として設け、前記内側貯槽と前記側壁構造物との間に空間を設けたことを特徴とする(第1の発明)。 In order to achieve the above object, the underground cryogenic liquefied gas storage tank of the present invention is an underground cryogenic liquefied gas storage tank constructed in the ground, and is installed so as to cover the inner wall of the cavity formed in the ground. A side wall structure that does not include a bottom plate and can directly support the earth pressure and groundwater pressure of the ground, and has a water stopping performance that prevents intrusion of groundwater, and directly on the bottom ground inside the side wall structure. Alternatively, an inner storage tank that is installed through a drainage layer and has airtightness, liquid tightness, heat insulation, and self-sustainability necessary for storing the liquefied gas is provided as an independent structure, and the inner storage tank and the side wall A space is provided between the structure and the structure (first invention).

本発明に係る地下式低温液化ガス貯槽によれば、地盤内に形成された空洞部の安定を保つために設置される側壁構造物と、側壁構造物の内方に設けられる内側貯槽とを備え、この側壁構造物は地盤の土圧及び地下水圧を支持する外圧耐荷性能及び地下水の浸入を極力制限できる止水性能を負担し、内側貯槽は液化ガスを貯蔵する貯液性能を負担する。すなわち、互いに独立している側壁構造物と内側貯槽とがそれぞれ異なる性能を負担するために、いずれか一方の性能が低下しても他方の性能に影響を及ぼすことが無い。したがって、本発明によれば、地下式低温液化ガス貯槽の安全性を向上させることができるとともに、ひとつの性能が低下した場合の対応として迅速かつ確実に維持補修が可能となる。   The underground cryogenic liquefied gas storage tank according to the present invention includes a side wall structure installed to maintain stability of a cavity formed in the ground, and an inner storage tank provided inside the side wall structure. The side wall structure bears the external pressure load bearing performance that supports the earth pressure and groundwater pressure of the ground and the water stopping performance that can limit the ingress of groundwater as much as possible, and the inner storage tank bears the liquid storage performance for storing liquefied gas. That is, since the side wall structure and the inner storage tank which are independent from each other bear different performances, even if one of the performances is lowered, the other performance is not affected. Therefore, according to the present invention, it is possible to improve the safety of the underground low-temperature liquefied gas storage tank, and it is possible to quickly and surely maintain and repair as a response when one performance deteriorates.

そして、側壁構造物や内側貯槽に不具合が生じると、不具合箇所を有する構造物(ここでは、側壁構造物又は内側貯槽)の性能のみが低下するために、不具合箇所を有する構造物の特定が容易になるとともに、不具合の原因特定も容易となる。例えば、液化ガスが漏れた場合には、貯液性能が低下していることになるから内側貯槽に不具合原因があると特定できる。空洞部周縁の側壁構造物が空洞部の安定を保つことができない場合には、外圧耐荷性能が低下していることになるから側壁構造物に不具合原因があると特定でき、空洞部の安定を保つことができるように側壁構造物を補修補強する修復対応を取る。この間に貯液性能は低下することなく液化ガス貯槽はその本来の役割を果たすことが可能である。このように、地下式低温液化ガス貯槽の側部に不具合が生じても、不具合箇所の特定が容易となり、的確な修復が可能となる。   And, when a problem occurs in the side wall structure or the inner storage tank, the performance of the structure having the defective part (here, the side wall structure or the inner storage tank) is deteriorated, so that the structure having the defective part can be easily identified. At the same time, it becomes easy to identify the cause of the malfunction. For example, when the liquefied gas leaks, the liquid storage performance is deteriorated, so that it can be specified that there is a cause of the malfunction in the inner storage tank. If the sidewall structure around the periphery of the cavity cannot maintain the stability of the cavity, it can be determined that there is a cause for the failure in the sidewall structure because the external pressure load-bearing performance has deteriorated. Take repair measures to repair and reinforce the sidewall structure so that it can be maintained. During this time, the liquefied gas storage tank can play its original role without deteriorating the liquid storage performance. As described above, even if a problem occurs in the side portion of the underground cryogenic liquefied gas storage tank, it is easy to identify the problem location and to perform accurate repair.

さらに、側壁構造物は外圧耐荷性能に必要な強度により、内側貯槽は自立可能で、かつ、貯液性能に必要な強度によってそれぞれを構築することができるので、側壁構造物及び内側貯槽を合理的に設計し経済的に構築することが可能となり、コンクリートや低温用鋼材等の材料の使用量を低減することが可能となる。   In addition, the side wall structure can be built independently by the strength required for external pressure load-bearing performance, and the inner storage tank can be constructed independently by the strength required for liquid storage performance. Therefore, it is possible to reduce the amount of materials used such as concrete and steel for low temperature.

第2の発明は、第1の発明において、前記内側貯槽は、前記液化ガスを貯蔵するための内槽と、前記内槽の外周を覆うように取り付けられる保冷材と、前記保冷材の外周を覆うように設置される外槽とから構成されることを特徴とする。
本発明に係る地下式低温液化ガス貯槽によれば、内側貯槽は、液化ガスを貯蔵する内槽と、熱の出入りを遮断する保冷材と、液化ガスの漏洩の際の拡散を防止する外槽とから構成され、内槽は液化ガスの貯蔵圧を支持する内圧耐荷性能及び液化ガスを密閉する気密・液密性能を負担し、保冷材は外部と液化ガスとの間の熱の出入りを遮断する断熱性能を負担し、外槽は液化ガスが漏出した際に冷熱の影響を緩和し拡散を防止する拡散防止性能を負担する。すなわち、互いに独立している内槽と保冷材と外槽とがそれぞれ異なる性能を負担してこれらの性能を統合して貯液性能を構成する。
According to a second invention, in the first invention, the inner storage tank includes an inner tank for storing the liquefied gas, a cold insulating material attached so as to cover an outer periphery of the inner tank, and an outer periphery of the cold insulating material. It is comprised from the outer tank installed so that it may cover.
According to the underground low-temperature liquefied gas storage tank according to the present invention, the inner storage tank includes an inner tank that stores the liquefied gas, a cold insulating material that blocks heat from entering and exiting, and an outer tank that prevents diffusion when the liquefied gas leaks. The inner tank bears the internal pressure load-bearing performance that supports the storage pressure of liquefied gas and the airtight / liquidtight performance that seals liquefied gas, and the cold insulation material blocks the flow of heat between the outside and the liquefied gas. The outer tank bears the anti-diffusion performance that mitigates the effects of cold and prevents diffusion when the liquefied gas leaks out. That is, the inner tank, the cold insulating material, and the outer tank, which are independent from each other, bear different performances and integrate these performances to constitute the liquid storage performance.

本発明の地下式低温液化ガス貯槽及びこの設計方法によれば、地盤の土圧及び地下水圧を支持する外圧耐荷性能、液化ガスを内包してその流体を貯蔵する貯液性能を互いに独立した構造物で分担しており、いずれか一方の性能が低下した場合にも他方の性能に影響を及ぼすことが無いので、地下式低温液化ガス貯槽の高い安全性を確保してその信頼性を大幅に向上することができる。また、外圧耐荷性能、貯液性能が低下した場合は、それぞれ側壁構造物の形状変形、液化ガスの漏洩等が生じて発見が容易であり、さらに、発見後、性能が低下した構造物だけを補修すればよいので、不具合が生じても短期間で確実に補修することが可能となり地下式低温液化ガス貯槽の維持補修性が格段に向上する。   According to the underground low-temperature liquefied gas storage tank and the design method of the present invention, the external pressure load-carrying performance that supports the earth pressure and groundwater pressure of the ground, and the liquid storage performance that contains the liquefied gas and stores the fluid are independent from each other. Since it does not affect the performance of one of them when the performance of one of them declines, it ensures the high safety of the underground cryogenic liquefied gas storage tank and greatly increases its reliability Can be improved. In addition, when the external pressure load-bearing performance and liquid storage performance are reduced, the shape of the side wall structure, leakage of liquefied gas, etc. are generated, respectively, and it is easy to find. Since repair may be performed, it is possible to reliably repair in a short period of time even if a failure occurs, and the maintenance repairability of the underground low-temperature liquefied gas storage tank is remarkably improved.

以下、本発明に係る地下式低温液化ガス貯槽の好ましい実施形態について図面を用いて詳細に説明する。   Hereinafter, a preferred embodiment of an underground cryogenic liquefied gas storage tank according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る地下式低温液化ガス貯槽の概略構造図である。
図1に示すように、メタン等の液化ガスを貯蔵する地下式低温液化ガス貯槽1は、地盤2に形成された空洞部11の内壁を覆うように設置され、地盤2の土圧及び地下水圧を単独で支持することが可能で地下水の浸入を極力制限できる止水性を有する側壁構造物3と、側壁構造物3の内方に設けられ、液化ガスを貯蔵するために必要な気密・液密性、断熱性及び自立性を有する内側貯槽6とを備え、側壁構造物3と内側貯槽6とは互いに独立の構造物として設けられている。
FIG. 1 is a schematic structural diagram of an underground cryogenic liquefied gas storage tank according to the present invention.
As shown in FIG. 1, an underground low-temperature liquefied gas storage tank 1 for storing a liquefied gas such as methane is installed so as to cover an inner wall of a cavity 11 formed in the ground 2, and earth pressure and groundwater pressure of the ground 2. The side wall structure 3 having a water-stopping property that can limit the ingress of groundwater as much as possible, and the airtight / liquid tightness that is provided inside the side wall structure 3 and is necessary for storing the liquefied gas The side wall structure 3 and the inner storage tank 6 are provided as structures independent of each other.

側壁構造物3は、一般的にはコンクリート製の地中連続壁で構築され、地盤2の土圧及び地下水圧を支持する外圧耐荷性能及び地盤2からの地下水の流入を極力防止する止水性能を有し、設計等により決定された所定の深度まで所定の厚みで構築される。   The side wall structure 3 is generally constructed by a concrete continuous wall made of concrete, and supports the external pressure load resistance that supports the earth pressure and groundwater pressure of the ground 2 and the water stop performance that prevents the inflow of groundwater from the ground 2 as much as possible. And is constructed with a predetermined thickness up to a predetermined depth determined by design or the like.

内側貯槽6は、空洞部11の底部地盤の上に、必要に応じて排水層4を設けて構築され、液化ガスを内包してその流体を貯蔵する貯液性能を有する。また、内側貯槽6は、液化ガスを密閉するとともに、液化ガスの貯蔵圧力を支持するための内槽7と、内槽7の底版部7a及び側部7bを外側から覆うように取り付けられ、外部と液化ガスとの間の熱の出入りを遮断するための保冷材8と、保冷材8を外側から覆うように設置され、液化ガスが内槽7から漏出した際に冷熱の影響を緩和し拡散を防止するための外槽9とから構成されている。内側貯槽6は側壁構造物3の内方に所定の間隔Lをおいて設けられており、側壁構造物3と内側貯槽6との間に空間5が形成されている。なお、本実施形態においては、側壁構造物3と内側貯槽6との間に人が入れる程度の空間5を設けたが、この広さに限定されるものではなく、空間5は側壁構造物3と内側貯槽6とが接しない程度の隙間が有ればよく、例えば、設計等により側壁構造物3に所定の土水圧が作用した際の変形量を算出し、この変形量よりも大きい隙間であればよい。   The inner storage tank 6 is constructed by providing the drainage layer 4 on the bottom ground of the hollow portion 11 as necessary, and has a liquid storage performance of containing the liquefied gas and storing the fluid. The inner storage tank 6 is attached so as to seal the liquefied gas and cover the inner tank 7 for supporting the storage pressure of the liquefied gas, and the bottom plate portion 7a and the side part 7b of the inner tank 7 from the outside. Is installed so as to cover the cold insulation material 8 from the outside, and when the liquefied gas leaks from the inner tank 7, the influence of the cold heat is alleviated and diffused. It is comprised from the outer tank 9 for preventing. The inner storage tank 6 is provided inside the side wall structure 3 with a predetermined interval L, and a space 5 is formed between the side wall structure 3 and the inner storage tank 6. In the present embodiment, the space 5 is provided between the side wall structure 3 and the inner storage tank 6 so that a person can enter. However, the space 5 is not limited to this size. It is sufficient that there is a gap that does not contact the inner storage tank 6. For example, the amount of deformation when a predetermined earth water pressure is applied to the side wall structure 3 by design or the like is calculated, and the gap larger than this amount of deformation is calculated. I just need it.

内槽7は、例えば、低温における伸縮性を有する9%Ni鋼板のような低温鋼材からなり、自立可能で、液化ガスを密閉する気密・液密性能を有するとともに、加圧された状態で貯蔵されている液化ガスの貯蔵圧を支持する内圧耐荷性能を有する。   The inner tank 7 is made of, for example, a low-temperature steel material such as a 9% Ni steel plate having elasticity at low temperatures, can be self-supporting, has airtight / liquidtight performance for sealing liquefied gas, and is stored in a pressurized state. It has an internal pressure load bearing performance that supports the stored pressure of the liquefied gas.

保冷材8は、ポリウレタンフォームあるいはパーライトなどの保冷材からなり、外部と液化ガスとの間の熱の出入りを遮断する断熱性能を有する。   The cold insulating material 8 is made of a cold insulating material such as polyurethane foam or pearlite, and has a heat insulating performance that blocks heat from entering and leaving between the outside and the liquefied gas.

外槽9は、鉄筋コンクリートやプレストレストコンクリートからなり、液化ガスが内槽7から漏れた際に冷熱の影響を緩和し拡散を防止する防液堤としての性能を有する。   The outer tub 9 is made of reinforced concrete or prestressed concrete, and has a performance as a breakwater that relieves the influence of cold and prevents diffusion when liquefied gas leaks from the inner tub 7.

排水層4は、必要に応じて設けられるもので、図示はしないが、多量の砕石と、水を集水するための集水管と、集水された水を地上に揚水して排水するための揚水ポンプとから構成されている。この排水層4内に周辺地盤2から側壁構造物3の下方を回り込んで流入した地下水等は、集水管にて一箇所に集水され、揚水ポンプにて地上へ排水される。また、図示はしないが、空間5にも雨水等を排水するための揚水ポンプと、雨水等の貯留を検知する水検知センサーと、液化ガスの貯留を検知するガス検知センサーとが設置されている。   The drainage layer 4 is provided as necessary. Although not shown, the drainage layer 4 is used to collect a large amount of crushed stones, a water collecting pipe for collecting water, and to collect and drain the collected water to the ground. It consists of a pump. The groundwater or the like that flows into the drainage layer 4 from the surrounding ground 2 and flows under the side wall structure 3 is collected in one place by a collecting pipe and drained to the ground by a pump. Although not shown, a pump for draining rainwater and the like in the space 5, a water detection sensor for detecting storage of rainwater, and a gas detection sensor for detecting storage of liquefied gas are also installed in the space 5. .

次に、地下式低温液化ガス貯槽1の構築方法を施工手順にしたがって説明する。
図2〜図6は、本発明に係る地下式低温液化ガス貯槽1の構築手順を示す図である。
Next, the construction method of the underground low-temperature liquefied gas storage tank 1 will be described according to the construction procedure.
2-6 is a figure which shows the construction procedure of the underground type | mold low temperature liquefied gas storage tank 1 which concerns on this invention.

まず、図2に示すように、地盤2を円筒形状に所定の深度まで掘削し、掘削土砂を排出して、掘削された部分にコンクリートを充填することにより地中連続壁からなる側壁構造物3aを構築する。
そして、側壁構造物3aの所望の強度が発現した後、図3に示すように、その内周面よりも内側の土砂を掘削し、上方が開口した空洞部11を構築する。
First, as shown in FIG. 2, a side wall structure 3a composed of a continuous underground wall is formed by excavating the ground 2 into a cylindrical shape to a predetermined depth, discharging excavated soil, and filling the excavated portion with concrete. Build up.
And after the desired intensity | strength of the side wall structure 3a expresses, as shown in FIG. 3, the earth and sand inside the inner peripheral surface is excavated, and the cavity part 11 which the upper part opened is constructed | assembled.

次に、空洞部11の底部に礫、小石、砕石等を敷設するとともに、集水管、揚水ポンプを設置し、排水層4を構築する。   Next, gravels, pebbles, crushed stones and the like are laid on the bottom of the cavity 11, and a drainage pipe and a pump are installed to construct the drainage layer 4.

次に、図4に示すように、側壁構造物3aの内周面より所定の間隔Lを隔てた内方に外槽9を構築する。外槽9の構築は次の手順で行われる。まず、排水層4の上に底版用鉄筋(図示しない)を組み立て、コンクリートを打設することにより円盤状の底版部9aを構築し、次に、底版部9aの所望の強度が発現した後に、底版部9aの外周部分に側部用鉄筋(図示しない)を組み立て、コンクリートを打設することにより円筒形状の側部9bを構築する。なお、外槽9がプレストレストコンクリートからなる場合には、組み立てられた底版用鉄筋や側部用鉄筋の内側にPC鋼材等の緊張材を設置し、コンクリートを打設して、コンクリートの強度が発現した後に緊張材を緊張する。   Next, as shown in FIG. 4, the outer tub 9 is constructed inwardly with a predetermined distance L from the inner peripheral surface of the side wall structure 3a. The outer tub 9 is constructed in the following procedure. First, a bottom plate reinforcing bar (not shown) is assembled on the drainage layer 4, and a disc-shaped bottom plate portion 9a is constructed by placing concrete. Next, after the desired strength of the bottom plate portion 9a is expressed, Side reinforcing bars (not shown) are assembled to the outer peripheral portion of the bottom plate portion 9a, and concrete side portions 9b are constructed by placing concrete. In addition, when the outer tub 9 is made of prestressed concrete, a tension material such as PC steel is installed inside the assembled bottom plate reinforcing bars and side reinforcing bars, and the concrete is cast to develop the strength of the concrete. After that, strain the tension material.

次に、図5に示すように、内槽7を構築する。内槽7の構築は次の手順で行われる。まず、外槽9の底版部9aに取り付けられた保冷材8aの上に円盤状の底版部7aを構築し、底版部7aの外周部分に内槽側壁部7bを構築する。そして、底版部7a及び側部7bで囲われた上部開口を覆うように屋根部7cを構築する。このようにして内槽7を構築したら、内槽7bと外槽9bとの間の隙間に保冷材8bを充填する。   Next, as shown in FIG. 5, the inner tank 7 is constructed. The inner tank 7 is constructed in the following procedure. First, the disc-shaped bottom plate portion 7a is constructed on the cold insulating material 8a attached to the bottom plate portion 9a of the outer tank 9, and the inner tank side wall portion 7b is constructed on the outer peripheral portion of the bottom plate portion 7a. Then, the roof portion 7c is constructed so as to cover the upper opening surrounded by the bottom plate portion 7a and the side portion 7b. When the inner tank 7 is constructed in this way, the cold insulating material 8b is filled in the gap between the inner tank 7b and the outer tank 9b.

最後に、図6に示すように、側壁構造物3aの上に側壁構造物3bを延設し、側壁構造物3bの周囲に盛土を施工することにより、地下式低温液化ガス貯槽1が構築される。   Finally, as shown in FIG. 6, the underground cryogenic liquefied gas storage tank 1 is constructed by extending the sidewall structure 3 b on the sidewall structure 3 a and constructing a bank around the sidewall structure 3 b. The

以上のようにして構築された本発明に係る地下式低温液化ガス貯槽1によれば、地盤2内に形成された空洞部11の内壁を覆うように設置される側壁構造物3と、側壁構造物3の内方に設けられる内側貯槽6とを備え、側壁構造物3は外圧耐荷性能を負担し、内側貯槽6は貯液性能を負担する。すなわち、互いに独立している側壁構造物3と内側貯槽6とがそれぞれ異なる性能を負担するために、いずれか一方の性能が低下しても他方の性能に影響を及ぼすことが無い。したがって、地下式低温液化ガス貯槽1の安全性を向上させることができる。また、それぞれの性能を互いに独立した構造物で分担するために、設計する工程や構築する工程で個別に扱って単純化されることで、工程における効率化と経済性が大きく改善される。   According to the underground low-temperature liquefied gas storage tank 1 according to the present invention constructed as described above, the side wall structure 3 installed so as to cover the inner wall of the cavity portion 11 formed in the ground 2, and the side wall structure The side wall structure 3 bears an external pressure load-bearing performance, and the inner tank 6 bears a liquid storage performance. That is, since the side wall structure 3 and the inner storage tank 6 that are independent from each other bear different performances, even if one of the performances decreases, the other performance is not affected. Therefore, the safety of the underground low-temperature liquefied gas storage tank 1 can be improved. Moreover, since each performance is shared by structures independent from each other, it is handled and simplified individually in the designing process and the building process, thereby greatly improving the efficiency and economy in the process.

そして、側壁構造物3や内側貯槽6に不具合が生じると、不具合箇所を有する構造物の性能(ここでは、側壁構造物3の外圧耐荷性能又は内側貯槽6の貯液性能)のみが低下するために、不具合箇所を有する構造物の特定が容易になるとともに、不具合の原因特定も容易となる。例えば、液化ガスが漏れた場合には、貯液性能が低下していることになるから内側貯槽6に不具合があると特定できる。このように、地下式低温液化ガス貯槽1の側部に不具合が生じても、不具合箇所の特定が容易となり、的確な修復が可能となる。   And when a malfunction occurs in the side wall structure 3 and the inner storage tank 6, only the performance of the structure having the malfunctioning portion (here, the external pressure load resistance performance of the side wall structure 3 or the liquid storage performance of the inner storage tank 6) is deteriorated. In addition, it is easy to identify a structure having a defect location and to identify the cause of the defect. For example, when the liquefied gas leaks, the liquid storage performance is deteriorated, so that it can be specified that the inner storage tank 6 has a problem. As described above, even if a problem occurs in the side portion of the underground low-temperature liquefied gas storage tank 1, it becomes easy to identify the problem location and correct it.

さらに、側壁構造物3は外圧耐荷性能に必要な強度により、内側貯槽6は貯液性能に必要な強度によりそれぞれを構築することができるので、側壁構造物3及び内側貯槽6について合理的な設計が可能となり、鋼材やコンクリート等の材料の量を低減することが可能となる。   Further, since the side wall structure 3 can be constructed according to the strength required for external pressure load-bearing performance and the inner storage tank 6 can be constructed according to the strength required for liquid storage performance, the side wall structure 3 and the inner storage tank 6 can be rationally designed. It becomes possible to reduce the amount of materials such as steel and concrete.

側壁構造物3と内側貯槽6との間に空間5を設けることにより、側壁構造物3が損傷して止水性が低下することで地下水が空間5内に流入したり、内側貯槽6が損傷して貯液性能が劣化し液液化ガスが空間5内に流入した場合には、地下水や液化ガスはこの空間5内に貯留するので、上述した水検知センサーやガス検知センサーで漏洩をいち早く発見することが可能であり、人がこの空間5に入ることで不具合状況を目視確認することが可能となる。また、人や機械等が空間5内に入って損傷箇所を修理することができるので、短時間で、かつ、確実に修理をすることが可能となる。   By providing the space 5 between the side wall structure 3 and the inner storage tank 6, the side wall structure 3 is damaged and the water stoppage is lowered, so that groundwater flows into the space 5 or the inner storage tank 6 is damaged. When the liquid storage performance deteriorates and the liquefied gas flows into the space 5, since the groundwater and the liquefied gas are stored in the space 5, the above-described water detection sensor and gas detection sensor can quickly detect a leak. It is possible that the person enters the space 5 to visually check the malfunction state. In addition, since a person, a machine, or the like can enter the space 5 and repair the damaged portion, the repair can be performed in a short time and surely.

本発明に係る地下式低温液化ガス貯槽の概略構造図である。It is a schematic structure figure of an underground type low-temperature liquefied gas storage tank concerning the present invention. 本発明に係る地下式低温液化ガス貯槽の構築手順を示す図である。It is a figure which shows the construction procedure of the underground type | mold low-temperature liquefied gas storage tank which concerns on this invention. 本発明に係る地下式低温液化ガス貯槽の構築手順を示す図である。It is a figure which shows the construction procedure of the underground type | mold low-temperature liquefied gas storage tank which concerns on this invention. 本発明に係る地下式低温液化ガス貯槽の構築手順を示す図である。It is a figure which shows the construction procedure of the underground type | mold low-temperature liquefied gas storage tank which concerns on this invention. 本発明に係る地下式低温液化ガス貯槽の構築手順を示す図である。It is a figure which shows the construction procedure of the underground type | mold low-temperature liquefied gas storage tank which concerns on this invention. 本発明に係る地下式低温液化ガス貯槽の構築手順を示す図である。It is a figure which shows the construction procedure of the underground type | mold low-temperature liquefied gas storage tank which concerns on this invention. 従来の地下式低温液化ガス貯槽の概略構造図である。It is a schematic structure figure of the conventional underground type low-temperature liquefied gas storage tank.

符号の説明Explanation of symbols

1 地下式低温液化ガス貯槽
2 地盤
3 側壁構造物
4 排水層
5 空間
6 内側貯槽
7 内槽
8 保冷材
9 外槽
11 空洞部
31 側壁部
32 底版
33 屋根
34 連続地中壁
35 側壁躯体
36 保冷材
37 メンブレン
L 所定の間隔
DESCRIPTION OF SYMBOLS 1 Subsurface type cryogenic liquefied gas storage tank 2 Ground 3 Side wall structure 4 Drainage layer 5 Space 6 Inner storage tank 7 Inner tank 8 Cold insulation material 9 Outer tank 11 Cavity part 31 Side wall part 32 Bottom plate 33 Roof 34 Continuous underground wall 35 Side wall frame 36 Cold insulation Material 37 Membrane L Predetermined spacing

Claims (2)

地盤内に構築される地下式低温液化ガス貯槽であって、
地盤内に形成された空洞部の内壁を覆うように設置され、地盤の土圧及び地下水圧を単独で支持することが可能で地下水の浸入を防ぐ止水性能を有する、底版を含まない側壁構造物と、
前記側壁構造物の内方の底部地盤上に直接又は排水層を介して設置され、前記液化ガスを貯蔵するために必要な気密・液密性、断熱性及び自立性を有する内側貯槽とを互いに独立の構造物として設け
前記内側貯槽と前記側壁構造物との間に空間を設けたことを特徴とする地下式低温液化ガス貯槽。
An underground cryogenic liquefied gas storage tank built in the ground,
Side wall structure without bottom plate that is installed so as to cover the inner wall of the cavity formed in the ground, and can support the soil pressure and groundwater pressure of the ground independently and has a waterproof performance to prevent intrusion of groundwater. Things,
An inner storage tank that is installed directly or via a drainage layer on the inner bottom ground of the side wall structure and has airtightness, liquid tightness, heat insulation, and self-sustainability necessary for storing the liquefied gas. Provided as an independent structure ,
An underground cryogenic liquefied gas storage tank characterized in that a space is provided between the inner storage tank and the side wall structure .
前記内側貯槽は、
前記液化ガスを貯蔵するための内槽と、
前記内槽の外周を覆うように取り付けられる保冷材と、
前記保冷材の外周を覆うように設置される外槽とから構成されることを特徴とする請求項1に記載の地下式低温液化ガス貯槽。
The inner storage tank is
An inner tank for storing the liquefied gas;
A cold insulator attached to cover the outer periphery of the inner tank;
The underground low-temperature liquefied gas storage tank according to claim 1, comprising an outer tank installed so as to cover an outer periphery of the cold insulation material.
JP2007069077A 2007-03-16 2007-03-16 Underground cryogenic liquefied gas storage tank Expired - Fee Related JP5168960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069077A JP5168960B2 (en) 2007-03-16 2007-03-16 Underground cryogenic liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069077A JP5168960B2 (en) 2007-03-16 2007-03-16 Underground cryogenic liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JP2008232187A JP2008232187A (en) 2008-10-02
JP5168960B2 true JP5168960B2 (en) 2013-03-27

Family

ID=39905263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069077A Expired - Fee Related JP5168960B2 (en) 2007-03-16 2007-03-16 Underground cryogenic liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP5168960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442204A (en) * 2018-12-19 2019-03-08 中海石油气电集团有限责任公司 A kind of underground LNG storage tank with thin cushion cap
CN109519697A (en) * 2019-01-07 2019-03-26 中海石油气电集团有限责任公司 A kind of underground LNG storage tank and its method of construction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593798U (en) * 1978-12-22 1980-06-28
JPS5915087A (en) * 1982-07-19 1984-01-26 石川島播磨重工業株式会社 Underground type storage tank and its constructing method
JPS5922399U (en) * 1982-08-04 1984-02-10 株式会社大林組 cryogenic tank
JPS608598U (en) * 1983-06-30 1985-01-21 川崎重工業株式会社 Pit type double shell rigid tank
JP2555024Y2 (en) * 1990-09-11 1997-11-19 株式会社大林組 Underground storage tank structure
JP2822828B2 (en) * 1993-01-29 1998-11-11 鹿島建設株式会社 Underground low temperature liquefied gas tank
JP3399574B2 (en) * 1993-03-17 2003-04-21 東京瓦斯株式会社 How to build an underground tank
JP3224479B2 (en) * 1994-09-07 2001-10-29 清水建設株式会社 Structure of bottom plate of underground tank and construction method
JP3888564B2 (en) * 1997-08-28 2007-03-07 株式会社大林組 Construction method of underground structure
JP3845211B2 (en) * 1998-10-23 2006-11-15 大成建設株式会社 Low temperature underground tank structure
JP2003041608A (en) * 2001-07-27 2003-02-13 Taisei Corp Structure of underground tank

Also Published As

Publication number Publication date
JP2008232187A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
Park et al. Pilot study on the underground lined rock cavern for LNG storage
KR20120127541A (en) Cryogenic storage tank
JP5935203B2 (en) Liquid-banking integrated steel plate lining atmospheric concrete tank
JP5338064B2 (en) Method for preventing oxidation of groundwater in well and well, method for constructing emergency well and emergency well constructed by the method
JP5168960B2 (en) Underground cryogenic liquefied gas storage tank
JP3823253B2 (en) Semi-underground flat-bottom cylindrical liquid storage tank construction method and semi-underground flat-bottom cylindrical liquid storage tank
CN219548919U (en) Assembled lining type compressed gas energy storage warehouse
KR100840086B1 (en) Construction work method of compositeness rain water tank
JP2008208631A (en) Seismically reinforcing structure for pile foundation
US10513082B2 (en) Monolithically poured concrete CNG tank with internal support columns
CN115059869A (en) High-pressure hydrogen underground storage structure and storage mode
US5468089A (en) Buried storage tank with a single fluid-tight vessel for the confinement of a liquefied gas for example and arrangement of such storage tanks
JPS59205099A (en) Underground storage method and device for ammonia, etc.
FI108288B (en) Method for initiating operation of an underground storage cavity for low-boiling hydrocarbons and an installation for the storage of low-boiling hydrocarbons
US4869033A (en) Pressurized fluid storage tank
JPH11209998A (en) Impermeable construction method of underground structure by self-standing type double impermeable walls
KR100645324B1 (en) Caisson Supporting Structure for Deep Water
CN104631471B (en) For steel concrete, there is the prestressed support of side expanding and applying method thereof
CN217816168U (en) High-pressure hydrogen underground storage structure
JPH0448400Y2 (en)
JP5105158B2 (en) Bottom structure of underground tank
JPH08120968A (en) Underground tank
Chung et al. Feasibility study of underground LNG storage system in rock cavern
CN216041250U (en) Cofferdam for wading engineering
CN117266211B (en) Installation process of isolation protection structure of circular locking embedded part of underground diaphragm wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5168960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees