JP3839738B2 - Self-voltage controlled permanent magnet generator - Google Patents

Self-voltage controlled permanent magnet generator Download PDF

Info

Publication number
JP3839738B2
JP3839738B2 JP2002061866A JP2002061866A JP3839738B2 JP 3839738 B2 JP3839738 B2 JP 3839738B2 JP 2002061866 A JP2002061866 A JP 2002061866A JP 2002061866 A JP2002061866 A JP 2002061866A JP 3839738 B2 JP3839738 B2 JP 3839738B2
Authority
JP
Japan
Prior art keywords
winding
voltage
permanent magnet
transformer
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002061866A
Other languages
Japanese (ja)
Other versions
JP2003264996A (en
Inventor
英男 河村
Original Assignee
フジセラテック株式会社
英男 河村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジセラテック株式会社, 英男 河村 filed Critical フジセラテック株式会社
Priority to JP2002061866A priority Critical patent/JP3839738B2/en
Publication of JP2003264996A publication Critical patent/JP2003264996A/en
Application granted granted Critical
Publication of JP3839738B2 publication Critical patent/JP3839738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,永久磁石式ロータと該ロータの外周に配置されたステータとから成る自己電圧制御型永久磁石式発電機に関する。
【0002】
【従来の技術】
従来,永久磁石式発電機は,発電機のロータに永久磁石を用いるので,構造が簡単で大きな発電電力を得ることができる。そのため,永久磁石式発電機は,従来のハイブリッド車の発電機や電動機として用いられ,近年,永久磁石式発電機を用いたシステムが自動車用として利用されることが多くなってきた。発電機と電動機とを備えたハイブリッド車に上記システムを設け,発電した電力を電動機に送る場合に,電圧が変動してもその機能は十分に発揮できるが,この電力を自動車の全ての装置を駆動しているバッテリ電圧に合わせる場合に,電圧変動を一定の電圧に揃える操作をしなければならない。発電電圧を一定にするためには,スイッチングレギュレタ等を用いて電力を切り刻む操作をしなければならないが,大電流をオン・オフするためには大型のパワートランジスタを要し,装置が大型になり,冷却ロスが大きくなり,高価になる。しかも,発電電圧を一定にするために,電流を切り刻む時に,発生するリプルは電波障害の引き金になり,そのノイズ対策が極めて大変である。
【0003】
特開平7−236260号公報に開示された高出力交流発電・電動機は,回転速度に応じて磁束密度を制御して発電量を適正に制御するものであり,ロータとステータとの間に制御リングを相対回転可能に配置し,制御リングに接離可能な透磁性体を設けたものである。
【0004】
しかしながら,自動車用発電機では,その電力発電特性は,通常,自動車機器類用は12Vと24Vが用いられ,産業機器駆動用は100V又は200Vが用いられているので,この電力に合致した電力を供給する必要がある。また,永久磁石を用いた高出力発電・電動機では,永久磁石の磁束が決まっているので,低速出力又は低速トルクを大きくするには,永久磁石を大きくするか又は周波数を大きくするか,巻線の巻き数を増加させ,ステータ側の磁力を増し,そのトルクを大きくしなければならない。また,発電・電動機で出力又はトルクを大きくするためには,ステータコアへの巻線の線材の線径を太くし,大電流を流し,ステータの磁力を増加させる必要がある。
【0005】
【発明が解決しようとする課題】
ところで,本発明者は,上記のような不具合を解消するため,発電機の永久磁石式のロータとステータとの間即ちロータの外側にステータの一部を切り取った短冊状の透磁部を持つ磁束制御円筒を配置し,発電機の発電量が必要な時にはステータの櫛部に円筒の透磁部を重なり合う状態に移動させ,ステータの櫛部に磁束が十分に流れるようにし,発電電圧が多過ぎる時にはステータの櫛部と円筒の透磁部をずらした状態に移動させ,ステータの櫛部と磁束制御円筒の歯即ち透磁部の間に空隙を設け,ステータの櫛部に流れる磁力を減少させる。このような方法によって,発電機が常に一定の電圧を発電するものを先に出願した(例えば,特願2001−286103号参照)。
【0006】
ところで,自動車には,二つの電力機能がある。自動車の動力を駆動する動力駆動と自動車が備えている機器を駆動する低電圧機能であり,これらの二種類の電力を出力できる装置が必要である。また,発電機の回転変動が大きい自動車用では,最高回転数と最低回転時の速度の差が6〜7倍と大きく,一定電圧を必要とする側では,上記の磁束制御だけでは,必ずしも一定の発電電圧を発生させることができない。しかし,永久磁石式発電機では,ロータの回転数が大きくなると,発電機のステータに巻いた巻線にリアクタンス抵抗が発生し,電流の流れを減少させる。そこで,本発明者は,交流電流では巻線のリアクタンス抵抗は線材の抵抗と異なり,無効電力と呼ばれるように,発熱等の実害が無いので,むしろこのリアクタンス抵抗を利用して電圧の制御を行えば,効果的に電圧の上昇を抑制できると考えた。
発電機の出力電圧Eは次式で表される。
E=φ×f×Ws ・・・(1)
但し,φ:巻線を通過する磁力,f;周波数,Ws;巻線の数
発電機の巻線部に発生するインピーダンスZは次式となる。
Z=〔R2 +(f×L)2 1 / 2 ・・・(2)
但し,Z:インピーダンス,R:線抵抗,L:リアクタンス
(f×L)2 の項は,無効電力となるので,実質的には熱発生等の抵抗にはならない。従って,周波数が大きくなるに従って,実質抵抗値は極端に大きくなり,端子電圧は小さくなる。即ち,発電機の出力電圧と端子電圧の関係は次式となる。 Es=Vs+I×Z ・・・(3)
但し,Es:発電起電電圧,Vs:端子電圧,Z:インピーダンス,I:電流
上記の式から判るように,発電機の回転が大きくなり,出力電圧が増加すると,それと同時にリアクタンスが大きくなり,出力電圧は抑制され,ほぼ一定値になる。この傾向は巻線の巻き数が大きくなるほど顕著になり,発電量にブレーキが掛かることになる。本発明者は,上記のような原理を用い巻線の巻き方を変え,自己制御型発電機を開発した。
【0007】
【課題を解決するための手段】
この発明の目的は,三相の巻線の端子に変圧器を置き,そ変圧器の巻線を用いて発電電圧の増加にブレーキをかけるようにコイルをそれぞれ接続し,ロータの回転数即ち周波数が増大しても,それに応じてコイルにブレーキ電圧を発生させて,常に予め設定された一定の発電電圧を発生させ,更に出力端子部に置いた変圧器に二種類の巻線を置き,三相電流から分岐した二つの電流を逆方向に流し,その干渉効果により高速時の電圧上昇を抑制させることを特徴とする自己電圧制御型永久磁石式発電機を提供することである。
【0008】
この発明は,ハウジングに回転可能に支持された永久磁石部材を備えたロータ,前記ロータの外周側で前記ハウジングに固定され且つ周方向に隔置して櫛部間のスロット部に配設された巻数の異なる二種類の巻線を備えたステータ,前記ロータと前記ステータとの間に介在された磁束制御装置,及び前記磁束制御装置をアクチュエータを作動して前記ステータに対して移動させて前記ロータの永久磁石部材から前記ステータの前記櫛部へ流れる磁束を制御するコントローラを有する永久磁石式発電機において
前記巻数の多い高電圧側巻線によって三相交流を発生させるそれぞれのU相,V相及びW相の端子には前記ロータと同様の永久磁石部材を備えたロータを持つ電動機を接続し, 前記巻数の少ない低電圧側巻線によって三相交流を発生させるそれぞれのU相,V相及びW相の端子にはそれぞれ発生する発電電圧を抑制させるための別の巻線を構成するコイルを接続し,前記コイルは変圧器を構成する継鉄に二種類の巻線がそれぞれ逆方向に巻き上げられた一次側を構成し,前記変圧器の前記継鉄に巻き上げられた二次側を構成する巻線の端子が一定電圧を出力する出力端子を構成していることを特徴とする自己電圧制御型永久磁石式発電機に関する。
【0009】
この永久磁石式発電機は,前記ステータに巻き上げられた二種類の前記巻線のうち,一方の前記巻線は前記電圧を一定にする装置を介して出力し且つ各種機器類に同時に一定電圧の電力を送るように構成され,他方の前記巻線は出力電圧をそのまま用いて駆動モータに直接送電し,それぞれの前記巻線への電流の供給をスイッチのON−OFFにより駆動制御するものである。
【0010】
この永久磁石式発電機は,前記発電機の前記ロータの回転数の上昇に従って上昇する出力電圧に対応して前記変圧器の前記コイルに発生するリアクタンスによって前記出力電圧にブレーキをかけて予め決められた一定電圧を発電させると共に,更に高速回転時には変圧器コアに一方の前記巻線と逆向きに巻き上げられた他方の前記巻線によって変圧器磁束を減少させるものである。
【0011】
この永久磁石式発電機において,前記低電圧巻線は一定電圧になるように前記ステータの前記櫛部に巻き上げられた前記巻線と前記変圧器の前記巻線の前記コイルにより電圧制御される。
【0012】
この永久磁石式発電機は,前記一定電圧側の前記出力端子には,前記変圧器の主巻線とサブ巻線から成る二種類の前記巻線に接続し,前記サブ巻線は前記主巻線の巻方向と逆向きに巻き上げられ,低速では前記主巻線により変圧器コアに磁力を発生せしめ,高速ではスイッチをONとして前記変圧器内に逆向きで同波長で同周期の電流を前記サブ巻線に流し,前記変圧器コア内の磁束を減少させるものである
【0013】
この永久磁石式発電機は,前記変圧器の主巻線とサブ巻線から成る二種類の前記巻線にON−OFFのスイッチを取り付け,前記スイッチによって発電機速度がごく低速の時は二種類の前記巻線が同一巻き方向になるように切り換え,中速の時は前記主巻線のみをONし,また,高速の時は前記主巻線に対して前記サブ巻線が逆方向に電流が流れるようにスイッチを切り換えるものである。
【0014】
前記変圧器の前記出力端子は整流器に接続し,前記整流器で整流した電力はバッテリーに接続されている。
【0015】
この永久磁石式発電機は,前記変圧器に一次巻線の前記サブ巻線の径路に可変抵抗器を挟み,逆電流を制御することにより二次巻線の電圧を一定にする制御をするものである。
【0016】
この永久磁石式発電機は,上記のように,高電圧側の三相交流の巻線を作動モータにスイッチを介して直接連結し,低電圧側の三相交流の巻線を変圧器の一次側の二種類の巻線にそれぞれ接続し,二種類の巻線の巻き数を交流発電機の発電電圧を抑制させる巻き数に選び,発電機側の巻線の巻き数を変圧器の巻線より多くして低速回転時に所定の電圧が出るようにし,変圧器の巻線を巻数の大きい主巻線と巻数の小さいサブ巻線とし,低速時には変圧側のインピーダンスは小さいので,変圧器の変圧効果によって所定の電圧が出るようにし,ロータの回転数即ち周波数が増大すると,変圧器の二種類の巻線によってインピーダンスによる電流抑制効果を発生させ,電圧の上昇を抑える。このように構成した発電機では,周波数が増加すると,サブ巻線側に電流を流し,逆方向に磁界を作り,電圧を降下させる方法により,低速時には周波数が小さいので磁力が支配的となり,大きな電力が発生するが,巻線の数が比較的少ないので,発電機の抵抗は巻線抵抗のみであり,発電電力は変圧器の巻線比によって昇圧される。
【0017】
この永久磁石式発電機は,発電機の回転の増加と共に発電電圧が比例的に上昇するが,中速時には発電機の巻線によるリアクタンスと変圧器の巻線によるリアクタンスによって無効電力が増大し,電圧上昇を抑制することができる。例えば,トラック用エンジンのようにアイドリング回転が極端に低い状態で運転される場合には,発電機の巻線の多い方が発生電圧を増加させるので,その状態では発電機の電圧は巻線効果だけで電圧が高くなる。しかし,この永久磁石式発電機は,中速時に交流発電機の電圧制御効果を発電機の巻線とその出力端子に設けた変圧器の巻線に発生するリアクタンスの無効電力により抑制するものであるが,電流が小さい時には電圧が上昇するので,磁束制御装置即ち電圧制御装置によって電圧を制御し,発電出力を直接整流器を通してバッテリーに入力させる。バッテリーは,電圧調整機能を持つので,更に安定した電圧の電力を供給できる。
【0018】
【発明の実施の形態】
以下,図面を参照して,この発明による自己電圧制御型永久磁石式発電機の実施例を説明する。この自己電圧制御型永久磁石式発電機は,例えば,自動車等の車両に搭載されたエンジンに設けた発電機,コージェネレーションシステムのエンジンに組み込まれた発電機,ハイブリット自動車のエンジン等の出力軸に取り付けられた発電機,排気ガスエネルギを回収するターボチャージャに組み込まれた発電機,或いはエネルギ回収装置に設けた発電機が車両に搭載された補機や冷凍機等の機器等を駆動するのに適用したり,或いはハイブリット車の電動機を駆動するのに適用して好ましいものである。
【0019】
自己電圧制御型永久磁石式発電機には,ステータ4の櫛部10を流れる磁束を制御する磁束制御装置7が設けられたものがある。この実施例では,永久磁石式発電機は,図7〜図10に示すように,ステータ4が取り付けられたハウジング1,ハウジング1に一対の軸受13を介して回転可能にそれぞれ支持されている回転軸2,回転軸2に固定されている永久磁石部材5から成るロータ3,ロータ3の外周側に配置され且つハウジング1に固定されているステータ4,ステータ4の内周側にステータ4に対して揺動可能に取り付けられた磁束制御装置7,及び磁束制御装置7をロータ3の回転速度に応じてステータ4に対して揺動移動させるアクチュエータ25から構成されている。ハウジング1は,例えば,両側の一対のハウジング本体30と両ハウジング本体30を連結する中間部のボルト31とから構成されている。また,回転軸2には,例えば,回転軸2の一端部に入力となるベルトプーリ45が固定され,ベルトプーリ45にエンジンの出力軸に取り付けたベルトが掛けられている。また,回転軸2の他端部には,ロータ3やステータ4で発生する熱を放熱するため冷却ファン46が取り付けられている。ロータ3の透磁部材6とハウジング1には,冷却ファン46で発生する冷却風が流れる通風孔28,47が形成されている。ステータ4は,周方向に所定間隔のスロット部11を形成するように隔置された櫛歯状の櫛部10と外周部を形成するリング状継鉄部17から成る薄板積層形のステータコア15,櫛部10に巻き上げられるようにスロット部11内に配設された巻線14,及び巻線14を成形固定するためスロット部11内に配設された非磁性材から構成されている。
【0020】
この永久磁石式発電機において,巻線14は,例えば,ステータ4のステータコア15の櫛部10に巻き上げられた巻数の多い高電圧側巻線18と,櫛部10に巻き上げられた巻数の少ない低電圧側巻線19とから構成されている(図1,図4)。ステータコア15におけるスロット部11と櫛部10との内周側には,磁束制御装置7が接触状態に且つステータ4に対して揺動移動可能に配置されている。磁束制御装置7は,ハウジング1に軸受を介して回転又は揺動自在に取り付けるか,又は軸受を使用することなく,ステータコア15に回転自在に接触状態に嵌合させることによってステータコア15に対して回転可能に取り付けることができる。
【0021】
ロータ3は,図7に示すように,回転軸2の外周に取り付けられた冷却用の通風孔28を備えた透磁部材6,透磁部材6の外周面に配置された永久磁石部材5,及び永久磁石部材5の外周面に固定された非磁性の補強部材16を備えている。永久磁石部材5は,周方向に隔置して極性が交互に異なる状態に配置され且つ軸方向に延びる永久磁石板片20と,隣接する永久磁石板片20間に介在された非磁性材21とから構成されている。また,非磁性材21は,巻線14の発熱によって溶損しない耐熱性材料で構成されている。また,透磁部材6は,例えば,透磁材と非磁性材が周方向に交互に配置して軸方向に延びて円筒状に形成されている。この永久磁石式発電機は,ロータ3の一端には,回転軸2に設けられたねじ32に押さえ板34を介して固定ナット33が螺入され,他端には回転軸2に固定された押さえ板35とスペーサ29が設けられ,固定ナット33で締め付けることによってロータ3が回転軸2の所定位置に固定されている。また,磁束制御装置7とロータ3との間には,可及的に小さい隙間22が形成されている。
【0022】
この永久磁石式発電機は,ステータ4とロータ3との間でステータ4に対して揺動可能に配置された磁束密度を調整して電圧を制御する磁束制御装置7,磁束制御装置7をステータ4に対してロッド26を介して揺動させるアクチュエータ25,及びロータ3の回転速度に応答して磁束制御装置7の揺動量を制御するコントローラ40(図1)を有する。磁束制御装置7は,外周側がステータ4の櫛部10と同数であって凹部12で隔置された櫛部10に接触可能な透磁性突起部である透磁部8と,内周側が透磁部8を互いに連繋するブリッジ部9とから構成されたリング状連続体に形成されている。
【0023】
また,磁束制御装置7の透磁部8は,周方向に隔置して配置され且つステータ4の櫛部10間のスロット部11の幅より小さい幅を有する概略断面四角形状に形成され,その外面23が櫛部10の内面24に対向状態に接触可能に構成されている。また,図9及び図10に示すように,ステータコア15の櫛部10には,その内周端面の角部にチャンファ67が形成されており,また,磁束制御装置7の透磁部8には,その外周端面の角部にチャンファ68が形成されている。更に,磁束制御装置7は,透磁部8とブリッジ部9との境界における磁束の流れをスムースにするため,透磁部8に形成された凹部12の角部がR部42に形成されている。磁束制御装置7の透磁部8は,ロータ3側の内側部が周方向に幅広になる張り出し部となるR部42に形成されている。従って,磁束制御装置7のブリッジ部9は,永久磁石部材5からの磁束の流れをスムースにして磁束の漏れを低減する集磁部として機能する。
【0024】
コントローラ40(図1)は,磁束制御装置7のステータ4に対する揺動によって,透磁部8の外面23と,櫛部10の内面24との対向面積即ち接触面積との量を制御するように構成されている。コントローラ40の指令によって磁束制御装置7がステータ4に対して相対揺動すると,透磁部8の外面23と櫛部10の内面24との密接状態は調整され,磁束制御装置7の透磁部8からステータコア15の櫛部10へ流れる磁束が制御されることになる。例えば,コントローラ40は,ロータ3の低速時にはアクチュエータ25を作動して透磁部8と櫛部10との合口が整合状態になる制御を行い(図8,図9),また,ロータ3の高速時には,アクチュエータ25を作動して透磁部8を櫛部10間のスロット部11へと移動させ,櫛部10との対向面積を低減させる制御を行う(図10)。また,コントローラ40は,ロータ3のステータ4に対する回転速度,即ち,周波数fとステータ4の櫛部10を流れる磁束φとの積(=f×φ)が一定になるように,アクチュエータ25によって磁束制御装置7を揺動させて予め決められた所定の一定の電圧を発電させる制御を行う。即ち,図10に示すように,コントローラ40の制御によって磁束制御装置7が移動して磁束制御装置7の透磁部8がステータコア15の櫛部10間に位置した状態では,櫛部10のチャンファ67と透磁部8のチャンファ68との間には,高精度に隙間Sが形成されことになり,ロータ3からステータ4へ流れる磁束は最も抑制される状態になる。しかるに,このような磁束制御形発電機で,電圧を一定にし,インバータを用いて駆動に必要な周波数の電流を作るより,直接,永久磁石式電動機を作動させた方が効率的であることが多い。しかし,この発電機の出力として一定電圧の出力も必要である。
【0025】
次に,図1を参照して,この永久磁石式発電機を組み込んだシステムについて説明する。この永久磁石式発電機は,発電機の三相の巻線14の高電圧側巻線18の端子36が電動機27に接続され,また,低電圧側巻線19の端子37が変圧器41の一次側の継鉄48の巻き上げられたコイル38,39を接続されていることを特徴とする。即ち,この永久磁石式発電機では,ステータ4のスロット部11に配設された巻線14は,巻き数の多い高電圧巻線18と巻き数の少ない低電圧巻線19とから成り,高電圧巻線18と低電圧巻線19が三相交流をそれぞれ発生させるようにステータ4の櫛部10に巻き上げられている。
【0026】
この永久磁石式発電機では,巻線14の低電圧側巻線19によって三相交流を発生させるそれぞれのU相,V相及びW相の端子37に,巻線14にそれぞれ発生する発電電圧を抑制させる巻き数に設定されたコイル38,39が接続されている。コイル38,39は,変圧器41を構成する継鉄48に巻き上げられた一次側50のコイル38,39を構成し,また,変圧器41の継鉄48に巻き上げられた二次側51を構成する巻線59が一定電圧を出力する出力端子53を構成している。更に,サブコイル39の入力側には抵抗値の小さい可変抵抗器54が介在している。更に,変圧器41の二次側51の巻線59の出力端子53は整流器43に接続され,整流器43の出力側は,バッテリ49に接続されている。また,二次側51の巻線59間には,電圧測定器52が設けられている。低電圧側巻線19の中性点57は,主コイル38とサブコイル39との他端に接続されている。変圧器41の一次側50のコイル38,39は,符号39が主コイル及び符号38がサブコイルであり,主コイル38とサブコイル39の間にはスイッチ55が組み込まれている。特に,主コイル38とサブコイル39とは,巻線の巻方向が逆になっている。コントローラ40の指令によってスイッチ55をON−OFF制御し,低速時には主コイル38が作動し,また,高速時にはサブコイル39に電流を流し,主コイル38の作る磁界と逆方向の磁界を作り出す。
【0027】
また,この永久磁石式発電機では,巻線14の高電圧側巻線18によって三相交流を発生させるそれぞれのU相,V相及びW相の端子36に,電動機27のそれぞれのU相,V相及びW相の巻線60がスイッチ44を介して接続されている。高電圧側巻線18における三相の中性点56は,電動機2の三相の巻線60の中性点61に接続されている。スイッチ44は,コントローラ40の指令でON−OFF制御するように構成されている。
【0028】
コントローラ40は,回転速度に応じてスイッチ55を作動して低速回転時には主コイル38を通電させて必要電圧を確保し,また,高速回転時には変圧器41の磁束を低減させるよう逆方向に電流を流すようにサブコイル39に電流を流し,継鉄48を通る磁束を低減する制御をし,更に,サブコイル39に取り付けた可変抵抗器54によりサブコイル39の電流を増減させることにより二次側コイル即ち巻線59の電圧を一定にする制御をする。また,コントローラ40は,低速回転時には高電圧巻線18を有効にし,高速回転時には低電圧巻線19を有効にして所定の一定電圧を発電させる制御をする。
【0029】
次に,この永久磁石式発電機における変圧器の別の実施例を図5及び図6を参照して説明する。変圧器58については,変圧器41と同様な機能を有する部品には同一符号を付している。変圧器58は,変圧器41と比較して,一次側50の巻線に接続する回路に設けたスイッチ64,65及び66を設けた点が異なる以外は,同一の構成を有するものであり,コントローラ40の指令によるスイッチ64,65及び66の切り換え制御によって異なった機能を達成できるものである。
【0030】
図5及び図6に示すように,変圧器59の一次側50に主コイル62とサブコイル63を設けられている。発電機のロータ3の低速度時には,インピーダンスが小さいので,コントローラ40の指令によってスイッチ64をOFFし,スイッチ65をONし,またスイッチ66をOFFにする制御を行い,それによって両方の主コイル62とサブコイル63を同一方向に作用させ,電圧即ち出力を大きくする。また,ロータ3の中速度時では,コントローラ40の指令によってスイッチ64,65をOFFし,スイッチ66をONにすると,主コイル62のみが作用し,サブコイル63への電流が遮断される。更に,ロータ3の高速度時では,コントローラ40の指令によってスイッチ64,66をONし,スイッチ65をOFFにすると,主コイル62に対してサブコイル63に逆電流が流れ,継鉄48を流れる磁束を小さくし,二次側51のコイル59には所望の一定電圧を出力できるように制御される。
【0031】
上記に説明したように,発電機のステータ4に巻いてある巻線14の巻き数を大きくすると,発電電圧が大きくなるが,一方ではリアクタンスの増大によるインピーダンスも増大する。この状態で周波数が大きくなった時に,発電電圧を一定の値に押さえることはかなり難しいので,そこで,この自己電圧制御型永久磁石式発電機は,コイル38,39によるインピーダンスを発電機の巻線14の外部に持たせることによって効果的に,確実に発電電圧を一定に保たせることができるようになった。即ち,この永久磁石式発電機は,三相交流の巻線14のU相,V相,W相の端子37にそれぞれ変圧器41のコイル38,39を置き,コイル38,39の巻き数を交流発電機の発電電圧を抑制させる巻き数に選んで設定する。発電機側のコイル38,39はその巻き数を逆方向に選定し,低速回転時に所定の電圧が出るようにし,変圧側のインピーダンスは小さいので,変圧器41の変圧効果によって所定の一定電圧が出るようにし,周波数が増大すると,変圧器41の巻線即ちコイル38,39にはインピーダンスによる電流抑制効果が発生し,電圧の上昇を抑える。
【0032】
このように構成した永久磁石式発電機では,低速時には,上記(1)式で表されるように,周波数fが小さいので磁力が支配的となり,大きな電力が発生するが,コイル38,39の数が比較的少ないので,発電機の抵抗は巻線抵抗のみであり,変圧器41の二次側51の出力端子53からの発電電力は,変圧器41の巻線比によって昇圧又は降圧される。発電機の回転の増加と共に発電電圧は比例的に上昇するが,発電機の巻線19によるリアクタンスと変圧器41のコイル38,39によるリアクタンスによって無効電力が増大し,電圧上昇を抑制することができる。例えば,トラック用エンジンのようにアイドリング回転が極端に低い状態で運転される場合には,発電機の巻線18の多い方が発生電圧を増加させるので,その状態では発電機の電圧は巻線効果だけで電圧が高くなる。
【0033】
上記のように,この永久磁石式発電機は,交流発電機の電圧制御効果を発電機の巻線18,19とその出力端子37に設けた変圧器41のコイル39に発生するリアクタンスの無効電力により抑制することを特徴とする。勿論,この発電機は,電流が小さい時には,電圧が上昇するので,発電機のステータ部に取り付けられた磁束制御装置7によってその電圧上昇を抑制する。即ち,磁束制御装置7は,例えば,エンジン回転数が小さい時には,変圧器41の巻線38側に切り換えてステータ4の巻線19側を流れる磁束を増加させて一定の発電電力を出力させ,エンジン回転数が大きい時には,巻線39側に電流を流すようにスイッチ55を切り換えて変圧器41を流れる磁束を抑制して,二次側コイル51に一定の発電電圧を出力させる。
【0034】
この永久磁石式発電機は,上記のように構成されているので,ロータ3の回転数fが多くなれば,それに従って無負荷電圧NVが上昇するが,それに伴ってインピーダンス〔R2 +(fL)2 1 / 2 が増大し,電圧上昇を抑制するが,端子電圧EVはそれに伴って上昇する。また,コイル39によるリアクタンスは,図2に示すように,電流Iが大きい場合にはIVL,中間ではIVM,及び小さい時にはIVSになる。しかしながら,発電機と変圧器41のリアクタンスは,回転数即ち周波数fのみによって変化するので,流れる電流は周波数fによらず一定となり,周波数fの増大に伴って端子電圧EVが増大するので,一定の出力電圧を得ることはできない。また,この永久磁石式発電機では,三相電源の端子37にコイル38,39が配置されているので,ロータ3の回転数即ち周波数fが多くなれば,それに伴ってコイル39によるリアクタンスが増大し,インピーダンスが増大する。しかし,この状態では,変圧器41の二次側51の電圧を一定にすることができないので,一次側50のコイルとして逆方向に巻き上げられた二種類のコイル38,39を配設し,主コイル38に対向して逆磁界が流れるよう,サブコイル39を設け,高速時に逆電流を流し,変圧器41の磁束を減少させる。すると,二次側51の巻線即ちコイル59には誘導電流が流れないようになり,電圧が降下し,図3のように,一定電圧を得ることができる。
【0035】
この永久磁石式発電機は,上記のように,高電圧側巻線18の出力端子36には発電電圧がかかり,低電圧側巻線19の出力端子37には電圧抑制機構が作用し,コントローラ40は,高速時に磁束制御用スイッチ55の作動に応答して変圧器41の磁束を小さくさせ,二次側51に一定電圧の電力提供する。
【0036】
【発明の効果】
この発明による自己電圧制御型永久磁石式発電機は,上記のように構成されているので,発電機の端子に接続されたコイルがブレーキ電圧を発生させ,従って,変圧器の二次側の巻線の出力端子から常に一定の電圧を出力することができる。また,ステータには,高電圧用巻線と低電圧用巻線が巻き上げられているので,ロータの低速時には高電圧用巻線を付勢し,ロータの高速時には低電圧用巻線を付勢することによって,常に一定の電圧を発電させることができる。更に,ステータとロータとの間には,磁束制御装置が配置されているので,ロータの永久磁石部材からステータの櫛部へ流れる磁束は調整され,一定電圧を出力するように制御できる。
【図面の簡単な説明】
【図1】この発明による自己電圧制御型永久磁石式発電機の一実施例を示す配線図である。
【図2】この永久磁石式発電機における発電電圧及び端子電圧に対する周波数と電圧との関係を示すグラフである。
【図3】この永久磁石式発電機における変圧器の一次側と二次側の端子電圧に対する周波数と電圧との関係を示すグラフである。
【図4】この発明による自己電圧制御型永久磁石式発電機のステータに巻き上げた高電圧用巻線と高電圧用巻線の巻き上げ状態を示す説明図である。
【図5】この発明による自己電圧制御型永久磁石式発電機における変圧器の別の実施例を示す配線図である。
【図6】図5の変圧器の符号A部分を示す拡大図である。
【図7】この発明による自己電圧制御型永久磁石式発電機を示す概略断面図である。
【図8】図7に示すこの永久磁石式発電機のI−I断面であって磁束を絞らない位置に磁束制御装置が揺動した状態を示す断面図である。
【図9】図7に示す磁束制御装置によって磁束が絞られない状態を示す要部を拡大した一部断面図である。
【図10】図7に示す磁束制御装置によって磁束が絞られた状態を示す要部を拡大した一部断面図である。
【符号の説明】
1 ハウジング
3 ロータ
4 ステータ
5 永久磁石部材
7 磁束制御装置
10 櫛部
11 スロット部
14 巻線
18 高電圧側巻線
19 低電圧側巻線
27 電動機
36 発電機の出力端子(高電圧側)
37 発電機の出力端子(低電圧側)
38,62 主コイル(一次側)
39,63 サブコイル(一次側)
40 コントローラ
41,58 変圧器
43 整流器
44 スイッチ(電動機側)
48 変圧器の継鉄
49 バッテリ
50 一次側
51 二次側
53 出力端子
54 可変抵抗器
55,64,65,66 スイッチ(変圧器の一次側)
59 変圧器の二次側巻線
60 電動機の巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-voltage controlled permanent magnet generator comprising a permanent magnet rotor and a stator arranged on the outer periphery of the rotor.
[0002]
[Prior art]
Conventionally, permanent magnet generators use a permanent magnet for the rotor of the generator, so that the structure is simple and large generated power can be obtained. For this reason, permanent magnet generators are used as generators and motors for conventional hybrid vehicles, and in recent years, systems using permanent magnet generators have been increasingly used for automobiles. When the above system is installed in a hybrid vehicle equipped with a generator and an electric motor, and the generated electric power is sent to the electric motor, its function can be fully exerted even if the voltage fluctuates. When adjusting to the driving battery voltage, the voltage fluctuation must be adjusted to a constant voltage. In order to keep the generated voltage constant, it is necessary to cut off the power using a switching regulator or the like. However, a large power transistor is required to turn on and off a large current, resulting in a large device. , Cooling loss increases and becomes expensive. Moreover, when the current is chopped in order to keep the generated voltage constant, the generated ripple triggers radio interference, and noise countermeasures are extremely difficult.
[0003]
The high-output AC generator / motor disclosed in Japanese Patent Application Laid-Open No. 7-236260 controls the magnetic flux density in accordance with the rotational speed and appropriately controls the amount of power generation. A control ring is provided between the rotor and the stator. Are arranged so that they can rotate relative to each other, and are provided with a magnetically permeable material that can contact and separate from the control ring.
[0004]
However, since the power generation characteristics of automobile generators are usually 12V and 24V for automobile equipment, and 100V or 200V for industrial equipment driving, power that matches this power is used. It is necessary to supply. In high-power generators and motors that use permanent magnets, the magnetic flux of the permanent magnet is fixed. To increase the low-speed output or low-speed torque, increase the permanent magnet, increase the frequency, The number of turns must be increased, the magnetic force on the stator side must be increased, and the torque must be increased. In order to increase the output or torque with a generator / motor, it is necessary to increase the wire diameter of the wire wound around the stator core, to pass a large current, and to increase the magnetic force of the stator.
[0005]
[Problems to be solved by the invention]
By the way, in order to solve the above-mentioned problems, the present inventor has a strip-shaped magnetic permeability part in which a part of the stator is cut off between the permanent magnet rotor of the generator and the stator, that is, outside the rotor. A magnetic flux control cylinder is installed, and when the amount of power generated by the generator is required, the magnetic permeability part of the cylinder is moved to overlap the comb part of the stator so that the magnetic flux sufficiently flows through the stator comb part. The stator comb portion and the cylindrical magnetic permeability portion are moved to a shifted state, and a gap is provided between the stator comb portion and the magnetic flux control cylinder teeth, that is, the magnetic permeability portion, to reduce the magnetic force flowing through the stator comb portion. An application was made earlier in which a generator always generates a constant voltage by such a method (see, for example, Japanese Patent Application No. 2001-286103).
[0006]
By the way, automobiles have two power functions. There is a need for a device that can output these two types of power, that is, a power drive that drives the power of the car and a low-voltage function that drives the equipment of the car. For automobiles with large generator rotation fluctuations, the difference between the maximum speed and the speed at the minimum speed is as large as 6 to 7 times. On the side that requires a constant voltage, the above magnetic flux control is not always constant. The generated voltage cannot be generated. However, in a permanent magnet generator, when the rotor speed increases, reactance resistance is generated in the windings wound around the stator of the generator, reducing the current flow. Therefore, the present inventor does not have any actual harm such as heat generation as the reactive resistance of the winding is different from the resistance of the wire in the alternating current, and rather, the voltage is controlled by using this reactance resistance. For example, we thought that the voltage rise could be effectively suppressed.
The output voltage E of the generator is expressed by the following equation.
E = φ × f × Ws (1)
Where φ: magnetic force passing through the winding, f: frequency, Ws: number of windings
The impedance Z generated in the winding portion of the generator is expressed by the following equation.
Z = [R 2 + (F × L) 2 ] 1/2 ... (2)
Where Z: impedance, R: wire resistance, L: reactance
(F × L) 2 Since this term is reactive power, it does not actually become a resistance to heat generation. Therefore, as the frequency increases, the actual resistance value increases extremely and the terminal voltage decreases. That is, the relationship between the output voltage of the generator and the terminal voltage is as follows. Es = Vs + I × Z (3)
However, Es: Generated electromotive voltage, Vs: Terminal voltage, Z: Impedance, I: Current
As can be seen from the above equation, when the generator rotation increases and the output voltage increases, at the same time, the reactance increases and the output voltage is suppressed to a substantially constant value. This tendency becomes more prominent as the number of winding turns increases, and the amount of power generated is braked. The inventor has developed a self-control generator by changing the winding method using the above principle.
[0007]
[Means for Solving the Problems]
The purpose of this invention is to place a transformer on the terminals of the three-phase winding and of Each coil is connected so as to brake the increase of the generated voltage using the winding of the transformer, and even if the rotation speed or frequency of the rotor increases, a brake voltage is generated in the coil accordingly, and always in advance Generates a set power generation voltage, places two types of windings on a transformer placed at the output terminal, and allows two currents branched from the three-phase current to flow in opposite directions. It is an object of the present invention to provide a self-voltage control type permanent magnet generator characterized in that the voltage rise of the self-voltage is suppressed.
[0008]
The present invention provides a rotor having a permanent magnet member rotatably supported by a housing. ,in front A stator provided with two types of windings which are fixed to the housing on the outer peripheral side of the rotor and spaced apart from each other in the circumferential direction and arranged in slots between the combs. The magnetic flux control device interposed between the rotor and the stator, and the magnetic flux control device is moved relative to the stator by operating an actuator to flow from the permanent magnet member of the rotor to the comb portion of the stator. In a permanent magnet generator having a controller for controlling magnetic flux ,
Each U-phase, V-phase, and W-phase terminal that generates a three-phase alternating current by the high-voltage side winding having a large number of turns Said Connected to an electric motor having a rotor with a permanent magnet member similar to the rotor, and generated at each U-phase, V-phase, and W-phase terminals by the three-phase AC generated by the low-voltage side winding with a small number of turns. A coil constituting another winding for suppressing the generated voltage to be connected, and the coil constitutes a primary side in which two types of windings are wound up in opposite directions on the yoke constituting the transformer, The terminal of the winding which comprises the secondary side wound up by the said yoke of the said transformer comprises the output terminal which outputs a fixed voltage Characterized by The present invention relates to a self-voltage controlled permanent magnet generator.
[0009]
This permanent magnet generator is wound around the stator. Two Kind of Said Winding Out of One of the windings is configured to output through a device for making the voltage constant and to send power of a constant voltage to various devices at the same time. ,other One of the windings directly transmits power to the drive motor using the output voltage as it is, and the drive of the current supply to each of the windings is controlled by ON / OFF of a switch.
[0010]
This permanent magnet generator Of the generator The output voltage is braked by the reactance generated in the coil of the transformer in response to the output voltage that increases as the rotational speed of the rotor increases, and a predetermined constant voltage is generated. The transformer magnetic flux is reduced by the other winding wound around the transformer core in the direction opposite to the one winding.
[0011]
In this permanent magnet generator, Low voltage ~ side The winding is voltage-controlled by the winding wound around the comb portion of the stator and the coil of the winding of the transformer so as to have a constant voltage.
[0012]
This permanent magnet generator has a constant voltage side. Said The output terminal is connected to two types of windings consisting of a main winding and a sub winding of the transformer, and the sub winding is wound up in the direction opposite to the winding direction of the main winding. The main winding generates a magnetic force in the transformer core, and at high speed, the switch is turned on and a current having the same wavelength and the same period is passed through the sub-winding in the reverse direction, and the magnetic flux in the transformer core is generated. Decrease Is a thing .
[0013]
This permanent magnet generator is equipped with two types of windings consisting of the main winding and sub winding of the transformer, and an ON-OFF switch is installed. The windings are switched so that they are in the same winding direction, only the main winding is turned on at medium speed, and the sub-winding is in a reverse direction with respect to the main winding at high speed. The switch is switched so as to flow.
[0014]
Of the transformer Said The output terminal is connected to a rectifier, and the electric power rectified by the rectifier is connected to a battery.
[0015]
This permanent magnet type generator controls the voltage of the secondary winding to be constant by sandwiching a variable resistor in the path of the sub-winding of the primary winding in the transformer and controlling the reverse current. It is.
[0016]
As described above, this permanent magnet generator has a three-phase AC winding on the high voltage side directly connected to the operating motor via a switch, and a three-phase AC winding on the low voltage side is connected to the primary of the transformer. Connect to the two types of windings on the side, select the number of turns of the two types of windings as the number of turns to suppress the generator voltage, and set the number of turns on the generator side to the winding of the transformer. Increase the number so that a predetermined voltage is generated during low-speed rotation, and the transformer winding is a main winding with a large number of turns and a sub-winding with a small number of turns. When a predetermined voltage is generated by the effect and the rotation speed of the rotor, that is, the frequency is increased, the current suppression effect by the impedance is generated by the two kinds of windings of the transformer, and the voltage rise is suppressed. In the generator configured in this way, when the frequency increases, current flows in the sub-winding side, creates a magnetic field in the opposite direction, and drops the voltage. Although power is generated, since the number of windings is relatively small, the generator resistance is only the winding resistance, and the generated power is boosted by the winding ratio of the transformer.
[0017]
In this permanent magnet generator, the generated voltage increases proportionally with the increase in generator rotation. At medium speed, the reactive power increases due to the reactance due to the generator winding and the reactance due to the transformer winding. Voltage rise can be suppressed. For example, when the engine is operated at an extremely low idling speed, such as a truck engine, the generator winding increases the generated voltage. In this state, the generator voltage Just increase the voltage. However, this permanent magnet generator suppresses the voltage control effect of the AC generator at medium speed by reacting reactive power generated in the generator winding and the transformer winding provided at its output terminal. However, since the voltage rises when the current is small, the voltage is controlled by the magnetic flux control device, that is, the voltage control device, and the power generation output is directly input to the battery through the rectifier. Since the battery has a voltage adjustment function, it can supply more stable power.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a self-voltage controlled permanent magnet generator according to the present invention will be described below with reference to the drawings. This self-voltage control type permanent magnet generator is used, for example, for an output shaft of a generator provided in an engine mounted on a vehicle such as an automobile, a generator incorporated in an engine of a cogeneration system, an engine of a hybrid vehicle, etc. A generator installed in a turbocharger that collects exhaust gas energy, or a generator installed in an energy recovery device drives an auxiliary machine or refrigerator installed in the vehicle. It is preferable to apply or to drive an electric motor of a hybrid vehicle.
[0019]
Some self-voltage controlled permanent magnet generators are provided with a magnetic flux control device 7 for controlling the magnetic flux flowing through the comb portion 10 of the stator 4. In this embodiment, as shown in FIGS. 7 to 10, the permanent magnet generator is rotatably supported by a housing 1 and a housing 1 to which a stator 4 is attached via a pair of bearings 13. A rotor 3 composed of a permanent magnet member 5 fixed to the shaft 2 and the rotary shaft 2, a stator 4 disposed on the outer peripheral side of the rotor 3 and fixed to the housing 1, and an inner peripheral side of the stator 4 with respect to the stator 4 The magnetic flux control device 7 is mounted so as to be swingable, and the actuator 25 is configured to swing the magnetic flux control device 7 relative to the stator 4 in accordance with the rotational speed of the rotor 3. The housing 1 includes, for example, a pair of housing main bodies 30 on both sides and intermediate bolts 31 that connect the two housing main bodies 30. Further, for example, a belt pulley 45 serving as an input is fixed to one end portion of the rotating shaft 2, and the belt attached to the output shaft of the engine is hung on the belt pulley 45. A cooling fan 46 is attached to the other end of the rotating shaft 2 in order to dissipate heat generated by the rotor 3 and the stator 4. Ventilation holes 28 and 47 through which cooling air generated by the cooling fan 46 flows are formed in the magnetically permeable member 6 and the housing 1 of the rotor 3. The stator 4 includes a thin-plate-stacked stator core 15 including a comb-like comb portion 10 and a ring-shaped yoke portion 17 that form an outer peripheral portion, which are spaced apart so as to form slot portions 11 having a predetermined interval in the circumferential direction. The windings 14 are arranged in the slot 11 so as to be wound up by 10, and the non-magnetic material is arranged in the slot 11 for fixing the winding 14.
[0020]
In this permanent magnet generator, the winding 14 includes, for example, a high-voltage side winding 18 having a large number of turns wound around the comb portion 10 of the stator core 15 of the stator 4 and a low-voltage side having a small number of turns wound around the comb portion 10. It is comprised from the coil | winding 19 (FIG. 1, FIG. 4). On the inner peripheral side of the slot portion 11 and the comb portion 10 in the stator core 15, the magnetic flux control device 7 is arranged in a contact state and capable of swinging with respect to the stator 4. The magnetic flux control device 7 rotates with respect to the stator core 15 by being attached to the housing 1 via a bearing so as to be rotatable or swingable or by being fitted to the stator core 15 so as to be rotatable in a contact state without using a bearing. Can be attached as possible.
[0021]
As shown in FIG. 7, the rotor 3 includes a permanent magnet member 5 disposed on the outer peripheral surface of the magnetically permeable member 6 and the permeable member 6 provided with cooling ventilation holes 28 attached to the outer periphery of the rotating shaft 2. And a nonmagnetic reinforcing member 16 fixed to the outer peripheral surface of the permanent magnet member 5. The permanent magnet member 5 is arranged in a state where the polarities are alternately spaced apart in the circumferential direction and extend in the axial direction, and a nonmagnetic material 21 interposed between adjacent permanent magnet plate pieces 20. It consists of and. The nonmagnetic material 21 is made of a heat resistant material that does not melt due to the heat generated by the winding 14. Further, the magnetically permeable member 6 is formed in a cylindrical shape, for example, by alternately arranging a magnetically permeable material and a nonmagnetic material in the circumferential direction and extending in the axial direction. In this permanent magnet generator, a fixing nut 33 is screwed into a screw 32 provided on the rotary shaft 2 via a holding plate 34 at one end of the rotor 3 and fixed to the rotary shaft 2 at the other end. A pressing plate 35 and a spacer 29 are provided, and the rotor 3 is fixed at a predetermined position of the rotary shaft 2 by tightening with a fixing nut 33. Further, a gap 22 as small as possible is formed between the magnetic flux control device 7 and the rotor 3.
[0022]
The permanent magnet generator includes a magnetic flux control device 7 that controls a voltage by adjusting a magnetic flux density arranged so as to be swingable with respect to the stator 4 between the stator 4 and the rotor 3. 4 has an actuator 25 that swings via a rod 26 and a controller 40 (FIG. 1) that controls the swing amount of the magnetic flux controller 7 in response to the rotational speed of the rotor 3. The magnetic flux control device 7 includes a magnetically permeable portion 8 that is a magnetically permeable protrusion that can contact the comb portion 10 that is the same number as the comb portion 10 of the stator 4 on the outer peripheral side, and a magnetically permeable portion 8 on the inner peripheral side. Are formed in a ring-shaped continuous body composed of bridge portions 9 that are connected to each other.
[0023]
In addition, the magnetically permeable portions 8 of the magnetic flux control device 7 are formed in a substantially rectangular cross section having a width smaller than the width of the slot portion 11 between the comb portions 10 of the stator 4 and spaced apart in the circumferential direction. 23 is configured to be able to contact the inner surface 24 of the comb portion 10 in an opposed state. Further, as shown in FIGS. 9 and 10, the comb portion 10 of the stator core 15 is formed with a chamfer 67 at the corner portion of the inner peripheral end surface thereof, and the magnetic permeability portion 8 of the magnetic flux controller 7 includes A chamfer 68 is formed at the corner of the outer peripheral end face. Further, the magnetic flux control device 7 has a corner portion of the concave portion 12 formed in the magnetic permeability portion 8 formed in the R portion 42 in order to smooth the flow of magnetic flux at the boundary between the magnetic permeability portion 8 and the bridge portion 9. Yes. The magnetically permeable portion 8 of the magnetic flux control device 7 is formed in an R portion 42 which is an overhanging portion whose inner portion on the rotor 3 side becomes wider in the circumferential direction. Therefore, the bridge portion 9 of the magnetic flux control device 7 functions as a magnetic flux collecting portion that smoothes the flow of magnetic flux from the permanent magnet member 5 and reduces leakage of magnetic flux.
[0024]
The controller 40 (FIG. 1) is configured to control the amount of the facing area, that is, the contact area between the outer surface 23 of the magnetically permeable portion 8 and the inner surface 24 of the comb portion 10 by swinging the magnetic flux control device 7 with respect to the stator 4. Has been. When the magnetic flux control device 7 swings relative to the stator 4 according to a command from the controller 40, the close contact state between the outer surface 23 of the magnetic permeable portion 8 and the inner surface 24 of the comb portion 10 is adjusted, and the magnetic permeable portion 8 of the magnetic flux control device 7 is adjusted. The magnetic flux flowing from the stator to the comb portion 10 of the stator core 15 is controlled. For example, the controller 40 controls the actuator 25 so that the joint of the magnetically permeable portion 8 and the comb portion 10 is aligned when the rotor 3 is at a low speed (FIGS. 8 and 9). Then, the actuator 25 is operated to move the magnetically permeable part 8 to the slot part 11 between the comb parts 10, and control to reduce the area facing the comb part 10 is performed (FIG. 10). The controller 40 controls the magnetic flux by the actuator 25 so that the rotational speed of the rotor 3 with respect to the stator 4, that is, the product of the frequency f and the magnetic flux φ flowing through the comb portion 10 of the stator 4 (= f × φ) is constant. Control is performed to generate a predetermined constant voltage by swinging the device 7. That is, as shown in FIG. 10, when the magnetic flux control device 7 is moved by the control of the controller 40 and the magnetically permeable portion 8 of the magnetic flux control device 7 is located between the comb portions 10 of the stator core 15, A gap S is formed with high precision between the chamfer 68 of the magnetically permeable portion 8 and the magnetic flux flowing from the rotor 3 to the stator 4 is most suppressed. However, with such a flux-controlled generator, it is more efficient to operate the permanent magnet motor directly than to make the voltage constant and use the inverter to generate the current at the frequency required for driving. Many. However, a constant voltage output is also required as the generator output.
[0025]
Next, a system incorporating this permanent magnet generator will be described with reference to FIG. In this permanent magnet generator, the terminal 36 of the high-voltage side winding 18 of the three-phase winding 14 of the generator is connected to the motor 27, and the terminal 37 of the low-voltage side winding 19 is connected to the transformer 41. The coils 38 and 39 wound up by the primary yoke 48 are connected. That is, in this permanent magnet generator, the winding 14 disposed in the slot portion 11 of the stator 4 is composed of a high voltage winding 18 having a large number of turns and a low voltage winding 19 having a small number of turns. The voltage winding 18 and the low voltage winding 19 are wound around the comb portion 10 of the stator 4 so as to generate a three-phase alternating current.
[0026]
In this permanent magnet generator, the generated voltage generated in the winding 14 is applied to each U-phase, V-phase, and W-phase terminal 37 that generates a three-phase alternating current by the low-voltage side winding 19 of the winding 14. Coils 38 and 39 set to the number of turns to be suppressed are connected. The coils 38 and 39 constitute the coils 38 and 39 on the primary side 50 wound around the yoke 48 constituting the transformer 41, and the secondary side 51 wound around the yoke 48 of the transformer 41. The winding 59 that constitutes an output terminal 53 that outputs a constant voltage. Further, a variable resistor 54 having a small resistance value is interposed on the input side of the subcoil 39. Further, the output terminal 53 of the winding 59 on the secondary side 51 of the transformer 41 is connected to the rectifier 43, and the output side of the rectifier 43 is connected to the battery 49. A voltage measuring device 52 is provided between the windings 59 on the secondary side 51. A neutral point 57 of the low-voltage side winding 19 is connected to the other ends of the main coil 38 and the subcoil 39. The coils 38 and 39 on the primary side 50 of the transformer 41 are a main coil 39 and a sub-coil 38. A switch 55 is incorporated between the main coil 38 and the sub-coil 39. In particular, the winding direction of the winding is reversed between the main coil 38 and the subcoil 39. The switch 55 is ON / OFF controlled by a command from the controller 40, and the main coil 38 operates at a low speed, and a current flows through the subcoil 39 at a high speed to generate a magnetic field in the opposite direction to the magnetic field generated by the main coil 38.
[0027]
Further, in this permanent magnet generator, the U phase, V phase, and W phase terminals 36 that generate a three-phase alternating current by the high-voltage side winding 18 of the winding 14 are connected to the U phase, V-phase and W-phase windings 60 are connected via a switch 44. A three-phase neutral point 56 in the high-voltage side winding 18 is connected to a neutral point 61 of the three-phase winding 60 of the electric motor 2. The switch 44 is configured to perform ON / OFF control according to a command from the controller 40.
[0028]
The controller 40 operates the switch 55 according to the rotational speed to energize the main coil 38 during low speed rotation to ensure the necessary voltage, and during high speed rotation, the controller 40 applies current in the reverse direction so as to reduce the magnetic flux of the transformer 41. A current is supplied to the subcoil 39 so as to flow, and the magnetic flux passing through the yoke 48 is controlled to be reduced. Further, the variable coil 54 attached to the subcoil 39 is used to increase or decrease the current of the subcoil 39 to increase or decrease the secondary coil. Control is performed to keep the voltage of the line 59 constant. In addition, the controller 40 controls the high voltage winding 18 to be effective during low-speed rotation and the low voltage winding 19 to be effective during high-speed rotation to generate a predetermined constant voltage.
[0029]
Next, another embodiment of the transformer in the permanent magnet generator will be described with reference to FIGS. With regard to the transformer 58, parts having the same functions as those of the transformer 41 are denoted by the same reference numerals. The transformer 58 has the same configuration as that of the transformer 41 except that the switches 64, 65 and 66 provided in the circuit connected to the winding of the primary side 50 are provided. Different functions can be achieved by switching control of the switches 64, 65 and 66 according to the command of the controller 40.
[0030]
As shown in FIGS. 5 and 6, a primary coil 50 and a subcoil 63 are provided on the primary side 50 of the transformer 59. When the rotor 3 of the generator is at a low speed, the impedance is small, so that the switch 64 is turned off, the switch 65 is turned on, and the switch 66 is turned off in accordance with a command from the controller 40. And the subcoil 63 act in the same direction to increase the voltage, that is, the output. Further, at the medium speed of the rotor 3, when the switches 64 and 65 are turned OFF and the switch 66 is turned ON by a command from the controller 40, only the main coil 62 acts and the current to the subcoil 63 is cut off. Further, when the rotor 3 is at a high speed, when the switches 64 and 66 are turned ON and the switch 65 is turned OFF according to a command from the controller 40, a reverse current flows to the subcoil 63 with respect to the main coil 62, and the magnetic flux flows through the yoke 48. And the coil 59 on the secondary side 51 is controlled to output a desired constant voltage.
[0031]
As described above, when the number of windings 14 wound around the stator 4 of the generator is increased, the generated voltage increases, but on the other hand, the impedance due to an increase in reactance also increases. When the frequency increases in this state, it is quite difficult to keep the generated voltage at a constant value. Therefore, the self-voltage controlled permanent magnet generator uses the impedance of the coils 38 and 39 as the winding of the generator. By having it outside 14, the generated voltage can be effectively and reliably maintained constant. That is, in this permanent magnet generator, the coils 38 and 39 of the transformer 41 are respectively placed on the U-phase, V-phase, and W-phase terminals 37 of the three-phase AC winding 14, and the number of turns of the coils 38 and 39 is set. Select and set the number of turns to suppress the generator voltage. The coils 38 and 39 on the generator side are selected in the reverse direction so that a predetermined voltage is generated during low-speed rotation, and since the impedance on the transformer side is small, a predetermined constant voltage is generated by the transformation effect of the transformer 41. When the frequency is increased and the frequency is increased, the winding of the transformer 41, that is, the coils 38 and 39 has a current suppressing effect due to the impedance, thereby suppressing an increase in voltage.
[0032]
In the permanent magnet generator configured as described above, at a low speed, as shown in the above equation (1), the frequency f is small and the magnetic force is dominant and a large electric power is generated. Since the number is relatively small, the resistance of the generator is only the winding resistance, and the generated power from the output terminal 53 on the secondary side 51 of the transformer 41 is boosted or stepped down depending on the winding ratio of the transformer 41. . Although the generated voltage rises proportionally with the increase in the rotation of the generator, the reactive power increases due to the reactance due to the winding 19 of the generator and the reactance due to the coils 38 and 39 of the transformer 41, thereby suppressing the voltage rise. it can. For example, when the engine is operated with extremely low idling rotation, such as a truck engine, the generator winding 18 increases the generated voltage, so that the generator voltage is the winding in that state. Only the effect increases the voltage.
[0033]
As described above, this permanent magnet generator is a reactive reactive power generated in the coil 39 of the transformer 41 provided at the generator windings 18 and 19 and the output terminal 37 thereof with the voltage control effect of the AC generator. It is characterized by suppressing by. Of course, since the voltage of the generator increases when the current is small, the voltage increase is suppressed by the magnetic flux control device 7 attached to the stator portion of the generator. That is, for example, when the engine speed is small, the magnetic flux control device 7 switches to the winding 38 side of the transformer 41 and increases the magnetic flux flowing on the winding 19 side of the stator 4 to output a constant generated power. When the engine speed is high, the switch 55 is switched so that current flows to the winding 39 side to suppress the magnetic flux flowing through the transformer 41, and the secondary coil 51 outputs a constant generated voltage.
[0034]
Since this permanent magnet generator is configured as described above, as the rotational speed f of the rotor 3 increases, the no-load voltage NV rises accordingly, but the impedance [R 2 + (FL) 2 ] 1/2 Increases and the voltage rise is suppressed, but the terminal voltage EV rises accordingly. Further, as shown in FIG. 2, the reactance by the coil 39 becomes IVL when the current I is large, IVM when the current I is small, and IVS when the current I is small. However, since the reactance of the generator and the transformer 41 changes only depending on the rotation speed, that is, the frequency f, the flowing current becomes constant regardless of the frequency f, and the terminal voltage EV increases as the frequency f increases. Output voltage cannot be obtained. Further, in this permanent magnet generator, the coils 38 and 39 are arranged at the terminal 37 of the three-phase power supply. Therefore, if the rotation speed of the rotor 3, that is, the frequency f increases, the reactance due to the coil 39 increases accordingly. However, the impedance increases. However, in this state, since the voltage on the secondary side 51 of the transformer 41 cannot be made constant, two types of coils 38 and 39 wound in opposite directions are disposed as the primary side 50 coil, A sub-coil 39 is provided so that a reverse magnetic field flows opposite to the coil 38, and a reverse current is passed at high speed to reduce the magnetic flux of the transformer 41. Then, the induced current does not flow through the winding 51 of the secondary side 51, that is, the coil 59, the voltage drops, and a constant voltage can be obtained as shown in FIG.
[0035]
In the permanent magnet generator, as described above, a power generation voltage is applied to the output terminal 36 of the high-voltage side winding 18, and a voltage suppression mechanism acts on the output terminal 37 of the low-voltage side winding 19. 40 reduces the magnetic flux of the transformer 41 in response to the operation of the magnetic flux control switch 55 at a high speed, and provides the secondary side 51 with a constant voltage of electric power.
[0036]
【The invention's effect】
Since the self-voltage-controlled permanent magnet generator according to the present invention is configured as described above, the coil connected to the terminal of the generator generates a brake voltage, and therefore the secondary winding of the transformer. A constant voltage can always be output from the output terminal of the line. In addition, since the high voltage winding and the low voltage winding are wound on the stator, the high voltage winding is energized at the low speed of the rotor, and the low voltage coil is energized at the high speed of the rotor. By doing so, a constant voltage can always be generated. Further, since a magnetic flux control device is disposed between the stator and the rotor, the magnetic flux flowing from the permanent magnet member of the rotor to the comb portion of the stator is adjusted, and can be controlled to output a constant voltage.
[Brief description of the drawings]
FIG. 1 is a wiring diagram showing an embodiment of a self-voltage controlled permanent magnet generator according to the present invention.
FIG. 2 is a graph showing a relationship between a frequency and a voltage with respect to a generated voltage and a terminal voltage in the permanent magnet generator.
FIG. 3 is a graph showing a relationship between a frequency and a voltage with respect to a terminal voltage on a primary side and a secondary side of a transformer in the permanent magnet generator.
FIG. 4 is an explanatory view showing a winding state of a high-voltage winding wound around a stator of the self-voltage controlled permanent magnet generator according to the present invention and a winding state of the high-voltage winding.
FIG. 5 is a wiring diagram showing another embodiment of the transformer in the self-voltage controlled permanent magnet generator according to the present invention.
6 is an enlarged view showing a part A of the transformer of FIG. 5. FIG.
FIG. 7 is a schematic sectional view showing a self-voltage controlled permanent magnet generator according to the present invention.
8 is a cross-sectional view taken along the line II of the permanent magnet generator shown in FIG. 7 and showing a state in which the magnetic flux control device swings to a position where the magnetic flux is not reduced.
9 is a partial cross-sectional view enlarging a main part showing a state in which magnetic flux is not restricted by the magnetic flux control device shown in FIG. 7;
10 is a partial cross-sectional view enlarging a main part showing a state in which magnetic flux is reduced by the magnetic flux control device shown in FIG. 7;
[Explanation of symbols]
1 Housing
3 Rotor
4 Stator
5 Permanent magnet member
7 Magnetic flux control device
10 Comb
11 Slot
14 windings
18 High voltage side winding
19 Low voltage side winding
27 Electric motor
36 Generator output terminal (high voltage side)
37 Generator output terminal (low voltage side)
38,62 Main coil (primary side)
39, 63 Subcoil (primary side)
40 controller
41,58 transformer
43 Rectifier
44 switch (motor side)
48 Transformer yoke
49 battery
50 Primary side
51 Secondary side
53 Output terminal
54 Variable resistor
55, 64, 65, 66 Switch (Primary side of transformer)
59 Secondary winding of transformer
60 Winding of motor

Claims (8)

ハウジングに回転可能に支持された永久磁石部材を備えたロータ,前記ロータの外周側で前記ハウジングに固定され且つ周方向に隔置して櫛部間のスロット部に配設された巻数の異なる二種類の巻線を備えたステータ,前記ロータと前記ステータとの間に介在された磁束制御装置,及び前記磁束制御装置をアクチュエータを作動して前記ステータに対して移動させて前記ロータの永久磁石部材から前記ステータの前記櫛部へ流れる磁束を制御するコントローラを有する永久磁石式発電機において,
前記巻数の多い高電圧側巻線によって三相交流を発生させるそれぞれのU相,V相及びW相の端子には前記ロータと同様の永久磁石部材を備えたロータを持つ電動機を接続し, 前記巻数の少ない低電圧側巻線によって三相交流を発生させるそれぞれのU相,V相及びW相の端子にはそれぞれ発生する発電電圧を抑制させるための別の巻線を構成するコイルを接続し,前記コイルは変圧器を構成する継鉄に二種類の巻線がそれぞれ逆方向に巻き上げられた一次側を構成し,前記変圧器の前記継鉄に巻き上げられた二次側を構成する巻線の端子が一定電圧を出力する出力端子を構成していることを特徴とする自己電圧制御型永久磁石式発電機。
Rotor with a permanent magnet member that is rotatably supported in the housing, before Symbol different on the outer peripheral side of the rotor of turns disposed in the slot portion between comb and spaced fixed and circumferentially to the housing two A stator having various types of windings, a magnetic flux control device interposed between the rotor and the stator, and a permanent magnet member of the rotor by moving the magnetic flux control device relative to the stator by operating an actuator In a permanent magnet generator having a controller for controlling the magnetic flux flowing from the stator to the comb portion of the stator,
Each U-phase to generate a three-phase alternating current by more of said turns the high voltage winding, the terminals of the V-phase and W-phase to connect the electric motor with a rotor having the same permanent magnet member and said rotor, said Each U-phase, V-phase, and W-phase terminal that generates a three-phase alternating current by a low-voltage side winding with a small number of turns is connected to a coil that constitutes another winding for suppressing the generated voltage. The coil constitutes a primary side in which two types of windings are wound in opposite directions on the yoke constituting the transformer, and constitutes a secondary side wound on the yoke of the transformer The self-voltage-controlling permanent magnet generator is characterized in that the terminal of the above constitutes an output terminal that outputs a constant voltage.
前記ステータに巻き上げられた二種類の前記巻線のうち,一方の前記巻線は前記電圧を一定にする装置を介して出力し且つ各種機器類に同時に一定電圧の電力を送るように構成され,他方の前記巻線は出力電圧をそのまま用いて駆動モータに直接送電し,それぞれの前記巻線への電流の供給をスイッチのON−OFFにより駆動制御することを特徴とする請求項1に記載の自己電圧制御型永久磁石式発電機。 Among two types of said windings wound on said stator, one of said windings configured to send power simultaneously constant voltage outputs and various equipment through the apparatus to constant the voltage, is the winding of the other hand to the transmission directly to the drive motor using the output voltage as it is, according to current supply to each of the windings to claim 1, characterized in that the drive controlled by the oN-OFF switch Self-voltage-controlled permanent magnet generator. 前記発電機の前記ロータの回転数の上昇に従って上昇する出力電圧に対応して前記変圧器の前記コイルに発生するリアクタンスによって前記出力電圧にブレーキをかけて予め決められた一定電圧を発電させると共に,更に高速回転時には変圧器コアに一方の前記巻線と逆向きに巻き上げられた他方の前記巻線によって変圧器磁束を減少させることを特徴とする請求項1又は2に記載の自己電圧制御型永久磁石式発電機。 The output voltage is braked by the reactance generated in the coil of the transformer in response to the output voltage that increases as the rotational speed of the rotor of the generator increases, and a predetermined constant voltage is generated. 3. The self-voltage controlled permanent device according to claim 1, wherein the transformer magnetic flux is reduced by the other winding wound around the transformer core in the direction opposite to the one winding during high-speed rotation. 4. Magnet generator. 記低電圧巻線は一定電圧になるように前記ステータの前記櫛部に巻き上げられた前記巻線と前記変圧器の前記巻線の前記コイルにより電圧制御されることを特徴とする請求項1〜3のいずれか1項に記載の自己電圧制御型永久磁石式発電機。Claim 1 is pre Symbol low voltage side winding, characterized in that the voltage-controlled by the coil of the winding of the transformer and the winding said rolled up comb of the stator to be constant voltage The self-voltage control type permanent magnet generator according to any one of? 前記一定電圧側の前記出力端子には,前記変圧器の主巻線とサブ巻線から成る二種類の前記巻線に接続し,前記サブ巻線は前記主巻線の巻方向と逆向きに巻き上げられ,低速では前記主巻線により変圧器コアに磁力を発生せしめ,高速ではスイッチをONとして前記変圧器内に逆向きで同波長で同周期の電流を前記サブ巻線に流し,前記変圧器コア内の磁束を減少せしめることを特徴とする請求項1〜4のいずれか1項に記載の自己電圧制御型永久磁石式発電機。Wherein the said output terminal of constant-voltage side is connected to two of said winding consisting of a main winding and the sub winding of the transformer, to the sub winding wound opposite to the direction of the main winding At low speed, a magnetic force is generated in the transformer core by the main winding, and at high speed, the switch is turned on, and a current having the same wavelength and the same period is passed through the sub-winding in the reverse direction. 5. The self-voltage controlled permanent magnet generator according to claim 1, wherein magnetic flux in the generator core is reduced. 前記変圧器の主巻線とサブ巻線から成る二種類の前記巻線にON−OFFのスイッチを取り付け,前記スイッチによって発電機速度がごく低速の時は二種類の前記巻線が同一巻き方向になるように切り換え,中速の時は前記主巻線のみをONし,また,高速の時は前記主巻線に対して前記サブ巻線が逆方向に電流が流れるようにスイッチを切り換えることを特徴とする請求項1〜5のいずれか1項に記載の自己電圧制御型永久磁石式発電機。An ON-OFF switch is attached to the two types of winding consisting of the main winding and the sub winding of the transformer, and when the generator speed is very low by the switch, the two types of winding are in the same winding direction. When the speed is medium, only the main winding is turned on. At high speed, the switch is switched so that current flows in the reverse direction of the sub-winding with respect to the main winding. self voltage-controlled permanent magnet generator according to claim 1, characterized in. 前記変圧器の前記出力端子は整流器に接続し,前記整流器で整流した電力はバッテリーに接続されていることを特徴とする請求項1〜6のいずれか1項に記載の自己電圧制御型永久磁石式発電機。 The output terminal of the transformer is connected to the rectifier, self voltage-controlled permanent magnet according to claim 1, electric power rectified by the rectifier, characterized in that connected to the battery Generator. 前記変圧器に一次巻線の前記サブ巻線の径路に可変抵抗器を挟み,逆電流を制御することにより二次巻線の電圧を一定にする制御をすることを特徴とする請求項1〜6のいずれか1項に記載の自己電圧制御型永久磁石式発電機。Claim 1, characterized by the control of the transformer to sandwich the variable resistor path of the sub-windings of the primary winding, by controlling the reverse current to constant voltage of the secondary winding The self-voltage controlled permanent magnet generator according to any one of 6.
JP2002061866A 2002-03-07 2002-03-07 Self-voltage controlled permanent magnet generator Expired - Fee Related JP3839738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061866A JP3839738B2 (en) 2002-03-07 2002-03-07 Self-voltage controlled permanent magnet generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061866A JP3839738B2 (en) 2002-03-07 2002-03-07 Self-voltage controlled permanent magnet generator

Publications (2)

Publication Number Publication Date
JP2003264996A JP2003264996A (en) 2003-09-19
JP3839738B2 true JP3839738B2 (en) 2006-11-01

Family

ID=29195935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061866A Expired - Fee Related JP3839738B2 (en) 2002-03-07 2002-03-07 Self-voltage controlled permanent magnet generator

Country Status (1)

Country Link
JP (1) JP3839738B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119467B2 (en) 2003-03-21 2006-10-10 Pratt & Whitney Canada Corp. Current limiting means for a generator
JP2005295611A (en) * 2004-03-31 2005-10-20 Fuji Seratekku Kk Structure of motor and generator
JP2006006023A (en) * 2004-06-17 2006-01-05 Fuji Seratekku Kk Generator motor having cogging preventing device
JP2006345592A (en) 2005-06-07 2006-12-21 Fuji Seratekku Kk High output generator rotating at extremely low speed
JP2006345591A (en) * 2005-06-07 2006-12-21 Fuji Seratekku Kk Flux controller in permanent magnet generator
JP5185637B2 (en) * 2007-02-19 2013-04-17 日本車輌製造株式会社 Synchronous generator
JP4867710B2 (en) * 2007-02-26 2012-02-01 三菱自動車工業株式会社 Control device for permanent magnet generator

Also Published As

Publication number Publication date
JP2003264996A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US7256567B2 (en) Permanent-magnet generator with high-power output
US6541887B2 (en) Permanent-magnet motor-generator with voltage stabilizer
US6724115B2 (en) High electrical and mechanical response structure of motor-generator
US8710785B2 (en) Method of operating an electromechanical converter, a controller and a computer program product
JP2002112593A (en) Power generator having power generating characteristics for a plurality of system
JP2006345591A (en) Flux controller in permanent magnet generator
JP3063106B2 (en) Power generator
JP3709145B2 (en) Voltage stabilizer for permanent magnet generator / motor
JP6081304B2 (en) Transverse magnetic flux type rotating electric machine and vehicle
JP3737492B2 (en) Magnetic flux control generator
JP3839738B2 (en) Self-voltage controlled permanent magnet generator
JP4635829B2 (en) Permanent magnet motor
JP4840156B2 (en) Permanent magnet generator
JP3839739B2 (en) Self-voltage controlled permanent magnet generator
JP3676262B2 (en) Generator with multiple power generation characteristics
JP3907987B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP3497482B2 (en) Magnetic flux control device for permanent magnet type generator / motor
JP3691769B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP3698644B2 (en) Permanent magnet generator / motor flux controller
JP3887194B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP2002345299A (en) Magnetic flux density converter for permanent-magnet generator-motor
JP5268553B2 (en) Rotating electric machine for vehicles
JP4463872B1 (en) Control device for permanent magnet generator
JP3615146B2 (en) Permanent magnet generator / motor flux controller
JP4207339B2 (en) Rotating electrical machine for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees