JP3844429B2 - Scanning radar equipment - Google Patents
Scanning radar equipment Download PDFInfo
- Publication number
- JP3844429B2 JP3844429B2 JP2001347750A JP2001347750A JP3844429B2 JP 3844429 B2 JP3844429 B2 JP 3844429B2 JP 2001347750 A JP2001347750 A JP 2001347750A JP 2001347750 A JP2001347750 A JP 2001347750A JP 3844429 B2 JP3844429 B2 JP 3844429B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- correction value
- correction
- lateral position
- scanning radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012935 Averaging Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
- G01S13/426—Scanning radar, e.g. 3D radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
- B60Y2400/301—Sensors for position or displacement
- B60Y2400/3017—Radars
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/932—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9325—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Traffic Control Systems (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電波の発射方向を走査したときの反射波の強度に基づき物標の横位置を決定する走査型レーダ装置、特に、車間距離の制御のために物標との距離および相対速度とともに物標の横位置を測定する走査型レーダ装置に関する。
【0002】
【従来の技術】
FM−CWレーダを用いれば自車の前方に存在する物標との距離、物標の相対速度を測定することができる。これらの測定値に基づき、例えば前方を走行する車輌との車間距離を適切に制御するためには、前方に存在する物標の横位置を決定する必要がある。
【0003】
走査型レーダ装置では、図1(b)に示すように、電波の発射方向を走査し、物標からの反射波の強度が最大である方向を物標の方向とし、それから物標の横位置を決定している。
この方法によれば、自車から物標をみる方向(物標への方向)と物標の進行方向(物標の向き)とのずれがなければ正確に物標の横位置を決定することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、物標への方向と物標の向きにずれがあると物標の横位置を正確に決定することができない。例えば図1(a)または図1(c)に示すケースでは、物標の一方の端で反射波のパワーが最大となり、正確に横位置を推定することができない。
【0005】
したがって本発明の目的は、物標の向きが物標への方向からずれていたとしても正確に物標の横位置を決定することができる走査型レーダ装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、電波の発射方向を走査したときの物標からの反射波の強度に基づき物標の横位置Xを決定する横位置決定手段と、物標への方向と物標の向きとのなす角度ψを決定する手段と、角度ψに基づき横位置の補正値ΔXを決定する手段と、横位置Xを補正値ΔXで補正する手段とを具備する走査型レーダ装置が提供される。
【0007】
前記角度ψ決定手段は、回転半径R、物標との距離d、物標への方向と自車の向きとのなす角度θに基づき、式
ψ=θ−tan-1{dcosθ/(R−dsinθ)}
により角度ψを決定することが好ましい。
【0008】
【発明の実施の形態】
図2は本発明の走査型レーダ装置の一実施形態としての車載用走査型ミリ波レーダ装置の構成を示す。
図2において、ECU10はヨーレートセンサ12からの信号および車速センサ14からの信号に基づき自車の回転半径Rを算出し、車速のデータと共にFM−CWレーダ16へ送る。ヨーレートセンサ12のデータの代わりにステアリングセンサからのデータを用いて回転半径Rを算出することもできる。FM−CWレーダ16は、三角波で周波数変調されたミリ波帯の電波を自車の前方へ発射し、反射波を解析することにより、前方に存在する物標との距離および物標の相対速度を算出する。FM−CWレーダ16はまた、前述したように、電波の発射方向を走査し、そのときの反射波のパワーの分布に基いて物標の横位置の推定値X〔m〕を算出する。さらに、ECU10からの回転半径Rのデータ等に基いて横位置の補正値ΔXを算出し、それによって補正された横位置Xを距離および相対速度のデータとともにECU10へ送る。ECU10はそれらのデータに基づき、前方を走行する車輌との距離を一定に保つための制御信号を生成して出力する。
【0009】
図3および図4は本発明における横位置Xの補正値ΔXの算出方法の原理を示す。図3,4中、Rは自車20の回転半径、dは物標22との距離、ψは自車20から物標22をみる方向(物標への方向)と物標22の進行方向(物標の向き)のなす角度、φは自車20の向きと物標22の向きのなす角度を表わす。
図4から明らかなように、角度φは
φ=tan-1{dcosθ/(R−dsinθ)}
で算出することができる。したがって角度ψは
ψ=θ−φ
から算出ことができる。この角度ψは物標への電波の照射方向と物標の向きのずれを表わしているから、例えば、図5に示すような、原点を通る直線関係から補正値ΔXを決定する。そして、決定されたΔXにより横位置Xを
X=X+ΔX
のように補正する。これらの演算処理は、例えばFM−CWレーダ16にCPUを内臓し、ソフトウェアにより実現される。
【0010】
図5の関係では、ψが大きくなればそれに従ってΔXも大きくなるが、現実的な車の幅には限界があるなどの理由で、図6に示すように、ΔXの絶対値に上限を持たせることが望ましい。また、ψの値が小さい範囲でノイズの影響で横位置Xが変動するのは好ましくないので図7に示すように角度0を中心としてΔXを0に維持する不感帯を設けることが望ましい。物標との距離が大きいときは補正量ΔXは小さくなるはずなのでノイズの影響を避けるためにΔXを小さくした方が良い。この場合には、図8または図9に示すような関係で距離dが大きくなると1.0より小さくなる補正係数をΔXに乗算してΔXとする。回転半径Rが大きいときも同様に、ノイズの影響を避けるために補正係数を小さくする。
【0011】
計算されたΔXはノイズを含んでいるのでそれをそのまま使ってXを補正するよりも例えば
ΔXn =(ΔXn-1 ×3+ΔX)/4
で計算されるΔXn を使ってノイズの影響を小さくすることが望ましい。また、補正前の横位置Xにより、自車が走行している車線内を物標が走行していると判定されるときはΔXに例えば0.7を乗じて補正量を小さくする。運転者のハンドル操作により回転半径Rの単位時間内の変化量が所定値よりも大きいときは、それに追従させてXを補正するのは好ましくないので、補正量ΔXを0とする。また、静止物と判断されるものに対しては横位置の補正は行なわない。回転半径Rの元になるステアリングセンサ(またはヨーレートセンサ)のドリフトをキャンセルするため中立位置の学習が行なわれるが、これが完了するまでは横位置Xの補正は行なわないものとする。
【0012】
以上により補正値ΔXの算出について説明したが、物標によってはたとえ0でないΔX値が算出されたとしても別の点から横位置の補正が不要であることが判明した場合には横位置の補正を行なわないことが望ましい。
すなわち、以下の(1)〜(4)の条件のいずれかに該当する物標については、たとえ計算上0でないΔX値が算出されたとしても補正の必要がないと考えられるので補正を行なわない。
(1)補正前の横位置Xによれば自車が走行している車線の範囲内を走行していると判断される物標。
(2)パワー(ピークの強度)が所定の固定的な基準値または距離の関数としての基準値以下である物標。その理由は、小さな物標、例えば2輪車のようなものは、角度方向に反射波(ピーク)が分布することが少ないからである。
(3)角度方向に反射波(ピーク)の分布がなく1方向のみに反射波によるピークが出現する物標。
(4)大型トラックのように物理的に複数の反射点が存在するものと判断されて、距離、角度、相対速度が近似する複数の反射波(ピーク)の角度の平均をとる処理を行なった物標。その理由は、平均をとる処理により既に角度の補正が行なわれており、さらに補正すると過補正になるからである。
上記(1)〜(4)のいずれにも該当しないことが過去に一度でもあって補正を行なった物標については、これを角度ずれを発生する物標とみなして、以後はたとえ(1)〜(4)のいずれかに該当することがあっても常に補正の対象とすることが望ましい。
【0013】
【発明の効果】
以上説明したように本発明によれば、物標の向きによらず物標の横位置を正確に決定することのできる走査型レーダ装置が提供される。
【図面の簡単な説明】
【図1】横位置決定における問題点を説明する図である。
【図2】本発明の一実施形態に係る車載用レーダ装置の構成を示すブロック図である。
【図3】角度ψの計算方法を説明する図である。
【図4】角度ψの計算方法を説明する図である。
【図5】角度ψから補正値ΔXの計算を説明するグラフである。
【図6】角度ψから補正値ΔXの計算の第2の例を示すグラフである。
【図7】角度ψから補正値ΔXの計算の第3の例を示すグラフである。
【図8】距離dまたは回転半径Rに応じたΔXの修正の第1の例を示す図である。
【図9】距離dまたは回転半径Rに応じたΔXの修正の第2の例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning radar apparatus that determines the lateral position of a target based on the intensity of a reflected wave when scanning the direction of emission of radio waves, and in particular, together with the distance to the target and the relative speed for controlling the inter-vehicle distance. The present invention relates to a scanning radar apparatus that measures a lateral position of a target.
[0002]
[Prior art]
If the FM-CW radar is used, the distance to the target existing in front of the host vehicle and the relative speed of the target can be measured. Based on these measured values, for example, in order to appropriately control the inter-vehicle distance from the vehicle traveling ahead, it is necessary to determine the lateral position of the target existing ahead.
[0003]
In the scanning radar apparatus, as shown in FIG. 1B, the direction of emission of radio waves is scanned, the direction in which the intensity of the reflected wave from the target is maximum is set as the target direction, and then the lateral position of the target Is determined.
According to this method, if there is no deviation between the direction of viewing the target from the vehicle (direction to the target) and the direction of movement of the target (direction of the target), the lateral position of the target is accurately determined. Can do.
[0004]
[Problems to be solved by the invention]
However, if there is a difference between the direction to the target and the direction of the target, the lateral position of the target cannot be accurately determined. For example, in the case shown in FIG. 1A or FIG. 1C, the power of the reflected wave is maximized at one end of the target, and the lateral position cannot be estimated accurately.
[0005]
Accordingly, an object of the present invention is to provide a scanning radar apparatus that can accurately determine the lateral position of a target even when the direction of the target is deviated from the direction toward the target.
[0006]
[Means for Solving the Problems]
According to the present invention, the lateral position determining means for determining the lateral position X of the target based on the intensity of the reflected wave from the target when the radio wave emission direction is scanned, and the direction to the target and the direction of the target There is provided a scanning radar apparatus comprising: means for determining an angle ψ formed by: means for determining a lateral position correction value ΔX based on the angle ψ; and means for correcting the lateral position X with the correction value ΔX. .
[0007]
The angle ψ determining means is based on the formula ψ = θ−tan −1 {dcos θ / (R−) based on the radius of rotation R, the distance d from the target, and the angle θ formed by the direction to the target and the direction of the host vehicle. dsin θ)}
The angle ψ is preferably determined by
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows the configuration of an in-vehicle scanning millimeter wave radar apparatus as an embodiment of the scanning radar apparatus of the present invention.
In FIG. 2, the ECU 10 calculates the turning radius R of the own vehicle based on the signal from the
[0009]
3 and 4 show the principle of the method for calculating the correction value ΔX of the lateral position X in the present invention. 3 and 4, R is a radius of rotation of the
As is clear from FIG. 4, the angle φ is φ = tan −1 {dcos θ / (R−dsin θ)}.
Can be calculated. Therefore, the angle ψ is ψ = θ−φ
It can be calculated from Since this angle ψ represents the deviation between the direction of radio wave irradiation to the target and the direction of the target, for example, the correction value ΔX is determined from a linear relationship passing through the origin as shown in FIG. Then, the lateral position X is set to X = X + ΔX by the determined ΔX.
Correct as follows. These arithmetic processes are realized by software, for example, by incorporating a CPU in the FM-
[0010]
In the relationship of FIG. 5, as ψ increases, ΔX increases accordingly. However, as shown in FIG. 6, there is an upper limit on the absolute value of ΔX because there is a limit to the width of a realistic car. It is desirable to Further, since it is not preferable that the lateral position X fluctuates due to noise in a range where the value of ψ is small, it is desirable to provide a dead zone for maintaining ΔX at 0 around the angle 0 as shown in FIG. When the distance to the target is large, the correction amount ΔX should be small, so it is better to make ΔX small in order to avoid the influence of noise. In this case, when the distance d increases as shown in FIG. 8 or FIG. Similarly, when the rotation radius R is large, the correction coefficient is reduced to avoid the influence of noise.
[0011]
Since the calculated ΔX includes noise, for example, ΔX n = (ΔX n−1 × 3 + ΔX) / 4 rather than correcting X by using it as it is.
It is desirable to reduce the influence of noise by using ΔX n calculated in (1). Further, when it is determined that the target is traveling in the lane in which the host vehicle is traveling based on the uncorrected lateral position X, ΔX is multiplied by, for example, 0.7 to reduce the correction amount. When the amount of change of the rotation radius R in the unit time by the driver's steering operation is larger than a predetermined value, it is not preferable to correct X by following it, so the correction amount ΔX is set to zero. Further, the lateral position is not corrected for the object that is determined to be a stationary object. The neutral position is learned to cancel the drift of the steering sensor (or yaw rate sensor) that is the origin of the turning radius R, but the lateral position X is not corrected until this is completed.
[0012]
The calculation of the correction value ΔX has been described above. However, even if a ΔX value other than 0 is calculated depending on the target, if it is found that the correction of the horizontal position is unnecessary from another point, the correction of the horizontal position is performed. It is desirable not to perform.
That is, for a target that meets any of the following conditions (1) to (4), even if a ΔX value that is not 0 is calculated, it is considered that there is no need for correction, and thus correction is not performed. .
(1) A target that is determined to be traveling in the range of the lane in which the vehicle is traveling according to the lateral position X before correction.
(2) A target whose power (peak intensity) is below a predetermined fixed reference value or reference value as a function of distance. This is because a small target, for example, a two-wheeled vehicle, rarely distributes reflected waves (peaks) in the angular direction.
(3) A target in which there is no distribution of reflected waves (peaks) in the angular direction and peaks due to reflected waves appear only in one direction.
(4) It is judged that there are a plurality of reflection points physically like a large truck, and a process of taking the average of the angles of a plurality of reflected waves (peaks) whose distance, angle, and relative velocity are approximated was performed. Target. The reason is that the angle has already been corrected by the process of taking the average, and further correction will result in overcorrection.
For a target that has been corrected in the past even if it does not fall under any of the above (1) to (4), this is regarded as a target that generates an angular deviation. Even if it falls under any of (4) to (4), it is desirable to always make it a correction target.
[0013]
【The invention's effect】
As described above, according to the present invention, there is provided a scanning radar apparatus that can accurately determine the lateral position of a target regardless of the direction of the target.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining problems in lateral position determination.
FIG. 2 is a block diagram showing a configuration of an in-vehicle radar device according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a method for calculating an angle ψ.
FIG. 4 is a diagram illustrating a method for calculating an angle ψ.
FIG. 5 is a graph for explaining calculation of a correction value ΔX from an angle ψ.
FIG. 6 is a graph showing a second example of calculation of a correction value ΔX from an angle ψ.
FIG. 7 is a graph showing a third example of calculation of a correction value ΔX from an angle ψ.
FIG. 8 is a diagram illustrating a first example of correction of ΔX according to distance d or rotation radius R;
FIG. 9 is a diagram illustrating a second example of correction of ΔX according to the distance d or the rotation radius R;
Claims (13)
物標への方向と物標の向きとのなす角度ψを決定する手段と、
角度ψに基づき横位置の補正値ΔXを決定する手段と、
横位置Xを補正値ΔXで補正する手段とを具備する走査型レーダ装置。Lateral position determining means for determining the lateral position X of the target based on the intensity of the reflected wave from the target when the emission direction of the radio wave is scanned;
Means for determining an angle ψ between the direction to the target and the direction of the target;
Means for determining a lateral position correction value ΔX based on the angle ψ;
A scanning radar apparatus comprising: means for correcting the lateral position X with a correction value ΔX.
ψ=θ−tan-1{dcosθ/(R−dsinθ)}
により角度ψを決定する請求項1記載の走査型レーダ装置。The angle ψ determining means is based on the formula ψ = θ−tan −1 {dcos θ / (R−) based on the radius of rotation R, the distance d from the target, and the angle θ formed by the direction to the target and the direction of the host vehicle. dsin θ)}
The scanning radar apparatus according to claim 1, wherein the angle ψ is determined by.
前記横位置補正手段は、該物標判定手段が横位置補正不要と判定した物標については補正値ΔXの値によらず横位置補正を行なわない請求項1〜8のいずれか1項記載の走査型レーダ装置。It further comprises target judging means for judging whether or not the lateral position correction is necessary for each target.
9. The horizontal position correction unit according to claim 1, wherein the horizontal position correction unit does not perform horizontal position correction on a target determined by the target determination unit as not requiring horizontal position correction regardless of the correction value ΔX. Scanning radar device.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001347750A JP3844429B2 (en) | 2000-12-12 | 2001-11-13 | Scanning radar equipment |
US10/203,361 US6670911B2 (en) | 2000-12-12 | 2001-12-12 | Scanning radar system |
KR1020027010269A KR100597344B1 (en) | 2000-12-12 | 2001-12-12 | Scanning radar system |
EP01270784A EP1343020B1 (en) | 2000-12-12 | 2001-12-12 | Scanning radar |
PCT/JP2001/010918 WO2002048736A1 (en) | 2000-12-12 | 2001-12-12 | Scanning radar |
DE60133216T DE60133216T2 (en) | 2000-12-12 | 2001-12-12 | scan-type |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-377841 | 2000-12-12 | ||
JP2000377841 | 2000-12-12 | ||
JP2001347750A JP3844429B2 (en) | 2000-12-12 | 2001-11-13 | Scanning radar equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002243846A JP2002243846A (en) | 2002-08-28 |
JP3844429B2 true JP3844429B2 (en) | 2006-11-15 |
Family
ID=26605689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001347750A Expired - Fee Related JP3844429B2 (en) | 2000-12-12 | 2001-11-13 | Scanning radar equipment |
Country Status (6)
Country | Link |
---|---|
US (1) | US6670911B2 (en) |
EP (1) | EP1343020B1 (en) |
JP (1) | JP3844429B2 (en) |
KR (1) | KR100597344B1 (en) |
DE (1) | DE60133216T2 (en) |
WO (1) | WO2002048736A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2735744C1 (en) * | 2020-03-27 | 2020-11-06 | Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") | Method for survey of single-position trilateration incoherent radar ranging of aerial targets |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4476681B2 (en) * | 2004-04-21 | 2010-06-09 | 富士通テン株式会社 | Target identification device, target identification method, and target identification program |
JP4265803B2 (en) * | 2005-11-22 | 2009-05-20 | 三菱電機株式会社 | Radar system |
US7456693B2 (en) * | 2006-06-30 | 2008-11-25 | Infineon Technologies Ag | Regulation of an amplification apparatus |
JP4769684B2 (en) * | 2006-10-12 | 2011-09-07 | 株式会社デンソーアイティーラボラトリ | Electronic scanning radar equipment |
US9145137B2 (en) * | 2010-04-07 | 2015-09-29 | Toyota Jidosha Kabushiki Kaisha | Vehicle driving-support apparatus |
JP6056442B2 (en) * | 2012-12-11 | 2017-01-11 | 三菱電機株式会社 | Tracking antenna device |
KR101405212B1 (en) * | 2012-12-21 | 2014-06-27 | 현대자동차 주식회사 | Calibration Target Apparatus of Radar Sensor |
US9643735B2 (en) * | 2015-05-27 | 2017-05-09 | Honeywell International Inc. | Integration of braking action information with flight deck runway functions |
US9412280B1 (en) * | 2015-11-05 | 2016-08-09 | Daniel Ian Zwillinger | Cooperative system and method for precise autonomous delivery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023617A (en) * | 1990-02-20 | 1991-06-11 | General Motors Corporation | Vehicle forward sensor antenna steering system |
SE516317C2 (en) * | 1994-06-07 | 2001-12-17 | Saabtech Electronics Ab | Procedure for determining the lane of a vehicle ahead |
JP3257410B2 (en) * | 1995-11-24 | 2002-02-18 | トヨタ自動車株式会社 | In-vehicle scanning radar |
JP3487054B2 (en) * | 1995-12-26 | 2004-01-13 | 株式会社デンソー | Obstacle warning device for vehicles |
JP3314623B2 (en) * | 1996-08-12 | 2002-08-12 | トヨタ自動車株式会社 | In-vehicle scanning radar |
US6269307B1 (en) * | 1998-08-06 | 2001-07-31 | Honda Giken Kogyo Kabushiki Kaisha | Travel safety system for vehicle |
-
2001
- 2001-11-13 JP JP2001347750A patent/JP3844429B2/en not_active Expired - Fee Related
- 2001-12-12 DE DE60133216T patent/DE60133216T2/en not_active Expired - Lifetime
- 2001-12-12 WO PCT/JP2001/010918 patent/WO2002048736A1/en active IP Right Grant
- 2001-12-12 EP EP01270784A patent/EP1343020B1/en not_active Expired - Lifetime
- 2001-12-12 KR KR1020027010269A patent/KR100597344B1/en not_active IP Right Cessation
- 2001-12-12 US US10/203,361 patent/US6670911B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2735744C1 (en) * | 2020-03-27 | 2020-11-06 | Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") | Method for survey of single-position trilateration incoherent radar ranging of aerial targets |
Also Published As
Publication number | Publication date |
---|---|
DE60133216T2 (en) | 2009-03-19 |
EP1343020A1 (en) | 2003-09-10 |
EP1343020B1 (en) | 2008-03-12 |
JP2002243846A (en) | 2002-08-28 |
US6670911B2 (en) | 2003-12-30 |
WO2002048736A1 (en) | 2002-06-20 |
KR20020076294A (en) | 2002-10-09 |
DE60133216D1 (en) | 2008-04-24 |
EP1343020A4 (en) | 2005-06-29 |
US20030011508A1 (en) | 2003-01-16 |
KR100597344B1 (en) | 2006-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4698087B2 (en) | Radar horizontal axis deviation occurrence detection apparatus, axis deviation determination apparatus, and axis deviation correction apparatus | |
US5745070A (en) | Vehicle accurately detect an object in a lane of the radar equipped vehicle moving in a curve | |
US6202027B1 (en) | Automatic curve sensor calibration method for an automotive CW/ICC system | |
CN109155109B (en) | Target object detection device | |
JP3753652B2 (en) | Mispairing judgment and signal processing method of FM-CW radar | |
US7443335B2 (en) | Radar system | |
US6812883B2 (en) | In-vehicle radar system | |
JP3844429B2 (en) | Scanning radar equipment | |
JP2002228749A (en) | On-vehicle millimeter wave radar device | |
JP2010038706A (en) | Signal processing apparatus and radar system | |
JPH07209414A (en) | On-vehicle rader device | |
JP2001166051A (en) | Axis deviation detection device for vehicular radar device | |
US20220228862A1 (en) | Axial deviation estimating device | |
US20220187422A1 (en) | Aliasing determination device | |
JPH08219799A (en) | Traveling route estimating apparatus for vehicle | |
JP3376863B2 (en) | Vehicle ahead detection device | |
JP6480101B2 (en) | Vehicle control device | |
JPH11125532A (en) | Advancing route estimating device for vehicle | |
JP3237488B2 (en) | Scanning radar device | |
JP5604179B2 (en) | Object detection device | |
JP3209671B2 (en) | Curved road judgment device | |
US20240255632A1 (en) | Vehicle speed calculation device | |
JPH0749380A (en) | On-board radar system | |
JP3909764B2 (en) | Target width calculation method | |
JPH09218264A (en) | Object detecting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060815 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140825 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |