JP3844609B2 - 冷却されるタービンのディストリビュータのブレード - Google Patents

冷却されるタービンのディストリビュータのブレード Download PDF

Info

Publication number
JP3844609B2
JP3844609B2 JP33545198A JP33545198A JP3844609B2 JP 3844609 B2 JP3844609 B2 JP 3844609B2 JP 33545198 A JP33545198 A JP 33545198A JP 33545198 A JP33545198 A JP 33545198A JP 3844609 B2 JP3844609 B2 JP 3844609B2
Authority
JP
Japan
Prior art keywords
blade
platform
liner
orifice
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33545198A
Other languages
English (en)
Other versions
JPH11229812A (ja
Inventor
ロラン・ロジエ・ジヤツク・ポルトフエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of JPH11229812A publication Critical patent/JPH11229812A/ja
Application granted granted Critical
Publication of JP3844609B2 publication Critical patent/JP3844609B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タービンエンジン、特に航空機のタービンエンジンの高圧タービンのディストリビュータに関する。
【0002】
【従来の技術】
単数または複数のタービンの入口における温度レベルを上げることにより、タービンエンジンの性能を最適化できることが知られている。この温度のレベルを上げることにより、比消費量の節約、すなわち飛行機の飛行範囲の拡大、あるいは搭載燃料の量の削減が可能である。この温度の上昇により、タービンエンジンの推力を増加させることも可能である。現在の最新型エンジンは1577℃のタービン入口温度に耐えるが、1950年に設計されたタービンエンジン(例えばATAR)では930℃までにしか耐えない。
【0003】
このような温度レベルに到達するためには、案内羽根あるいはディストリビュータ(distributeur)のブレード(aubes)およびタービンホイールの冷却装置を利用することが必要である。このために、冷却空気の整然とした循環が可能な回路をブレードの内部に設け、ブレードの保護膜を形成するために配置される孔をブレードの壁内に設け、二つの主な方法、すなわち内部対流および保護膜により冷却を得る。
【0004】
図1および図2は、CF6−80およびGE90形エンジンで現在使用されている解決方法を示す図である。
【0005】
外側プラットホームと内側プラットホーム9との間に挿入された中空羽根(pale creuse)1を含むブレードは、羽根1の外壁4とライナ2の外部との間に、連続する周囲空洞3を規定するライナ2を含む。壁4またはライナ2に固設されたブロックは、ライナ2と前記壁4との間に間隙を維持する。ライナ2は、多孔スカート6と、同じく中空な内側プラットホーム9から羽根1を分離する壁8から間隔をとって配置された底部壁7とを含み、この壁8はオリフィス10を含む。一般にはタービンエンジンのコンプレッサである加圧空気発生源から送出される空気流11は外側プラットホームを通過してライナ2の内部に到達し、スカート6の多孔から出て、ブレード1の壁4を衝撃により冷却する空気ジェット12を周囲空洞3内に形成する。次にこの空気流11は内側プラットホーム9の内部側に漸進し、このプラットフォームを冷却しながらこれを横断し、最後に、内側プラットホーム9の上流側に位置するオリフィス12から排出される。上流側ケーシング13内の圧力P1はケーシング14内の圧力よりも高いため、これらのケーシングは、内側プラットホーム9と、各々、上流側タービンディスク15および下流側タービンディスク16とにより規定され、ケーシング13および14を分離し空気流(量)17の値を決定するラビリンス18を通過して空気流が生じる。この空気流17は、下流側ディスク16の周囲に冷却通路を有しながら、高温ガス層内に排出される。オリフィス12から出た残りの冷却空気19は、上流側ディスク15の周囲に冷却通路を有しながら、ディストリビュータの上流側の高温ガス層内に排出される。このように高圧タービンディスクは、これら二つの空気流17および19により冷却される。この単純な技術的措置では、ライナ2の内部に注入された冷却空気流11の全部がまず、ブレードの羽根1を冷却するのに用いられる。
【0006】
しかしながら、ブレードの内部に注入された空気は、ブレードの脚部側に再度下降し、その結果、内側プラットホーム9から排出される。従って、衝撃のための流れのせん断(cisaillement)が生じるがこれでは数学的モデリングが容易にはならず、また、内側プラットホーム9およびタービンディスク15、16の冷却空気は羽根1の壁4の冷却時にすでに再加熱されてしまっているため冷却能力を下げる。
【0007】
ここで、図2に示すように、羽根1の後縁に亀裂20が生じると冷却空気流の少なくとも一部分21が亀裂20から流れ出すが、ブレードの下流側にある圧力は上流側にある圧力よりも低いため、ディストリビュータの上流側から出て上流側ケーシング13を通過する高温ガス流22が通過する内側プラットホーム9の内部で、流れの方向の逆転が生じるおそれがある。すると内側プラットホーム9が加熱され、それによりブレードの重大な損害、さらには破損が生じるおそれがある。プラットフォーム9の下を通過する流れは層のきわめて高温なガスから直接来るものであり、タービン全体を破壊に至らしかねないロータの危険な温度上昇を引き起こす。
【0008】
図3および図4は、図1および図2に示す実施形態に近い冷却回路の変形実施形態を示す図である。ここでは、ライナ2の底部壁7は、内側プラットホーム9内の入口オリフィス10に対向する出口オリフィス23を含む。従って、冷却空気流11はライナ2の内部に入り、この流れの一部分24が出口オリフィス23を直接横断し、内側プラットホーム9内を循環してこれを冷却する。図1および図2に示す実施形態における場合と同様に、プラットフォーム9内を循環する空気は、内側プラットホーム9の上流側に位置するオリフィス12から排出され、次に一部分17がラビリンス18を通過するが、他方の部分19は、ディストリビュータの上流側の高熱ガス層内に排出され、これによりタービンディスク15および16の冷却が確保される。
【0009】
この第二の解決方法では、内側プラットホーム9およびディスク15、16の冷却空気はより温度が低いため有利であり、衝撃による冷却流束のせん断流れはより少ない。ところが、羽根を冷却するための流れが少ないことは欠点である。さらに、漏れ(流出)25、26が出口オリフィス23から周囲空洞3内に逆流することがあり、そのため、流れの数学的モデリングが単純にならない。
【0010】
図4に示すように、羽根1の後縁に亀裂20が生じると、冷却空気の少なくとも一部分21が高温ガス流束内に排出され、内側プラットホーム9内の空気の流れの方向は、エンジンの動作条件により維持されるか逆転される。プラットフォーム9および羽根1は損傷または破損するおそれもある。13および14における温度超過により、ディスクが膨張して、可動部品と固定リングの間で接触が生じて、ロータの危険な温度上昇が生じる。
【0011】
上に記載した二つの実際の変形形態では、羽根1の壁4はさらに、羽根の周囲に保護膜を形成するために、一定口径のオリフィスを備える。
【0012】
【発明が解決しようとする課題】
本発明は、この現行技術を起点として、羽根の後縁に亀裂が生じた場合でも内側プラットホーム内の循環流体が逆転(逆流)することのないディストリビュータのブレードを提供することを目的とする。
【0013】
【課題を解決するための手段】
従って本発明は、冷却装置を具備するタービンのディストリビュータのブレードに関し、このブレードは、中空外側プラットホームと中空内側プラットホームとの間に挿入された同じく中空な羽根を含み、冷却装置は、羽根の内部に配設されたライナを含み、このライナは、羽根の周囲壁から間隔をとって保持される多孔スカートと、内側プラットホームの壁内に設けた入口オリフィスに対向する出口オリフィスを有する底部壁とを有し、この底部壁もプラットフォームの前記壁から間隔をとって保持され、ライナの内部に外側プラットホームから冷却空気流が供給され、この冷却空気の一部分はスカートの多孔を通して羽根の周囲壁を衝撃冷却し、他の部分は内側プラットホーム内を循環し、タービンのディスクを冷却するために前記プラットフォームの上流側に設けたオリフィスを通って内側プラットホームから排出され、羽根の壁は、羽根の外部に保護膜を構成するための一定口径のオリフィスをさらに含む。
【0014】
このブレードは、内側プラットホームの内部と、羽根の周囲壁およびライナの外部で規定される空洞との間の直接の連絡を阻止する気密装置により、ライナの底部壁の出口オリフィスと内側プラットホーム内の入口オリフィスとが相互に通じていることを特徴とする。
【0015】
この構成により、ライナの根元で二つの空気流が混合する可能性がなく、内側プラットホームは、たとえ羽根の後縁内に亀裂が生じた場合でも、常に冷温空気により冷却されるようになる。
【0016】
好ましくは、気密装置は、一方が他方の中にはめ込まれ、頂上部における開口部がライナの内部に配設される二つの円錐台で構成され、雄円錐台は内側プラットホームに固設され、入口オリフィスを規定し、雌円錐台はライナに固設され、出口オリフィスを規定する。
【0017】
この構成により、部品の相互の軸位置の固定、およびライナの基部の側面固定が可能である。
【0018】
本発明の他の特徴および長所は、例として示し、添付の図面を参照して行う以下の説明を読むことにより明らかになろう。
【0019】
【発明の実施の形態】
図5は、二段回転軸44式の高圧タービン43のホイール(roues)41と42の間に配置されたディストリビュータの固定ブレード40を示す図である。知られているように、ブレード40は、図には示さない外側プラットホームと、内側プラットホーム46との間に配置された中空空力羽根45を含む。ディストリビュータのブレード40のアセンブリは羽根車を形成し、タービン43の上流側ホイール41の可動羽根47の翼列から出る高温ガス流束は羽根45により整流(redresse)された後、下流側ホイール42の可動ブレード48に到達する。ディストリビュータの外側プラットホームは高温ガス層の外側輪郭を規定するが、内側プラットホーム9は内側輪郭を規定する。
【0020】
ホイール41および42は各々、可動ブレード47および48に加え、図示しないシャフトを駆動するドラム51により接続されたディスク49、50を含む。ドラム51は、内側プラットホーム46に対向するラビリンス52を含み、これは内側プラットホーム46とドラム51との間に位置する環状空間を上流側ケーシング53および下流側ケーシング54に分離する。これらのケーシング53、54は、タービンディスク49、50各々の内側プラットホーム9を分離する間隙55、56により、高温ガス層と通じている。
【0021】
羽根45の内部空洞には、多孔スカート61と、羽根45を内側プラットホーム46の内側から分離する壁63の近傍ではあるが間隙をあけて位置する底部壁62とを含むライナ60が配設される。壁63は、内側プラットホーム46の内部空洞内への入口オリフィス65を囲み、底部壁63内に設けられ出口オリフィスを規定する雌円錐台66内に挿入される雄円錐台64を有する。さらに内側プラットホーム46は、プラットフォーム46の内部と上流側ケーシング53とを通じさせるオリフィス67を、その上流側面内に含む。
【0022】
ライナ60は、ブロックにより羽根45の周囲壁から間隔をとって保持され、外側プラットホームから冷却空気流70が供給される。この冷却空気の第一部分71はスカート61の多孔から排出され、羽根の周囲に保護膜を形成してこの空気の部分71を高温ガス層内に排気することが可能な一定口径のオリフィスを含む羽根45の周囲空力壁(aerodynamique)を衝撃冷却(refroidit par impact)する。冷却空気の第一部分72は、雄円錐台64の頂上に位置する開口部65を通ってプラットフォームの内部に入り、この開口部を通って上流側ケーシング53方向に排出される。上流側ケーシング53内の圧力レベルP1は下流側ケーシング54内の圧力レベルP2よりも高いので、内側プラットホーム46の出口における空気流73は、上流側ディスク49の周囲を冷却した後、間隙55を通ってディストリビュータの上流側高温ガス層に合流する第一流束73と、ラビリンス52および下流側ケーシング54を横断し、間隙56を通ってディストリビュータの下流側高温ガス層に合流する第二流束74とに分離する。
【0023】
ライナ60の内部と内側プラットホーム46の内部との間の連絡は、相互に気密にはめ込まれる二つの円錐台64および66により実現される。さらにこれらの二つの円錐台は、ライナ60と羽根45の相互の軸位置を固定し、羽根45の内部空洞内へライナ60の底部壁62で側面が固定される。
【0024】
タービンのディスク49、50の冷却に使用される空気流72は、図8に示すように、たとえ羽根45の後縁上に亀裂75がある場合でも、羽根の壁の冷却に使用される空気流71から分離される。
【図面の簡単な説明】
【図1】冷却回路の第一実施形態を示す、従来技術のディストリビュータのブレードにおけるタービンの回転軸を通る径方向面での断面図である。
【図2】冷却回路の第一実施形態を示す、従来技術のディストリビュータのブレードにおけるタービンの回転軸を通る径方向面での断面図である。
【図3】冷却回路の第二実施形態を示す、従来技術のディストリビュータのブレードにおけるタービンの回転軸を通る径方向面での断面図である。
【図4】冷却回路の第二実施形態を示す、従来技術のディストリビュータのブレードにおけるタービンの回転軸を通る径方向面での断面図である。
【図5】本発明によるディストリビュータにおけるブレードのタービンの回転軸を通る径方向面での断面図である。
【図6】ライナの内部と内側プラットホームとの間の連絡手段の拡大図である。
【図7】内側プラットホームの上部壁とライナの脚部の分解図である。
【図8】羽根の後縁内に亀裂が生じた場合の冷却空気量の流れを示す図5の断面図と同様の断面図である。
【符号の説明】
45 中空空力羽根
46 内側プラットホーム
49、50 タービンディスク
60 ライナ
61 多孔スカート
62 底部壁
63 壁
64 雄円錐台
65 入口オリフィス
66 雌円錐台
67 オリフィス
70 冷却空気
71 冷却空気の一部分
72 冷却空気の他の部分

Claims (1)

  1. 冷却装置を具備するタービンのディストリビュータのブレードであって、このブレードが、中空外側プラットホームと中空内側プラットホーム(46)との間に挿入された同じく中空な羽根(45)を含み、冷却装置が、羽根(45)の内部に配設されたライナ(60)を含み、このライナが、羽根(45)の周囲壁から間隔をとって保持される多孔スカート(61)と、内側プラットホーム(46)の壁(63)内に設けた入口オリフィスに対向する出口オリフィスを有する底部壁(62)とを有し、この底部壁もプラットフォームの前記壁から間隔をとって保持され、ライナの内部に外側プラットホームから冷却空気流(70)が供給され、この冷却空気の一部分(71)がスカート(4)の多孔を通して羽根の周囲壁を衝撃冷却し、他の部分(72)が内側プラットホーム(46)内を循環し、タービンのディスク(49、50)を冷却するために前記プラットフォームの上流側に設けたオリフィス(67)を通って内側プラットホームから排出され、羽根の壁が、羽根の外部に保護膜を形成するための一定口径のオリフィスをさらに含み、
    内側プラットホーム(46)の内部と羽根の周囲壁およびライナ(60)の外部によって規定される空洞との間の直接の連絡を阻止する気密装置により、ライナの底部壁の出口オリフィスと内側プラットホーム内の入口オリフィスとが相互に連絡し、
    前記気密装置は、一方が他方の内側にはめ込まれ、各々の頂上部における開口部がライナの内部に配設される二つの円錐台(64、66)を含み、雄円錐台(64)が内側プラットホームに固設されて入口オリフィス(65)を規定しており、雌円錐台(66)がライナに固設されて出口オリフィスを規定していることを特徴とするディストリビュータのブレード。
JP33545198A 1997-11-27 1998-11-26 冷却されるタービンのディストリビュータのブレード Expired - Lifetime JP3844609B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9714896 1997-11-27
FR9714896A FR2771446B1 (fr) 1997-11-27 1997-11-27 Aube de distributeur de turbine refroidie

Publications (2)

Publication Number Publication Date
JPH11229812A JPH11229812A (ja) 1999-08-24
JP3844609B2 true JP3844609B2 (ja) 2006-11-15

Family

ID=9513851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33545198A Expired - Lifetime JP3844609B2 (ja) 1997-11-27 1998-11-26 冷却されるタービンのディストリビュータのブレード

Country Status (7)

Country Link
US (1) US6109867A (ja)
EP (1) EP0919698B1 (ja)
JP (1) JP3844609B2 (ja)
CA (1) CA2254259C (ja)
DE (1) DE69817303T2 (ja)
FR (1) FR2771446B1 (ja)
RU (1) RU2153585C1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088368B2 (ja) * 1998-06-04 2008-05-21 三菱重工業株式会社 低圧蒸気タービンのグランド部変形防止構造
US6065928A (en) * 1998-07-22 2000-05-23 General Electric Company Turbine nozzle having purge air circuit
US6382906B1 (en) * 2000-06-16 2002-05-07 General Electric Company Floating spoolie cup impingement baffle
EP1180578A1 (de) * 2000-08-16 2002-02-20 Siemens Aktiengesellschaft Anordnung von Turbinenschaufeln
US6481959B1 (en) 2001-04-26 2002-11-19 Honeywell International, Inc. Gas turbine disk cavity ingestion inhibitor
US6832891B2 (en) 2001-10-29 2004-12-21 Man Turbomaschinen Ag Device for sealing turbomachines
DE10214624C1 (de) * 2001-10-29 2003-03-27 Man Turbomasch Ag Ghh Borsig Vorrichtung zur Abdichtung in Turbomaschinen
FR2856729B1 (fr) * 2003-06-30 2005-09-23 Snecma Moteurs Aubes refroidies de moteur a turbine a gaz.
FR2858829B1 (fr) * 2003-08-12 2008-03-14 Snecma Moteurs Aube refroidie de moteur a turbine a gaz
US7118326B2 (en) * 2004-06-17 2006-10-10 Siemens Power Generation, Inc. Cooled gas turbine vane
DE102007037855A1 (de) * 2007-08-10 2009-02-12 Rolls-Royce Deutschland Ltd & Co Kg Schaufeldeckband mit Sperrstrahlerzeugung
FR2921937B1 (fr) * 2007-10-03 2009-12-04 Snecma Procede d'aluminisation en phase vapeur d'une piece metallique de turbomachine
FR2943092B1 (fr) * 2009-03-13 2011-04-15 Snecma Aube de turbine avec un trou de depoussierage en base de pale
US8944751B2 (en) * 2012-01-09 2015-02-03 General Electric Company Turbine nozzle cooling assembly
US9011078B2 (en) * 2012-01-09 2015-04-21 General Electric Company Turbine vane seal carrier with slots for cooling and assembly
US8864445B2 (en) * 2012-01-09 2014-10-21 General Electric Company Turbine nozzle assembly methods
US9291071B2 (en) 2012-12-03 2016-03-22 United Technologies Corporation Turbine nozzle baffle
US10072519B2 (en) 2013-04-24 2018-09-11 Hamilton Sundstrand Corporation Turbine nozzle for air cycle machine
US10087760B2 (en) 2013-04-24 2018-10-02 Hamilton Sundstrand Corporation Turbine nozzle and shroud for air cycle machine
US10072512B2 (en) 2013-04-24 2018-09-11 Hamilton Sundstrand Corporation Turbine nozzle and shroud
US10006299B2 (en) 2013-04-24 2018-06-26 Hamilton Sundstrand Corporation Turbine nozzle for air cycle machine
US10072502B2 (en) 2013-04-24 2018-09-11 Hamilton Sundstrand Corporation Turbine nozzle and shroud for air cycle machine
WO2015112227A2 (en) 2013-11-12 2015-07-30 United Technologies Corporation Multiple injector holes for gas turbine engine vane
FR3030614B1 (fr) * 2014-12-17 2019-09-20 Safran Aircraft Engines Ensemble de turbine haute pression de turbomachine
FR3039199B1 (fr) 2015-07-20 2019-12-13 Safran Helicopter Engines Aubage de distributeur haute pression avec un insert a geometrie variable
US10451084B2 (en) * 2015-11-16 2019-10-22 General Electric Company Gas turbine engine with vane having a cooling inlet
FR3044038B1 (fr) * 2015-11-19 2019-08-30 Safran Helicopter Engines Aube equipee d'un systeme de refroidissement, distributeur et turbomachine associes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755567A (fr) * 1969-12-01 1971-02-15 Gen Electric Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe
US3767322A (en) * 1971-07-30 1973-10-23 Westinghouse Electric Corp Internal cooling for turbine vanes
US3781129A (en) * 1972-09-15 1973-12-25 Gen Motors Corp Cooled airfoil
US3994622A (en) * 1975-11-24 1976-11-30 United Technologies Corporation Coolable turbine blade
US4288201A (en) * 1979-09-14 1981-09-08 United Technologies Corporation Vane cooling structure
US4962640A (en) * 1989-02-06 1990-10-16 Westinghouse Electric Corp. Apparatus and method for cooling a gas turbine vane
US5358374A (en) * 1993-07-21 1994-10-25 General Electric Company Turbine nozzle backflow inhibitor

Also Published As

Publication number Publication date
EP0919698A1 (fr) 1999-06-02
FR2771446A1 (fr) 1999-05-28
RU2153585C1 (ru) 2000-07-27
EP0919698B1 (fr) 2003-08-20
JPH11229812A (ja) 1999-08-24
CA2254259C (fr) 2005-05-03
CA2254259A1 (fr) 1999-05-27
DE69817303T2 (de) 2004-06-24
DE69817303D1 (de) 2003-09-25
FR2771446B1 (fr) 1999-12-31
US6109867A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3844609B2 (ja) 冷却されるタービンのディストリビュータのブレード
US3391904A (en) Optimum response tip seal
US4311431A (en) Turbine engine with shroud cooling means
US3475107A (en) Cooled turbine nozzle for high temperature turbine
US4348157A (en) Air cooled turbine for a gas turbine engine
US3388888A (en) Cooled turbine nozzle for high temperature turbine
JP4698847B2 (ja) ガスタービン分割環
US4702670A (en) Gas turbine engines
US7121791B2 (en) Main gas duct internal seal of a high-pressure turbine
JPS61155630A (ja) 冷却流供給装置
US3528751A (en) Cooled vane structure for high temperature turbine
US9719362B2 (en) Turbine nozzles and methods of manufacturing the same
US3535873A (en) Gas turbine cooling devices
JPH04224234A (ja) 軸流式のガスタービン
US6068443A (en) Gas turbine tip shroud blade cavity
JPS63134823A (ja) 高圧圧縮機を備えたガスタービンジェット推進装置
CN110173307A (zh) 具有冷却孔的发动机构件
JPH0754602A (ja) 冷却されたロータを備えているガスタービン
JP4315829B2 (ja) 冷却空気の漏れが減少されることで冷却されるタービンベーン
US10408075B2 (en) Turbine engine with a rim seal between the rotor and stator
USH903H (en) Cool tip combustor
US4358926A (en) Turbine engine with shroud cooling means
RU2592095C2 (ru) Способ и охлаждающая система для охлаждения лопаток по меньшей мере одного лопаточного венца в роторной машине
JP2002317602A (ja) ガスタービン
CN114127386B (zh) 翼面近壁前缘的冷却通道

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term