JP3845055B2 - Gas permeability measuring device - Google Patents

Gas permeability measuring device Download PDF

Info

Publication number
JP3845055B2
JP3845055B2 JP2002324939A JP2002324939A JP3845055B2 JP 3845055 B2 JP3845055 B2 JP 3845055B2 JP 2002324939 A JP2002324939 A JP 2002324939A JP 2002324939 A JP2002324939 A JP 2002324939A JP 3845055 B2 JP3845055 B2 JP 3845055B2
Authority
JP
Japan
Prior art keywords
temperature
pressure sensor
permeation pressure
measurement gas
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002324939A
Other languages
Japanese (ja)
Other versions
JP2004157068A (en
Inventor
良知 有賀
信行 柳澤
正博 高原
Original Assignee
株式会社東洋精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋精機製作所 filed Critical 株式会社東洋精機製作所
Priority to JP2002324939A priority Critical patent/JP3845055B2/en
Publication of JP2004157068A publication Critical patent/JP2004157068A/en
Application granted granted Critical
Publication of JP3845055B2 publication Critical patent/JP3845055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料膜を透過する測定ガスの透過率を測定するガス透過率測定装置に関する。
【0002】
【従来の技術】
従来、試料膜を装着する一対のセルからなるチャンバーと、試料膜の一方のセル内に測定ガスを加える測定ガスタンクと、試料膜の他方のセル内を減圧する真空ポンプと、試料膜を透過した測定ガスの圧力を測定する透過圧力センサーとからなるガス透過率測定装置は知られている。このガス透過率測定装置を使用して一定温度条件下でガス透過率を測定する場合には、ガス透過率測定装置の全体を恒温槽内に入れて装置全体を温度制御することにより測定を行っていた。
【0003】
【発明が解決しようとする課題】
しかし、ガス透過率測定装置の全体を恒温槽内に入れると、試料膜を透過した測定ガスの圧力を測定する透過圧力センサーも恒温槽内で温度制御されるため、透過圧力センサーの耐熱温度より高い温度でのガス透過率の測定ができないという課題があった。
また、装置全体を恒温槽内に入れるために恒温槽が大きくなり、温度制御する部分が増えることにより温度制御に時間を要すると共に、均一な温度分布に制御することが難しいという課題があった。
【0004】
【課題を解決するための手段】
そこで、本発明は、上記課題を解決するために、試料膜を装着する一対のセルからなるチャンバーと、前記試料膜の一方の一次側セル内に測定ガスを加える測定ガスタンクと、前記試料膜の他方の二次側セル内を減圧する真空ポンプと、前記試料膜を透過した測定ガスの圧力を測定する透過圧力センサーとからなるガス透過率測定装置であって、前記チャンバーと前記測定ガスタンクの温度を制御する温度制御部を備え、前記透過圧力センサーによる測定圧力を前記温度制御部と前記透過圧力センサーの部分の温度により補正して測定ガスの透過率を求めるようにしたガス透過率測定装置を提供するものである。
本発明によれば、前記チャンバーと前記測定ガスタンクは温度制御部により温度制御し、一方、前記透過圧力センサーの部分は室温又は透過圧力センサーの耐熱温度以内に温度制御することによって、前記透過圧力センサーの耐熱温度に左右されることなく前記チャンバーと前記測定ガスタンクの温度を制御することができる。また、温度制御部は装置全体を温度制御しないことにより前記温度制御部が小さくなるから、温度制御の時間を短縮でき、ガス透過率の試験全体の時間を短縮することができる。
【0005】
また、本発明は、前記温度制御部と前記透過圧力センサーの部分に温度センサーを設けた請求項1に記載のガス透過率測定装置を提供するものである。
本発明によれば、前記温度制御部と前記透過圧力センサーの部分の温度を測定して、前記透過圧力センサーによる測定圧力を補正して測定ガスの透過率を求めることができる。
【0006】
また、本発明は、前記透過圧力センサーと前記チャンバーを接続する配管内の体積が二次側の体積の1%以上の場合に、前記透過圧力センサーの部分を配管と透過圧力センサーに分けて前記測定圧力を温度補正するようにした請求項1又は2に記載のガス透過率測定装置を提供するものである。
本発明によれば、前記配管内の体積が二次側の体積の1%以上の場合に、前記配管の温度勾配による測定圧力の補正誤差を小さくして測定ガスの透過率を求めることができる。
【0007】
また、本発明は、前記透過圧力センサー側を透過圧力センサーの耐熱温度以内に温度制御する温度制御装置を備え、前記温度制御部と前記透過圧力センサー側に温度差がある場合に前記透過圧力センサーによる測定圧力を補正して測定ガスの透過率を求めるようにした請求項1乃至3のいずれかに記載のガス透過率測定装置を提供するものである。
本発明によれば、前記温度制御部と前記透過圧力センサー側を別々に温度制御するから透過圧力センサーの耐熱温度以上の試験温度で測定することができると共に、前記温度制御部と前記透過圧力センサー側の温度差が小さくなるように温度制御でき、補正レベルが小さくなり測定精度を向上させることができる。特に、試験温度が透過圧力センサーの耐熱温度以内の場合には、更に温度差を小さくして測定精度を向上させることができる。
【0008】
また、本発明は前記測定ガスタンクと前記チャンバーの間に外部制御で開閉可能なバルブを設けた請求項1乃至3のいずれかに記載のガス透過率測定装置を提供するものである。
本発明によれば、前記測定ガスタンクと前記チャンバーの間に設けたバルブの開閉を制御することにより、前記測定ガスタンク内に蓄えた試験圧力の測定ガスを試料膜に与えるタイミングを制御することができる。
【0009】
【発明の実施の形態】
本発明の実施の形態を図示の実施例に基づいて説明する。
本発明に係るガス透過率測定装置は、試料膜10を装着する一対のセル6,7からなるチャンバー1と、前記試料膜10の一方の一次側セル6内に測定ガス11を加える測定ガスタンク2と、前記試料膜10の他方の二次側セル7内を減圧する真空ポンプ3と、前記試料膜10を透過した測定ガス11の圧力を測定する透過圧力センサー4とからなるガス透過率測定装置であって、前記チャンバー1と前記測定ガスタンク2の温度を制御する温度制御部5を備え、前記透過圧力センサー4による測定圧力を前記温度制御部5と前記透過圧力センサー4の部分の温度により補正して測定ガスの透過率を求めるように構成してある。
【0010】
図1に示す実施例において、チャンバー1は、一次側セル6と二次側セル7の間に試料膜10をセットして密閉することができるようにしてある。
一次側セル6は、配管24を介して測定ガスタンク2と接続し、測定ガス11を試料膜10の一次側に加えることができるようにしてある。
二次側セル7の凹部23には濾紙20を設けてあると共に、配管19を介して透過圧力センサー4と接続してある。また、一次側セル6には、温度センサー12を設けてあり、温度制御部5内の測定ガスの温度を測定することができるように構成してある。
【0011】
図1に示す実施例において、測定ガスタンク2は、バルブ14を備えた配管25を介して測定ガス源9に接続してあると共に、タンク圧力センサー8を設けてある。バルブ14の開閉を制御することにより測定ガスタンク2内の測定ガス11の圧力を試験圧力まで上昇させて、配管24を介して試験圧力の測定ガス11を一次側セル6に供給することができるように構成してある。
【0012】
図1に示す実施例において、温度制御部5は、恒温槽からなり、チャンバー1と測定ガスタンク2を収納して試験温度に保つように温度制御している。ただし、図示の実施例のように測定ガスタンク2全体を恒温槽内に設ける場合に限らず、測定ガスタンク2は、タンクを恒温槽の外に引き出すと共に、該タンクとチャンバー1の間の恒温槽内に、チャンバー1内の測定ガス11の容積の数倍のタンクを新たに設けて、測定ガス11を試験温度に保つように構成することも可能である。
【0013】
図1に示す実施例において、透過圧力センサー4は、配管19を恒温槽の外に引き出して、温度制御部5である恒温槽の外の室温部30に設けてある。これにより、温度制御部5内の温度を透過圧力センサー4の耐熱温度以上に設定することができると共に、透過圧力センサー4は耐熱性を要しないから耐熱性の低い圧力センサーを使用することが可能になる。
透過圧力センサー4は、アンプ22を介してパソコン29に接続してあり、試料膜10を透過した測定ガス11の圧力を測定してガス透過率を求めるようにしてある。また、透過圧力センサー4には、温度センサー13を設けてあり、配管19を含む透過圧力センサー4の部分の測定ガス11の温度を測定することができるように構成してある。
【0014】
室温部30には撹拌ファン21を設けてあり、透過圧力センサー4の周囲の空気を撹拌することにより、温度制御部5内から配管19によって透過圧力センサー4に伝わる熱を減少させ、透過圧力センサー4の部分の温度を略一定に保つように構成してある。
【0015】
また、室温部30に透過圧力センサー4側(透過圧力センサー4と配管19)を透過圧力センサー4の耐熱温度以内に温度制御する温度制御装置を備え、温度制御部5と透過圧力センサー4側に温度差がある場合に透過圧力センサー4による測定圧力を補正して測定ガスの透過率を求めるように構成することもできる。温度制御装置は、試験温度が透過圧力センサー4の耐熱温度以内の場合には、透過圧力センサー4側を試験温度に制御することができ、透過圧力センサー4による測定圧力から測定ガスの透過率を直接求めることもできる。一方、試験温度が透過圧力センサー4の耐熱温度以外の場合には、温度制御装置は透過圧力センサー4側を透過圧力センサー4の耐熱温度以内に温度制御することにより、温度制御部5と透過圧力センサー4側の温度差を小さくして、測定圧力の補正による誤差を小さくすることができる。
【0016】
真空ポンプ3は、バルブ16を備えた配管26を介して配管25に接続され、試料膜10の一次側を減圧することができるようにしてあると共に、バルブ15を備えた配管27を介して配管19に接続され、試料膜10の二次側を減圧することができるようにしてある。さらに、配管26,27には、バルブ18を備えた排気管28を設けて、測定ガス11を排気することができるように構成してある。
【0017】
次に、図1に示す実施例において、ガス透過率の測定手順について説明する。
(1)試料膜10をチャンバー1にセットして、チャンバー1を密閉する。
(2)全てのバルブ14,15,16,18を閉じて真空ポンプ3の電源を入れる。
(3)バルブ15を開き、透過圧力センサー4の指示値が一定の真空値になるまで試料膜10の二次側を減圧する。
(4)バルブ16を開き、透過圧力センサー4及びタンク圧力センサー8の指示値が一定の真空値になるまで試料膜10の一次側及び二次側を減圧する。
(5)バルブ15,16を閉じて減圧作業を終了する。
(6)バルブ14を開き、測定ガス源9から測定ガスタンク2に測定ガス11を供給し、タンク圧力センサー8の指示値が試験圧力まで上昇したところでバルブ14を閉じ、ガス透過率測定の試験が開始される。
(7)二次側の圧力変化率が一定状態(定常状態)になると試験が終了する。
(8)試験終了後は、真空ポンプを停止して、バルブ15,16,18を開き測定ガス11を排気する。
【0018】
そして、透過圧力センサー4によって測定された二次側の測定ガス(V+V)の圧力P[kPa]から温度補正をして、試料膜10のガス透過率GTR(Gas Transmission Rate)を求める。
このとき、二次側セル7の容積(濾紙20の密度を含まない)をV[cm]、二次側の配管19と透過圧力センサー4の容積をV[cm]、温度センサー12の測定温度をT[K]、温度センサー13の測定温度をT[K]とすると、理想温度T[273K]に換算した二次側の測定ガス(V+V)の理想圧力P’[kPa]は数1に示す式により求めることができる。
【0019】
【数1】

Figure 0003845055
【0020】
定常状態時の理想圧力P’[kPa]の変化と、試料膜10に対して一次側の測定ガス11と二次側の測定ガスの圧力差P[kPa]から、試料膜10のガス透過率GTRは数2に示す式により求めることができる。
【0021】
【数2】
Figure 0003845055
【0022】
次に、図2に示す実施例について説明する。
17は、バルブであり、測定ガスタンク2とチャンバー1の間を接続する配管24に設けてある。バルブ17は、パソコン29により開閉を制御するようにしてあり、測定ガスタンク2内に蓄えた試験圧力の測定ガス11を試料膜10に加えるタイミングを制御することができるように構成してある。その他の構成は、図1に示す実施例と同様である。
【0023】
図2に示す実施例において、ガス透過率と拡散係数の測定手順について説明する。
(1)試料膜10をチャンバー1にセットして、チャンバー1を密閉する。
(2)全てのバルブ14,15,16,17,18を閉じて真空ポンプ3の電源を入れる。
(3)バルブ15を開き、透過圧力センサー4の指示値が一定の真空値になるまで試料膜10の二次側を減圧する。
(4)バルブ16,17を開き、透過圧力センサー4及びタンク圧力センサー8の指示値が一定の真空値になるまで試料膜10の一次側及び二次側を減圧する。
(5)バルブ15,16,17を閉じて減圧作業を終了する。
(6)バルブ14を開き、測定ガス源9から測定ガスタンク2に測定ガス11を供給し、タンク圧力センサー8の指示値が試験圧力まで上昇したところでバルブ14を閉じる。
(7)バルブ17をパソコン29の制御により開き、開いた瞬間より試験を開始し、経過時間に対する圧力を測定して、圧力変化率が一定状態になると試験が終了する。
(8)試験終了後は、真空ポンプを停止して、バルブ15,16,18を開き測定ガス11を排気する。
【0024】
この手順(7)で試料膜11の一次側に試験圧力の測定ガス11を加えると、測定ガス11は試料膜10の中に拡散して徐々に透過が始まり、図3に示すように透過圧力センサー4の測定圧力は試験開始後徐々に増加し、その後、圧力変化率が一定状態になり、時間に対して直線的に変化するようになる。この直線的に変化する部分の透過圧力センサー4の測定圧力を用いて、図1の実施例の場合と同様に試料膜10のガス透過率GTRを求めることができる。
【0025】
また、図3に示す測定圧力の変化曲線の直線部分の外挿線と、時間軸の交点より遅れ時間θを求め、数3に示す式により拡散係数Dを求めることができる。
【0026】
【数3】
Figure 0003845055
【0027】
また、ガス透過率GTRは、拡散係数Dと溶解度係数Sの積(GTR=S×D)であることから、ガス透過率GTRと拡散係数Dが求まることにより溶解度係数Sを求めることもできる。
【0028】
図1又は図2に示す実施例において、透過圧力センサー4とチャンバー1を接続する配管19内の体積が二次側の体積(V+V)の1%以上の場合に、透過圧力センサーの部分を配管19と透過圧力センサー4に分けて測定圧力を温度補正するようにしてある。
配管19の温度は、温度制御部5内の温度T[K]から透過圧力センサー4の温度T[K]まで変化するので、配管19内の体積が二次側の体積の1%以上の場合には上述の数1に示す換算式では換算誤差が大きくなるため、透過圧力センサーの部分の容積Vを配管19と透過圧力センサー4と分けて、数4に示す換算式により二次側の測定ガス11の圧力を理想圧力P’[kPa]に換算するようにしてある。
透過圧力センサー4の容積をV’[cm]、配管19の容積をV[cm]、配管19の温度をT(T=(T+T)/2)[K]としている。
【0029】
【数4】
Figure 0003845055
【0030】
例えば、試料膜10の二次側の各部の容積をV=1[cm]、V’=3.5[cm]としたとき、内径Φ=2[mm]、長さL=10[cm]の配管19を用いると、配管19内の体積(V)は二次側の体積(V+V’+V)の6.25%となるので、数4に示す換算式によって測定圧力を温度補正する。
ここで、配管19の温度変化を直線勾配として温度Tを計算しているため、配管19の実際の温度勾配との誤差が生じる。この温度Tの誤差が理想圧力P’に与える影響は、数4に示す換算式中のTの係数(V/(V+V’+V))に依存するので、これによる誤差を小さくするにはVを小さくすることが好ましい。
【0031】
【発明の効果】
以上の通り、本発明に係るガス透過率測定装置によれば、試料膜を装着する一対のセルからなるチャンバーと、前記試料膜の一方の一次側セル内に測定ガスを加える測定ガスタンクと、前記試料膜の他方の二次側セル内を減圧する真空ポンプと、前記試料膜を透過した測定ガスの圧力を測定する透過圧力センサーとからなるガス透過率測定装置であって、前記チャンバーと前記測定ガスタンクの温度を制御する温度制御部を備え、前記透過圧力センサーによる測定圧力を前記温度制御部と前記透過圧力センサーの部分の温度により補正して測定ガスの透過率を求めるようにした構成を有することにより、前記チャンバーと前記測定ガスタンクは温度制御部により温度制御し、一方、前記透過圧力センサーの部分は室温又は透過圧力センサーの耐熱温度以内に温度制御することによって、前記透過圧力センサーの耐熱温度に左右されることなく前記チャンバーと前記測定ガスタンクの温度を制御することができる。また、温度制御部は装置全体を温度制御しないことにより前記温度制御部が小さくなるから、温度制御の時間を短縮でき、ガス透過率の試験全体の時間を短縮することができる効果がある。
【0032】
また、本発明は、前記温度制御部と前記透過圧力センサーの部分に温度センサーを設けた請求項1に記載の構成を有することにより、前記温度制御部と前記透過圧力センサーの部分の温度を測定して、前記透過圧力センサーによる測定圧力を補正して測定ガスの透過率を求めることができる効果がある。
【0033】
また、本発明は、前記透過圧力センサーと前記チャンバーを接続する配管内の体積が二次側の体積の1%以上の場合に、前記透過圧力センサーの部分を配管と透過圧力センサーに分けて前記測定圧力を温度補正するようにした請求項1又は2に記載の構成を有することにより、前記配管内の体積が二次側の体積の1%以上の場合に、前記配管の温度勾配による測定圧力の補正誤差を小さくして測定ガスの測定率を求めることができる効果がある。
【0034】
また、本発明は、前記透過圧力センサー側を透過圧力センサーの耐熱温度以内に温度制御する温度制御装置を備え、前記温度制御部と前記透過圧力センサー側に温度差がある場合に前記透過圧力センサーによる測定圧力を補正して測定ガスの透過率を求めるようにした請求項1乃至3のいずれかに記載の構成を有することにより、前記温度制御部と前記透過圧力センサー側を別々に温度制御するから透過圧力センサーの耐熱温度以上の試験温度で測定することができると共に、前記温度制御部と前記透過圧力センサー側の温度差が小さくなるように温度制御でき、補正レベルが小さくなり測定精度を向上させることができる。特に、試験温度が透過圧力センサーの耐熱温度以内の場合には、更に温度差を小さくして測定精度を向上させることができる効果がある。
【0035】
また、本発明は前記測定ガスタンクと前記チャンバーの間にバルブを設けた請求項1乃至3のいずれかに記載の構成を有することにより、前記測定ガスタンクと前記チャンバーの間に設けたバルブの開閉を制御することによって、前記測定ガスタンク内に蓄えた試験圧力の測定ガスを試料膜に与えるタイミングを制御することができる効果がある。
【図面の簡単な説明】
【図1】 本発明ガス透過率測定装置の一実施例を示す構成図
【図2】 他の実施例を示す構成図
【図3】 試料膜の二次側の圧力変化を示す図
【符号の説明】
1 チャンバー
2 測定ガスタンク
3 真空ポンプ
4 透過圧力センサー
5 温度制御部
6 一次側セル
7 二次側セル
8 タンク圧力センサー
9 測定ガス源
10 試料膜
11 測定ガス
12,13 温度センサー
14,15,16,17,18 バルブ
19 配管
20 濾紙
21 撹拌ファン
22 アンプ
23 凹部
24,25,26,27 配管
28 排気管
29 パソコン
30 室温部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas permeability measuring apparatus that measures the permeability of a measurement gas that passes through a sample membrane.
[0002]
[Prior art]
Conventionally, a chamber composed of a pair of cells on which a sample film is mounted, a measurement gas tank for adding a measurement gas into one cell of the sample film, a vacuum pump for depressurizing the other cell of the sample film, and the sample film permeated A gas permeability measuring device comprising a permeation pressure sensor that measures the pressure of a measurement gas is known. When measuring gas permeability under a constant temperature condition using this gas permeability measuring device, the entire gas permeability measuring device is placed in a thermostatic chamber and the temperature is controlled by controlling the entire device. It was.
[0003]
[Problems to be solved by the invention]
However, when the entire gas permeability measuring device is placed in a thermostatic chamber, the temperature of the permeation pressure sensor that measures the pressure of the measurement gas that has permeated the sample membrane is also controlled in the thermostatic chamber. There was a problem that the gas permeability could not be measured at a high temperature.
Moreover, since the thermostat bath becomes large in order to put the entire apparatus in the thermostat bath, and there are more portions for temperature control, it takes time to control the temperature, and it is difficult to control the temperature distribution uniformly.
[0004]
[Means for Solving the Problems]
Therefore, in order to solve the above problems, the present invention provides a chamber composed of a pair of cells on which a sample film is mounted, a measurement gas tank for adding a measurement gas into one of the primary cells of the sample film, and the sample film A gas permeability measuring device comprising a vacuum pump for reducing the pressure in the other secondary cell and a permeation pressure sensor for measuring the pressure of the measurement gas that has permeated through the sample membrane, wherein the temperature of the chamber and the measurement gas tank A gas permeability measuring device comprising a temperature control unit for controlling the pressure, and correcting the measurement pressure by the permeation pressure sensor with the temperature of the temperature control unit and the permeation pressure sensor part to obtain the permeability of the measurement gas It is to provide.
According to the present invention, the temperature of the chamber and the measurement gas tank is controlled by a temperature control unit, while the portion of the permeation pressure sensor is controlled at a room temperature or within a heat resistant temperature of the permeation pressure sensor, thereby the permeation pressure sensor. The temperature of the chamber and the measurement gas tank can be controlled without being affected by the heat resistant temperature of the gas. In addition, since the temperature control unit becomes smaller by not controlling the temperature of the entire apparatus, the temperature control unit can be shortened, and the time for the entire gas permeability test can be shortened.
[0005]
The present invention also provides the gas permeability measuring apparatus according to claim 1, wherein temperature sensors are provided in the temperature control section and the permeation pressure sensor.
According to the present invention, the temperature of the temperature control unit and the permeation pressure sensor can be measured, and the measurement gas permeability can be determined by correcting the measurement pressure by the permeation pressure sensor.
[0006]
In the present invention, when the volume in the pipe connecting the permeation pressure sensor and the chamber is 1% or more of the volume on the secondary side, the permeation pressure sensor portion is divided into the pipe and the permeation pressure sensor. The gas permeability measuring apparatus according to claim 1 or 2, wherein the measurement pressure is temperature-corrected.
According to the present invention, when the volume in the pipe is 1% or more of the volume on the secondary side, the measurement gas permeability can be obtained by reducing the correction error of the measurement pressure due to the temperature gradient of the pipe. .
[0007]
In addition, the present invention includes a temperature control device that controls the temperature of the permeation pressure sensor within a heat resistant temperature of the permeation pressure sensor, and the permeation pressure sensor when there is a temperature difference between the temperature control unit and the permeation pressure sensor. The gas permeability measuring device according to any one of claims 1 to 3, wherein the measuring gas permeability is corrected to obtain the measuring gas permeability.
According to the present invention, since the temperature control unit and the permeation pressure sensor side are separately temperature controlled, the temperature control unit and the permeation pressure sensor can be measured at a test temperature equal to or higher than the heat resistance temperature of the permeation pressure sensor. The temperature can be controlled so that the temperature difference on the side becomes small, the correction level becomes small, and the measurement accuracy can be improved. In particular, when the test temperature is within the heat resistance temperature of the transmission pressure sensor, the temperature difference can be further reduced to improve the measurement accuracy.
[0008]
The present invention also provides a gas permeability measuring device according to any one of claims 1 to 3, wherein a valve that can be opened and closed by external control is provided between the measurement gas tank and the chamber.
According to the present invention, by controlling the opening and closing of a valve provided between the measurement gas tank and the chamber, it is possible to control the timing at which the measurement gas having the test pressure stored in the measurement gas tank is applied to the sample film. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described based on the illustrated examples.
The gas permeability measuring apparatus according to the present invention includes a chamber 1 including a pair of cells 6 and 7 in which a sample film 10 is mounted, and a measurement gas tank 2 that adds a measurement gas 11 into one primary cell 6 of the sample film 10. A gas permeability measuring device comprising: a vacuum pump 3 that depressurizes the other secondary cell 7 of the sample film 10; and a permeation pressure sensor 4 that measures the pressure of the measurement gas 11 that has permeated the sample film 10. A temperature control unit 5 for controlling the temperature of the chamber 1 and the measurement gas tank 2, and the pressure measured by the permeation pressure sensor 4 is corrected by the temperature of the temperature control unit 5 and the permeation pressure sensor 4. Thus, the transmittance of the measurement gas is obtained.
[0010]
In the embodiment shown in FIG. 1, the chamber 1 is configured so that a sample film 10 can be set and sealed between a primary side cell 6 and a secondary side cell 7.
The primary cell 6 is connected to the measurement gas tank 2 via a pipe 24 so that the measurement gas 11 can be added to the primary side of the sample film 10.
A filter paper 20 is provided in the concave portion 23 of the secondary cell 7 and is connected to the permeation pressure sensor 4 through a pipe 19. Moreover, the temperature sensor 12 is provided in the primary side cell 6, and it is comprised so that the temperature of the measurement gas in the temperature control part 5 can be measured.
[0011]
In the embodiment shown in FIG. 1, the measurement gas tank 2 is connected to the measurement gas source 9 via a pipe 25 provided with a valve 14 and is provided with a tank pressure sensor 8. By controlling the opening / closing of the valve 14, the pressure of the measurement gas 11 in the measurement gas tank 2 is increased to the test pressure, and the measurement gas 11 of the test pressure can be supplied to the primary cell 6 via the pipe 24. It is configured.
[0012]
In the embodiment shown in FIG. 1, the temperature control unit 5 includes a thermostatic bath, and controls the temperature so that the chamber 1 and the measurement gas tank 2 are housed and kept at the test temperature. However, the measurement gas tank 2 is not limited to the case where the entire measurement gas tank 2 is provided in the thermostat as in the illustrated embodiment, and the measurement gas tank 2 draws the tank out of the thermostat and is in the thermostat between the tank and the chamber 1. It is also possible to provide a tank several times the volume of the measurement gas 11 in the chamber 1 so as to keep the measurement gas 11 at the test temperature.
[0013]
In the embodiment shown in FIG. 1, the permeation pressure sensor 4 is provided in the room temperature portion 30 outside the thermostatic chamber which is the temperature control unit 5 by pulling the pipe 19 out of the thermostatic bath. As a result, the temperature in the temperature control unit 5 can be set higher than the heat resistance temperature of the permeation pressure sensor 4, and since the permeation pressure sensor 4 does not require heat resistance, a pressure sensor with low heat resistance can be used. become.
The permeation pressure sensor 4 is connected to a personal computer 29 through an amplifier 22 and measures the pressure of the measurement gas 11 that has permeated through the sample film 10 to obtain the gas permeability. Further, the permeation pressure sensor 4 is provided with a temperature sensor 13 so that the temperature of the measurement gas 11 in the permeation pressure sensor 4 including the pipe 19 can be measured.
[0014]
A stirring fan 21 is provided in the room temperature portion 30, and the heat transmitted from the temperature control unit 5 to the permeation pressure sensor 4 through the pipe 19 is reduced by agitating the air around the permeation pressure sensor 4. The temperature of the portion 4 is configured to be kept substantially constant.
[0015]
Further, the room temperature portion 30 is provided with a temperature control device for controlling the temperature of the permeation pressure sensor 4 side (the permeation pressure sensor 4 and the pipe 19) within the heat resistance temperature of the permeation pressure sensor 4, and the temperature control unit 5 and the permeation pressure sensor 4 side. When there is a temperature difference, the measurement pressure by the permeation pressure sensor 4 can be corrected to obtain the measurement gas permeability. When the test temperature is within the heat resistance temperature of the permeation pressure sensor 4, the temperature control device can control the permeation pressure sensor 4 side to the test temperature, and change the permeability of the measurement gas from the pressure measured by the permeation pressure sensor 4. You can also ask directly. On the other hand, when the test temperature is other than the heat resistance temperature of the permeation pressure sensor 4, the temperature control device controls the temperature of the permeation pressure sensor 4 within the heat resistance temperature of the permeation pressure sensor 4. The temperature difference on the sensor 4 side can be reduced, and the error due to the correction of the measured pressure can be reduced.
[0016]
The vacuum pump 3 is connected to a pipe 25 via a pipe 26 provided with a valve 16 so that the primary side of the sample film 10 can be depressurized and is connected via a pipe 27 provided with a valve 15. 19, the secondary side of the sample film 10 can be depressurized. Further, the pipes 26 and 27 are provided with an exhaust pipe 28 provided with a valve 18 so that the measurement gas 11 can be exhausted.
[0017]
Next, in the embodiment shown in FIG. 1, a measurement procedure for gas permeability will be described.
(1) The sample film 10 is set in the chamber 1 and the chamber 1 is sealed.
(2) Close all the valves 14, 15, 16, 18 and turn on the vacuum pump 3.
(3) Open the valve 15 and depressurize the secondary side of the sample film 10 until the indicated value of the permeation pressure sensor 4 reaches a certain vacuum value.
(4) The valve 16 is opened, and the primary side and the secondary side of the sample film 10 are depressurized until the indicated values of the permeation pressure sensor 4 and the tank pressure sensor 8 become constant vacuum values.
(5) The valves 15 and 16 are closed to finish the pressure reducing operation.
(6) The valve 14 is opened, the measurement gas 11 is supplied from the measurement gas source 9 to the measurement gas tank 2, the valve 14 is closed when the indicated value of the tank pressure sensor 8 rises to the test pressure, and the gas permeability measurement test is performed. Be started.
(7) The test ends when the secondary side pressure change rate reaches a constant state (steady state).
(8) After completion of the test, the vacuum pump is stopped, the valves 15, 16, 18 are opened, and the measurement gas 11 is exhausted.
[0018]
Then, temperature correction is performed from the pressure P [kPa] of the secondary measurement gas (V 1 + V 2 ) measured by the permeation pressure sensor 4 to obtain a gas transmission rate (GTR) of the sample film 10. .
At this time, the volume of the secondary side cell 7 (not including the density of the filter paper 20) is V 1 [cm 3 ], the volume of the secondary side pipe 19 and the permeation pressure sensor 4 is V 2 [cm 3 ], and the temperature sensor If the measured temperature of 12 is T 1 [K] and the measured temperature of the temperature sensor 13 is T 2 [K], the ideal of the secondary measurement gas (V 1 + V 2 ) converted to the ideal temperature T 0 [273K]. The pressure P ′ [kPa] can be obtained by the equation shown in Equation 1.
[0019]
[Expression 1]
Figure 0003845055
[0020]
From the change in the ideal pressure P ′ [kPa] in the steady state and the pressure difference P d [kPa] between the measurement gas 11 on the primary side and the measurement gas on the secondary side with respect to the sample film 10, the gas permeation of the sample film 10. The rate GTR can be obtained by the equation shown in Equation 2.
[0021]
[Expression 2]
Figure 0003845055
[0022]
Next, the embodiment shown in FIG. 2 will be described.
Reference numeral 17 denotes a valve, which is provided in a pipe 24 connecting the measurement gas tank 2 and the chamber 1. The valve 17 is controlled to be opened and closed by a personal computer 29, and is configured so that the timing at which the measurement gas 11 having the test pressure stored in the measurement gas tank 2 is applied to the sample film 10 can be controlled. Other configurations are the same as those of the embodiment shown in FIG.
[0023]
In the embodiment shown in FIG. 2, a procedure for measuring gas permeability and diffusion coefficient will be described.
(1) The sample film 10 is set in the chamber 1 and the chamber 1 is sealed.
(2) Close all the valves 14, 15, 16, 17, 18 and turn on the vacuum pump 3.
(3) Open the valve 15 and depressurize the secondary side of the sample film 10 until the indicated value of the permeation pressure sensor 4 reaches a certain vacuum value.
(4) The valves 16 and 17 are opened, and the primary side and the secondary side of the sample film 10 are depressurized until the indicated values of the permeation pressure sensor 4 and the tank pressure sensor 8 become constant vacuum values.
(5) The valves 15, 16, and 17 are closed to finish the pressure reducing operation.
(6) The valve 14 is opened, the measurement gas 11 is supplied from the measurement gas source 9 to the measurement gas tank 2, and the valve 14 is closed when the indicated value of the tank pressure sensor 8 rises to the test pressure.
(7) The valve 17 is opened under the control of the personal computer 29, the test is started from the moment it is opened, the pressure with respect to the elapsed time is measured, and the test is terminated when the pressure change rate becomes a constant state.
(8) After completion of the test, the vacuum pump is stopped, the valves 15, 16, 18 are opened, and the measurement gas 11 is exhausted.
[0024]
When the measurement gas 11 of the test pressure is added to the primary side of the sample film 11 in this procedure (7), the measurement gas 11 diffuses into the sample film 10 and gradually begins to permeate, and the permeation pressure is shown in FIG. The measured pressure of the sensor 4 gradually increases after the start of the test, and then the pressure change rate becomes constant and changes linearly with time. Using the measurement pressure of the permeation pressure sensor 4 in the linearly changing portion, the gas permeability GTR of the sample film 10 can be obtained in the same manner as in the embodiment of FIG.
[0025]
Further, the lag time θ is obtained from the intersection of the linear portion of the change curve of the measured pressure shown in FIG. 3 and the time axis, and the diffusion coefficient D can be obtained from the equation shown in Equation 3.
[0026]
[Equation 3]
Figure 0003845055
[0027]
Further, since the gas permeability GTR is a product of the diffusion coefficient D and the solubility coefficient S (GTR = S × D), the solubility coefficient S can be obtained by obtaining the gas permeability GTR and the diffusion coefficient D.
[0028]
In the embodiment shown in FIG. 1 or FIG. 2, when the volume in the pipe 19 connecting the permeation pressure sensor 4 and the chamber 1 is 1% or more of the secondary side volume (V 1 + V 2 ), the permeation pressure sensor The portion is divided into the pipe 19 and the permeation pressure sensor 4 so that the measured pressure is temperature-corrected.
Temperature of the pipe 19, since changes from the temperature T 1 [K] of the temperature control unit 5 to the temperature T 2 [K] of the transmitted pressure sensor 4, the volume of the pipe 19 is 1% or more of the volume of the secondary side In this case, since the conversion error is large in the conversion formula shown in the above formula 1, the volume V 2 of the permeation pressure sensor portion is divided into the pipe 19 and the permeation pressure sensor 4, and the second order is calculated by the conversion formula shown in the formula 4. The pressure of the measurement gas 11 on the side is converted into an ideal pressure P ′ [kPa].
The volume of the permeation pressure sensor 4 is V 2 ′ [cm 3 ], the volume of the pipe 19 is V 3 [cm 3 ], and the temperature of the pipe 19 is T 3 (T 3 = (T 1 + T 2 ) / 2) [K]. It is said.
[0029]
[Expression 4]
Figure 0003845055
[0030]
For example, when the volume of each part on the secondary side of the sample film 10 is V 1 = 1 [cm 3 ] and V 2 ′ = 3.5 [cm 3 ], the inner diameter Φ = 2 [mm] and the length L = When the pipe 19 of 10 [cm] is used, the volume (V 3 ) in the pipe 19 is 6.25% of the secondary volume (V 1 + V 2 ′ + V 3 ). The temperature of the measured pressure is corrected by
Here, since the calculated temperature T 3 as a linear gradient of temperature change of the pipe 19, the error between the actual temperature gradient of the pipe 19 occurs. The influence of the error of the temperature T 3 on the ideal pressure P ′ depends on the coefficient (V 3 / (V 1 + V 2 ′ + V 3 )) of T 3 in the conversion formula shown in Equation 4, so that the error caused thereby it is preferable to a smaller to reduce the V 3.
[0031]
【The invention's effect】
As described above, according to the gas permeability measuring device of the present invention, a chamber composed of a pair of cells on which a sample film is mounted, a measurement gas tank for adding a measurement gas into one primary cell of the sample film, A gas permeability measuring device comprising a vacuum pump for reducing the pressure in the other secondary cell of the sample film, and a permeation pressure sensor for measuring the pressure of the measurement gas that has permeated the sample film, wherein the chamber and the measurement A temperature control unit for controlling the temperature of the gas tank is provided, and a measurement gas permeability is obtained by correcting the measurement pressure by the permeation pressure sensor with the temperature of the temperature control unit and the permeation pressure sensor. Thus, the temperature of the chamber and the measurement gas tank is controlled by a temperature controller, while the portion of the permeation pressure sensor is the room temperature or the permeation pressure sensor. By controlling the temperature within the thermal temperature, it is possible to control the temperature of the measuring gas tank and the chamber without being influenced by the heat resistance temperature of the transmission pressure sensor. In addition, since the temperature control unit becomes smaller by not controlling the temperature of the entire apparatus, the temperature control time can be shortened, and the time required for the entire gas permeability test can be shortened.
[0032]
In addition, the present invention has a configuration according to claim 1 in which a temperature sensor is provided in the temperature control unit and the permeation pressure sensor, thereby measuring the temperature of the temperature control unit and the permeation pressure sensor. Thus, there is an effect that the measurement gas permeability can be obtained by correcting the measurement pressure by the permeation pressure sensor.
[0033]
In the present invention, when the volume in the pipe connecting the permeation pressure sensor and the chamber is 1% or more of the volume on the secondary side, the permeation pressure sensor portion is divided into the pipe and the permeation pressure sensor. The measurement pressure due to the temperature gradient of the pipe when the volume in the pipe is 1% or more of the volume on the secondary side by having the configuration according to claim 1 or 2 wherein the measurement pressure is temperature-corrected. It is possible to obtain the measurement rate of the measurement gas by reducing the correction error.
[0034]
In addition, the present invention includes a temperature control device that controls the temperature of the permeation pressure sensor within a heat resistant temperature of the permeation pressure sensor, and the permeation pressure sensor when there is a temperature difference between the temperature control unit and the permeation pressure sensor. The temperature control unit and the permeation pressure sensor side are separately temperature controlled by having the configuration according to any one of claims 1 to 3, wherein the measurement gas permeability is corrected to obtain the measurement gas permeability. Can be measured at a test temperature equal to or higher than the heat resistance temperature of the permeation pressure sensor, and temperature control can be performed so that the temperature difference between the temperature control unit and the permeation pressure sensor is small, so that the correction level is reduced and measurement accuracy is improved. Can be made. In particular, when the test temperature is within the heat resistance temperature of the permeation pressure sensor, there is an effect that the measurement accuracy can be improved by further reducing the temperature difference.
[0035]
In addition, the present invention has a configuration according to any one of claims 1 to 3 in which a valve is provided between the measurement gas tank and the chamber, thereby opening and closing the valve provided between the measurement gas tank and the chamber. By controlling, there is an effect that it is possible to control the timing at which the measurement gas having the test pressure stored in the measurement gas tank is applied to the sample film.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the gas permeability measuring apparatus of the present invention. FIG. 2 is a block diagram showing another embodiment. FIG. 3 is a diagram showing a change in pressure on the secondary side of a sample membrane. Explanation】
DESCRIPTION OF SYMBOLS 1 Chamber 2 Measurement gas tank 3 Vacuum pump 4 Transmission pressure sensor 5 Temperature control part 6 Primary side cell 7 Secondary side cell 8 Tank pressure sensor 9 Measurement gas source 10 Sample film 11 Measurement gas 12, 13 Temperature sensors 14, 15, 16, 17, 18 Valve 19 Piping 20 Filter paper 21 Stirring fan 22 Amplifier 23 Recesses 24, 25, 26, 27 Piping 28 Exhaust pipe 29 PC 30 Room temperature section

Claims (5)

試料膜を装着する一対のセルからなるチャンバーと、前記試料膜の一方の一次側セル内に測定ガスを加える測定ガスタンクと、前記試料膜の他方の二次側セル内を減圧する真空ポンプと、前記試料膜を透過した測定ガスの圧力を測定する透過圧力センサーとからなるガス透過率測定装置であって、前記チャンバーと前記測定ガスタンクの温度を制御する温度制御部を備え、前記透過圧力センサーによる測定圧力を前記温度制御部と前記透過圧力センサーの部分の温度により補正して測定ガスの透過率を求めるようにしたガス透過率測定装置。A chamber composed of a pair of cells on which the sample film is mounted, a measurement gas tank for adding a measurement gas into one primary side cell of the sample film, a vacuum pump for depressurizing the other secondary side cell of the sample film, A gas permeability measuring device comprising a permeation pressure sensor for measuring the pressure of a measurement gas that has permeated the sample membrane, comprising a temperature control unit that controls the temperature of the chamber and the measurement gas tank, and the permeation pressure sensor A gas permeability measuring device that obtains the measured gas permeability by correcting the measured pressure with the temperature of the temperature controller and the permeation pressure sensor. 前記温度制御部と前記透過圧力センサーの部分に温度センサーを設けた請求項1に記載のガス透過率測定装置。The gas permeability measuring apparatus according to claim 1, wherein a temperature sensor is provided in a portion of the temperature control unit and the permeation pressure sensor. 前記透過圧力センサーと前記チャンバーを接続する配管内の体積が二次側の体積の1%以上の場合に、前記透過圧力センサーの部分を配管と透過圧力センサーに分けて前記測定圧力を温度補正するようにした請求項1又は2に記載のガス透過率測定装置。When the volume in the pipe connecting the permeation pressure sensor and the chamber is 1% or more of the volume on the secondary side, the permeation pressure sensor portion is divided into the pipe and the permeation pressure sensor, and the measured pressure is temperature corrected. The gas permeability measuring apparatus according to claim 1 or 2, wherein the gas permeability measuring apparatus according to claim 1 or 2 is used. 前記透過圧力センサー側を透過圧力センサーの耐熱温度以内に温度制御する温度制御装置を備え、前記温度制御部と前記透過圧力センサー側に温度差がある場合に前記透過圧力センサーによる測定圧力を補正して測定ガスの透過率を求めるようにした請求項1乃至3のいずれかに記載のガス透過率測定装置。A temperature control device is provided for controlling the temperature of the permeation pressure sensor within the permissible temperature of the permeation pressure sensor, and corrects the measurement pressure by the permeation pressure sensor when there is a temperature difference between the temperature control unit and the permeation pressure sensor side. The gas permeability measuring device according to claim 1, wherein the permeability of the measurement gas is obtained. 前記測定ガスタンクと前記チャンバーの間に外部制御で開閉可能なバルブを設けた請求項1乃至4のいずれかに記載のガス透過率測定装置。The gas permeability measuring device according to any one of claims 1 to 4, wherein a valve that can be opened and closed by external control is provided between the measurement gas tank and the chamber.
JP2002324939A 2002-11-08 2002-11-08 Gas permeability measuring device Expired - Fee Related JP3845055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324939A JP3845055B2 (en) 2002-11-08 2002-11-08 Gas permeability measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324939A JP3845055B2 (en) 2002-11-08 2002-11-08 Gas permeability measuring device

Publications (2)

Publication Number Publication Date
JP2004157068A JP2004157068A (en) 2004-06-03
JP3845055B2 true JP3845055B2 (en) 2006-11-15

Family

ID=32804329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324939A Expired - Fee Related JP3845055B2 (en) 2002-11-08 2002-11-08 Gas permeability measuring device

Country Status (1)

Country Link
JP (1) JP3845055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015030A1 (en) * 2018-07-16 2020-01-23 济南兰光机电技术有限公司 Oxygen permeability testing device, system, and method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821093B1 (en) * 2006-02-15 2018-04-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method and device for measuring permeation
JP2009193809A (en) * 2008-02-14 2009-08-27 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Solid oxide fuel cell positive electrode material breathability measuring device
JP2011043386A (en) * 2009-08-20 2011-03-03 Gtr Tec Corp Transmission quantity measuring instrument having freezing trap
JP2011242354A (en) * 2010-05-21 2011-12-01 Shinshu Univ Evaluation method of water vapor barrier property
JP5553287B2 (en) * 2011-01-27 2014-07-16 株式会社 テクノ・アイ Water vapor permeability measuring device and measuring method
KR101254737B1 (en) 2011-10-04 2013-04-26 대한민국 Semi-automatical instrument deivce of permeability for wood
KR101481386B1 (en) 2013-09-06 2015-01-14 한국지질자원연구원 Apparatus and method of measuring effective porosity using radon
CN104237101B (en) * 2014-09-18 2017-05-10 中国石油大学(华东) Bridge imitation and flow measurement avoidance type cross rock core permeability measurement method and device
CN104359747B (en) * 2014-10-27 2016-10-26 中国地质调查局油气资源调查中心 A kind of preparation and measurement devices and methods therefor of frozen soil sample
CN108344674B (en) * 2017-01-25 2023-12-26 济南思克测试技术有限公司 Automatic gas permeability testing system and method based on artificial intelligence
CR20170075A (en) * 2017-03-01 2017-06-02 Univ Costa Rica AUTOMATIC MICROFILTRATION EVALUATOR
DE102017128269A1 (en) * 2017-11-29 2019-05-29 Rheinische Friedrich-Wilhelms-Universität Bonn Measuring cell for the determination of diffusion coefficients and solubilities of gases
CN109374493B (en) * 2018-10-09 2021-06-25 南京精浩创纺织科技有限公司 Gas permeability detection device is used in waterproof glue production
JP7311961B2 (en) * 2018-11-30 2023-07-20 株式会社東洋精機製作所 Gas permeability measuring method and gas permeability measuring device
JP7300822B2 (en) * 2018-12-03 2023-06-30 株式会社東洋精機製作所 Gas permeability measuring device
CN112284994A (en) * 2020-09-29 2021-01-29 济南兰光机电技术有限公司 Gas permeation testing system and method
JP7349478B2 (en) * 2021-08-20 2023-09-22 株式会社東洋精機製作所 Water vapor permeability measuring method and water vapor permeability measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015030A1 (en) * 2018-07-16 2020-01-23 济南兰光机电技术有限公司 Oxygen permeability testing device, system, and method

Also Published As

Publication number Publication date
JP2004157068A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3845055B2 (en) Gas permeability measuring device
JP4395186B2 (en) Flow control device and method for performing flow verification by internal isothermal control of volume
CN105445007B (en) A kind of gas turbine gaseous fuel control valve Flow characteristic test system and method
JP5553287B2 (en) Water vapor permeability measuring device and measuring method
WO2008035159A3 (en) Method and device for measuring the gas permeability through films and walls of containers
KR20100114079A (en) Method and apparatus for in situ testing of gas flow controllers
JP2009063553A (en) Vacuum gauge apparatus enabling calibration and test without moving, and utilization method therefor
TW201142268A (en) Apparatus for measuring water vapor permeability and method for measuring water vapor permeability
JP2019520576A (en) Method, system and apparatus for mass flow verification based on choke flow
JP4994494B2 (en) Differential pressure measurement method and apparatus
WO2017181392A1 (en) Method for measuring diffusion coefficient of carbon dioxide in crude oil
EP2981764B1 (en) In situ probe with improved diagnostics and compensation
JP4923957B2 (en) Leak inspection device
WO2003012849A1 (en) Heat treatment apparatus
JP2000039347A (en) Flowrate inspection device
CN109596566A (en) A kind of gas detection absorption inside cavity temperature and pressure integrated control unit
JP2500788B2 (en) Mass flow controller device and its calibration method
KR100752364B1 (en) Method and apparatus for generating gas which contains low concentration moisture
CN109211726B (en) On-line resonant densimeter calibrating device
JP2003318172A (en) Film forming method, deducing method for film forming and processing time correction expression, film forming device, and program
JPH0572094A (en) Continuous measurement system for polution gas
CN113970451A (en) Parameter testing method and system for pipeline gas pressure regulator
JPH04329337A (en) Measuring method for gas permeability of film
JP6421064B2 (en) Gas leak inspection device
CN221302467U (en) Calibrating device for mass flow verifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Ref document number: 3845055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees