JP3737492B2 - Magnetic flux control generator - Google Patents

Magnetic flux control generator Download PDF

Info

Publication number
JP3737492B2
JP3737492B2 JP2003123069A JP2003123069A JP3737492B2 JP 3737492 B2 JP3737492 B2 JP 3737492B2 JP 2003123069 A JP2003123069 A JP 2003123069A JP 2003123069 A JP2003123069 A JP 2003123069A JP 3737492 B2 JP3737492 B2 JP 3737492B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux control
stator
comb
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123069A
Other languages
Japanese (ja)
Other versions
JP2004328944A (en
Inventor
英男 河村
光伸 加茂坂
Original Assignee
フジセラテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジセラテック株式会社 filed Critical フジセラテック株式会社
Priority to JP2003123069A priority Critical patent/JP3737492B2/en
Priority to CN 200410038422 priority patent/CN1610222A/en
Publication of JP2004328944A publication Critical patent/JP2004328944A/en
Application granted granted Critical
Publication of JP3737492B2 publication Critical patent/JP3737492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,永久磁石を持つロータ,該ロータの外周に配置されたステータ及び両者間に配置された磁束を制御する磁束制御籠を備えた磁束制御型発電機に関する。
【0002】
【従来の技術】
従来,永久磁石式発電機は,ロータに永久磁石を用いるので,構造が簡単で大きな発電電力を得ることができ,近年,それを組み込んだシステムが自動車用発電機,風力発電機等として利用されることが多くなってきた。永久磁石式発電機は,例えば,発電した電力を電動機に送る場合に,電圧が変動してもその機能が十分に発揮できるが,この電力を自動車の全ての装置を駆動しているバッテリ電圧に合わせる場合又は複数個の高電圧モータを持つ装置の駆動では,電圧を一定の電圧に揃える操作をしなければならない。永久磁石式発電機は,発電した電圧を一定にするためには,スイッチングレギュレタ等を用いて電力を切り刻む操作をしなければならないが,大電流をオン・オフするためには大型のパワートランジスタを要し,装置が大型になり,冷却ロスが大きくなり,高価になったり,また,発電電圧を一定にするために,電流を切り刻む時に発生する過大な突入電流によって電波障害を起こしたり,ノイズ対策が極めて大変である。
【0003】
しかしながら,永久磁石式発電機は,磁束密度が大きいので,発電電力が大きく,効率が良いことが知られているが,負荷が小さい時にロータの回転が大きくなると,電圧が上昇し,一定電圧にすることができない。そこで,従来の高出力交流発電・電動機は,回転速度に応じて磁束密度を制御して発電量を適正に制御するものが開発された。該高出力交流発電・電動機は,ロータとステータとの間に制御リングを相対回転可能に配置し,制御リングに接離可能な透磁性体を設けたものである(例えば,特許文献1参照)。
【0004】
また,永久磁石式発電機は,永久磁石を通過し,ステータ側に流れる磁束の大きさを減少させるため磁束制御リングを組み込み,永久磁石からステータへの磁束を制御して一定電圧にすることが考えられる。永久磁石式発電機は,永久磁石を配設したロータとステータとの間に,ステータの櫛部と同一ピッチを持った櫛歯状の回転可能な籠材から成る磁束制御リングを配設し,ロータの低速回転時ではステータの歯部即ち櫛部と磁束制御リングの歯部とを整合一致させ,ロータの高速時にはステータの歯部即ち櫛部と磁束制御リングの歯部とをずらして両者間に大きな空隙を発生させ,磁路抵抗を増加させて磁束を制御するように構成されている(例えば,特許文献2参照)。
【0005】
【特許文献1】
特開平7−236260号公報(第1頁,図1)
【特許文献2】
特開2002−281695号公報(第1,2頁,図1)
【0006】
【発明が解決しようとする課題】
ところで,永久磁石型発電機では,回転子即ちロータに用いている永久磁石の磁力を制御できないので,入力側に回転変動がない発電機には適しているが,入力側に回転変動がある場合には,発電機では回転の上昇と共に発電電圧が大きくなり,その電力を利用している負荷側の電圧が安定しないことになる。また,部分負荷の時には,発電機のインピーダンスが小さくなるため,端子電圧の上昇があり,この電圧を一定にすることが大きな課題になる。発電電圧を一定にするには,発電した電力を切り刻み,平準化させ,一定電圧にする方法が一般的であるが,発電力が大きくなると,電流の断続によって発生する突入電流が大きくなり,そのシャープな突入電流は大きなノイズとなり,制御装置を破壊させることになる。そこで,発電機について,永久磁石を組み込んだロータとステータとの間に磁束を制御する磁束制御籠を配設し,磁束制御籠とステータの歯部即ち櫛部との間に空隙を設け,磁路抵抗を大きくし,ステータ側への磁束をちいさくすることにより,発電電圧の上昇現象を抑制し,永久磁石からステータへの磁束に減磁作用を起こさせ,ステータの起電力を減少させて発電電圧を一定に保つことが考えられる。この方法では,発電電流内にリプル等のノイズ発生が全くない。
【0007】
しかしながら,永久磁石式発電機について,ロータとステータとの間に磁束制御リング即ち磁束制御籠を配設し,ステータの櫛部と磁束制御籠の磁束制御集合部とを対応させ,櫛部と磁束制御集合部との重なり状態即ち整合状態を変更し,永久磁石からステータへの磁束を調整して発電電圧を制御する場合に,低速度でロータが回転する時,大きな電圧を得るためにはロータの極数を大きくし,巻線の巻き数を大きくする必要があり,そのためにはステータの櫛部間のスロットの数を大きくしなければ対応できない。一方,ステータの櫛部の歯数が余り多いと,櫛部に対応する磁束制御籠の磁束制御集合部の数を大きくすることになるが,それでは,櫛部に対して磁束制御集合部をずらした時のステータの櫛部と磁束制御籠の磁束制御集合部との間に生じる隙間量即ち空隙量が小さくなってしまい,磁束制御籠による磁束制御の効果を発揮させることができない。磁路抵抗を計算すると,透磁率の最も小さい物質は,空気であり,その値は,4π×10-7H/mと大きい。従って,磁路に空隙を大きく取ることが磁束制御には好ましいことになる。
【0008】
【課題を解決するための手段】
この発明の目的は,ロータとステータとの間にステータに対して回転移動する磁束制御籠を組み込み,ステータに櫛部を連繋するブリッジ部を設け,ブリッジ部より半径方向外側の櫛部に巻線を巻き上げ,ブリッジ部より半径方向内側に櫛部より数が少ない櫛部即ち集合部を形成し,ステータの集合部に対向して同数の磁束制御籠に磁束制御集合部を形成し,櫛部の数は大きくして大きな電圧を発電できるように構成し,集合部の数を少なくして集合部と磁束制御集合部との間に発生する空隙量を大きくなるように構成し,磁束制御籠による磁束制御の十分な効果を確保し,低速時には集合部の歯部と磁束制御集合部の歯部とを整合させて透磁性を良くし大きな電圧を発電可能にし,高速時の電圧上昇を抑制して,一定電圧を確保できる磁束制御型発電機を提供することである。
【0009】
この発明は,ハウジングに回転可能に取り付けられた回転軸上に取り付けられた複数の永久磁石片から成る永久磁石部材を備えたロータ,前記ロータの外周側で前記ハウジングに固定され且つスロットによって周方向に隔置して設けられた櫛部に巻き上げられた巻線を備えたステータ,及び前記櫛部に対応する歯部を備えて前記ロータと前記ステータとの間で前記ステータに対して相対移動して磁束を制御する磁束制御籠を有する磁束制御型発電機において,
前記ステータは,前記櫛部の内周側端部をそれぞれ周方向に連繋するブリッジ部と前記ブリッジ部の内周面から内方に延び且つ前記櫛部の歯数より少ない歯数の集合部とを有し,前記磁束制御籠は,前記ステータの前記集合部の歯数に対応する前記歯部である磁束制御集合部と該磁束制御集合部をそれぞれ周方向に連繋する円筒部とを有する薄板の積層体から構成されていることを特徴とする磁束制御型発電機に関する。
【0010】
また,この磁束制御型発電機は,前記永久磁石部材の減磁制御を効果的にするため,前記ステータの前記集合部の歯数は前記櫛部の歯数の半分に形成され,前記集合部の1個が前記櫛部の2個に対応するように形成されている。更に,前記ステータの前記櫛部の歯数を36個形成して前記スロットを周方向に36個形成し,前記磁束制御籠の前記磁束制御集合部の歯数を18個形成し,2個の前記櫛部に1個の前記磁束制御集合部が対応するように形成された薄板の積層体で筒状に構成されている。
【0011】
また,この磁束制御型発電機は,前記ステータの前記集合部と前記磁束制御籠の前記磁束制御集合部には周方向両端にチャンファがそれぞれ施されている。
【0012】
この磁束制御型発電機において,前記ステータの前記集合部と前記磁束制御籠の前記磁束制御集合部との先端面は同一幅に且つ前記集合部間と前記磁束制御集合部間との凹部の幅は前記先端面の幅より大きくそれぞれ形成され,前記磁束が通り易いようにする場合には前記先端面が互いに整合し,前記磁束を減磁する場合には前記先端面が互いにずれた状態であり,また,前記集合部と前記磁束制御集合部とが前記凹部の中央に位置する状態では前記集合部と前記磁束制御集合部とのそれぞれの両側に同一の空隙が形成されて前記磁束が最大に減磁されるものである。
【0013】
前記永久磁石部材は,三相交流を発電するため,前記回転軸の周方向に6個又は12個の前記永久磁石片が配設され,6極又は12極に構成されている。
【0014】
前記ステータを構成するステータコアは,前記櫛部,前記ブリッジ部及び前記集合部から成る外周側開放型のインナステータコアと,前記櫛部の外端部をそれぞれ嵌合する嵌合溝が内周面に形成された円筒状のアウタステータコアとから構成され,前記ブリッジ部の幅は前記櫛部の幅の1/5以下の寸法に形成されているものである。
【0015】
前記ステータは,前記巻線の占積率をアップさせるため,前記インナステータコアの前記櫛部間の外側開口を通じて前記巻線を前記櫛部に巻き上げ,前記インナステータコアの外周面に前記アウタステータコアを嵌合して構成されている二体構造になっている。
【0016】
前記ロータは,外周面を円弧面に形成した前記永久磁石片が前記回転軸の周方向に環状に固定された継鉄の外周に隣接して配設され,前記永久磁石部材を保持するため前記永久磁石部材の外周面に接して嵌合固定された保持パイプを有している。
【0017】
前記磁束制御籠は,コントローラによって制御されるアクチュエータであるステッピングモータ又は直流モータによってウォームギヤを通じて回転し,前記集合部と前記磁束制御集合部とのクリアランスを明けて前記ステータへの磁束制御がされ,発電電圧が一定にされるものである。
【0018】
この磁束制御型発電機は,風力発電機,或いは冷凍保冷車,油圧駆動機器搭載車,大型医療機器搭載車,電子通信機器搭載車等の自動車用発電機に適用されて好ましいものである。
【0019】
この磁束制御型発電機は,上記のように構成されているので,ステータの櫛部の歯数を大きくして巻線の巻き数を大きくし,それによってロータが低速度で回転する時に大きな電圧を得ることを可能にでき,また,ステータの集合部の歯数を櫛部の歯数より少なくし,磁束制御籠の磁束制御集合部との間い生じる空隙を大きく確保することを可能にし,磁束制御の効果をアップさせることができる。この磁束制御型発電機は,ステータコアにブリッジ部を備えた形状にして櫛部間を外側開放型に形成したので,ブリッジ部を境界にして,多くの巻線を巻き上げるためのステータコアの櫛部の歯数より,磁束を制御するためのステータコアの集合部の歯数を少なく形成することが可能になり,ステータと磁束制御籠のクリアランスを大きくし,磁束制御の領域を大きくすることができ,磁束制御籠の回転運動だけで適正な状態に設定することができる。
【0020】
また,この磁束制御型発電機は,特に,小型発電機に適用して好ましいものである。即ち,小型発電機では,回転子であるロータの直径が小さいので,磁束制御籠の外径も小さくなり,磁束制御籠をステータに対して揺動させた時,ステータの櫛部と集合部とを同一の歯数にすると,集合部と磁束制御籠の磁束制御集合部とをずらした場合に両者間にできるクリアランス即ち空隙が大きくならないが,この磁束制御型発電機を用いれば,ステータの集合部が櫛部より少ない歯数であるので,両者間にできるクリアランス即ち空隙が大きくなり,永久磁石部材からステータへの磁束密度の制御を容易に,確実に且つ高精度に行うことができ,磁束制御効率を向上させることができる。
【0021】
【発明の実施の形態】
以下,図面を参照して,この発明による磁束制御型発電機の実施例を説明する。この磁束制御型発電機は,例えば,自動車等の車両に搭載されたエンジンに設けた発電機,コージェネレーションシステムのエンジンに組み込まれた発電機,ガスエンジン,ハイブリット自動車等のエンジンの出力軸に取り付けられた発電機,風力発電機,車両に搭載された補機,冷凍機,油圧駆動産業機器,大型医療機器,電子通信機器等の種々の機器を駆動する小形の発電機に適用して好ましいものである。
【0022】
この磁束制御型発電機は,ステータ4を構成するステータコア15の櫛部10を流れる磁束を制御するための磁束制御籠7が設けられたものがある。この実施例では,磁束制御型発電機は,図1〜図5に示すように,ステータ4が取り付けられたハウジング1,ハウジング1に一対の軸受37を介して回転可能にそれぞれ支持されている回転軸2,回転軸2に固定されている永久磁石部材5を備えたロータ3,ロータ3の外周側に配置され且つハウジング1に固定されているステータ4,ステータ4の内周側にステータ4に対して相対移動可能に取り付けられた磁束制御籠7,及び磁束制御籠7をロータ3の回転速度に応じてステータ4に対して相対移動させるアクチュエータ25から構成されている。ハウジング1は,例えば,両側の一対のハウジング本体1A,1Bと両ハウジング本体1A,1Bを互いに連結するボルト等から構成されている。図1では,ハウジング本体1A,1B間にステータコア15を構成するアウタステータコア17の両端が挟み込まれている。また,アクチュエータ25は,ハウジング本体1Bに設けた支持ブラケット64に取り付けられている。
【0023】
この磁束制御型発電機は,ロータ3を構成する回転軸2の両端が軸受37でハウジング1に回転可能に支持されている。ロータ3は,その一端が回転軸2に形成されたねじ(図示せず)に押え板52を介してナット51が螺入して回転軸2に固定されている。ロータ3の他端は,軸受37との間にスペーサ53,54,押え板52等を介して回転軸2に固定されている。また,ハウジング本体1Bには,軸受37によって回転可能に支持された端板60が設けられている。磁束制御籠7は,端板60に固定された支持ブラケット59に取り付けられている。また,この磁束制御型発電機は,ハウジング本体1A,1Bに設けられたフランジ部36を介して他部品に固定されるように構成されている。
【0024】
図1では,回転軸2には,その一端部に増速機35を介して入力となるベルトプーリ34が設けられている。ベルトプーリ34には,エンジンの出力軸に取り付けられたベルトが掛けられている。図1では,回転軸2に平行に延びる入力軸44は,ハウジング1に軸受47によって回転可能に支持され,入力軸44の一端にベルトプーリ34がナット55によって固定されている。増速機35は,図1では,入力軸44に設けられた入力ギヤ46と,回転軸2の一端部に設けられて出力ギヤ45とによって構成されている。また,冷却ファン33は,ロータ3やステータ4で発生する熱を放熱するため,回転軸2の他端部において軸受37との間にスペーサ57を介在させてナット56によって固定されている。ロータ3の透磁性部材である継鉄6には,冷却ファン33で発生する冷却風が流れる通風孔39(図4,図5)形成されている。ハウジング1には,冷却ファン33で発生する冷却風が流れる通風孔38(図1)が形成されている。
【0025】
また,この磁束制御型発電機は,磁束制御籠7とロータ3との間には,可及的に小さい隙間40が形成されている。ステータ4は,周方向に所定間隔のスロット11を形成するように隔置された櫛状円筒部材であるインナステータコア16と,インナステータコア16に嵌合固定された薄板を積層したリング状継鉄部であるアウタステータコア17とから成る薄板積層形のステータコア15,及びステータコア15に巻き上げられた巻線18から構成されている。インナステータコア16は,半径方向外側に設けられた櫛部10,櫛部10の内周側端部をそれぞれ周方向に連繋するブリッジ部14,及び半径方向外側即ちブリッジ部14の内周面から内方に延びる櫛部10の歯数より少ない歯数の集合部12を有している。巻線18は,櫛部10間に形成されたスロット11に位置して櫛部10に巻き上げられ,巻き上げられた巻線18を成形固定するためスロット11内に樹脂等の非磁性材61が充填されている。
【0026】
巻線18は,例えば,ステータ4のステータコア15の櫛部10に巻き上げられた巻数の多い高電圧側巻線と,櫛部10に巻き上げられた巻数の少ない低電圧側巻線とから構成することができる。ステータコア15におけるスロット11と櫛部10との内周側には,磁束制御籠7が接触状態に且つステータ4に対して揺動移動可能に配置されている。磁束制御籠7は,ハウジング1に軸受を介して回転又は揺動自在に取り付けるか,又は軸受を使用することなく,ステータコア15に回転自在に接触状態に嵌合させることによってステータコア15に対して回転可能に取り付けることができる。
【0027】
ロータ3は,回転軸2の外周に取り付けられた冷却用の通風孔39を備えた透磁部材の継鉄6,継鉄6の外周面に配置された永久磁石部材5,及び永久磁石部材5の外周面に固定されて永久磁石部材5を嵌合固定する保持パイプ24を備えている。ロータ3は,具体的には,外面が円弧面41に形成された永久磁石片19が回転軸2の周方向に環状に固定された継鉄6の外周に隣接して配設され,永久磁石部材5を保持するため永久磁石部材5の外面に接して嵌合固定された保持パイプ24を有している。永久磁石部材5は,三相交流を発電するため,例えば,回転軸2上に固定された外周面が6角形(又は,図示していないが,12角形)の継鉄6の周方向に配設された6個(又は,図示していないが,12個)の永久磁石片19と,永久磁石片19間に介在した非磁性材42とから成り,6極又は12極に構成されている。永久磁石片19は,その外面が円弧面41に且つ内面が平ら面に形成され,回転軸2の周方向に環状に固定された継鉄6の角形の外周面に接して配設されている。
【0028】
この磁束制御型発電機は,特に,ステータコア15の形状に特徴を有するものである。ステータ4は,巻線18の占積率をアップさせるため,インナステータコア16における櫛部10の歯数が多くなるように構成されている。インナステータコア16は,巻線18が巻き上げられる櫛部10,櫛部10の内周側端部をそれぞれ周方向に連繋する幅の狭いブリッジ部14,及びブリッジ部14の内周面から内方に延び且つ櫛部10の歯数より少ない歯数の集合部12を有している。磁束制御籠7は,インナステータコア16の集合部12の歯数に対応する外周側の磁束制御集合部8と,磁束制御集合部8をそれぞれ周方向に連繋する内周側の円筒部9とを有する薄板を多数積層した積層体から構成されている。更に,磁束制御籠7の両端には,薄板の積層体を挟むように端部リング部材66とリング状の端部プレート67がそれぞれ設けられている。端部リング部材66と端部プレート67は,周方向に120°隔置して磁束制御集合部8間の凹部43に配設された3本の非磁性材の固定用シャフトでなる支持棒65によって溶接,ねじ等で互いに接合されている。3本の支持棒65は,非磁性材で隔置して設けられており,誘導電流が流れないように構成されている。磁束制御籠7を構成する端部リング部材66は,端板60を介してアクチュエータ25によって揺動駆動される。磁束制御籠7の円筒部9とロータ3の保持パイプ24の外周面との間には,可及的に小さい隙間40が形成されている。磁束制御籠7は,透磁性の珪素鋼板,ニッケル−鉄系合金板の板材を積層して構成され,板材は樹脂材又はセラミックス材の絶縁部材によって接着されている。
【0029】
この磁束制御型発電機は,図4及び図5に示すように,例えば,永久磁石部材5の減磁制御を効果的にするため,ステータ4の集合部12の歯数を,ステータ4の櫛部10の歯数の半分に形成され,集合部12の1個が櫛部10の2個に対応するように形成されている。この磁束制御型発電機は,全体的に見れば,例えば,ステータ4の櫛部10の歯数を36個形成し,スロット11を周方向に36個形成し,また,磁束制御籠7の磁束制御集合部8の歯数を18個形成し,2個の櫛部10に1個の磁束制御集合部8が対応するように構成されている。また,この磁束制御型発電機では,例えば,6極,36スロットの発電機の場合,1つの永久磁石片19の円弧面41が対応するインナステータコア16の櫛部10が6個対応して位置している。更に,少なくとも磁束制御集合部8,場合によっては,インナステータコア16の集合部12の歯の周方向両端にも,例えば,30°〜45°のチャンファ21が施され,磁束制御籠7が移動した時,最大のクリアランス即ち空隙Sを明け,空隙Sの寸法調節を高精度に且つ確実に行うことができるようになっている。
【0030】
この磁束制御型発電機では,ステータ4の集合部12の先端面である内周側の内面31と磁束制御籠7の磁束制御集合部8の先端面である外周側の外面32とは,同一幅にそれぞれ形成され,図4に示すように,整合状態になる。また,集合部12間の凹部13と磁束制御集合部8間の凹部43との幅は,磁束飽和がないように上記先端面の幅より大きくそれぞれ形成されている。永久磁石部材5からステータ4への磁束を減磁しない状態では,図4に示すように,先端面が互いに重なって整合している状態である。永久磁石部材5からステータ4への磁束を減磁する場合には,集合部12の先端面と磁束制御集合部8の先端面とをずらすことによって達成される。また,図5に示すように,集合部12と磁束制御集合部8とが凹部13,43の中央に位置する状態では,集合部12と磁束制御集合部8とのそれぞれの両側に同一の空隙Sが形成され,永久磁石部材5からステータ4への磁束が最大に減磁される状態になる。この磁束制御型発電機では,例えば,空隙Sが1mmでは15%程度の磁束の減磁効果を達成でき,また,空隙Sが3mmでは60%以上の磁束の減磁効果を達成できることが,試験結果で確認された。従って,永久磁石部材5からステータコア15への磁束の減磁効果は,集合部12と磁束制御集合部8との間に形成される空隙Sを如何に大きく確保するかによって左右されることが確認された。
【0031】
この磁束制御型発電機は,三相交流を発電するため,例えば,図4及び図5に示すように,永久磁石部材5が回転軸2の周方向に6個,又は図示していないが,12個の永久磁石片19が配設され,6極又は12極に構成されている。また,ステータ4を構成するステータコア15は,櫛部10,ブリッジ部14及び集合部12から成る外周側開放型のインナステータコア16と,櫛部10の外周側端部62をそれぞれ嵌合する嵌合溝22が内周面63に形成された円筒状のアウタステータコア17とから構成されている。ステータ4は,巻線18の占積率をアップさせるように巻線18を櫛部10に巻き上げるため,インナステータコア16の櫛部10間の外側開口23を通じて櫛部10に巻線18を巻き上げた後に,インナステータコア16の外周面にアウタステータコア17を嵌合して構成されている。インナステータコア16へのアウタステータコア17の嵌合は,櫛部10の端部62をアウタステータコア17の嵌合溝22に挿入嵌合することによって達成される。
【0032】
この磁束制御型発電機では,磁束制御籠7はポテンショメータ50によってステータ4に対する位置が容易に検出され,その位置情報はコントローラに入力され,その情報に応答してコントローラによってアクチュエータ25であるステッピングモータ30が作動し,一種のウォームギヤ26を通じて磁束制御籠7が回転させられ,永久磁石部材5からステータ4への磁束密度が制御がされ,発電電圧が一定にされる。アクチュエータ25は,例えば,ステッピングモータ30の出力軸が歯車伝達装置48を介してウォーム軸29を回転し,ウォーム軸29に設けられたスクリューギヤであるウォーム27が回転する。ウォーム軸29は,ハウジング1の支持ブラケット64に軸受49を介して回転自在に支持されている。磁束制御籠7は,支持ブラケット58,59及び端板60によってハウジング1に回転可能に支持されている。支持ブラケット58には,ウォーム27に噛み合うウォーム噛合部28(ウォームホイールの一部)が設けられている。ウォーム27が回転することによってウォーム噛合部28が揺動即ち回転すると,ウォーム噛合部28の回転に追従して磁束制御籠7がステータ4に対して回転即ち揺動することになる。
【0033】
インナステータコア16は,例えば,図示していないが,板材をブリッジ部14と集合部12となる部分を残して両側を打ち抜き,打ち抜かれた板材を円形に曲げて両端を接合して櫛状円板部材に成形し,上記櫛状円形板部材を多数積層して形成されている。ステータ4を構成するインナステータコア16と外筒部材でなるアウタステータコア17との嵌合面には,インナステータコア16の櫛部10と櫛部10に対応する部分に嵌合溝22を設けたアウタステータコア17との嵌合面には,磁路抵抗を低減するためペースト状の鉄粉が流入埋設することによって良好な磁路を形成することができる。
【0034】
永久磁石部材5は,周方向に隔置して極性が交互に異なる状態に配置され且つ軸方向に延びる永久磁石片19と,隣接する永久磁石片19間に介在された非磁性材42とから構成されている。永久磁石片19は,外面が円弧面41且つ内面が平ら面に形成され,周方向に複数個配設されている。また,樹脂等の非磁性材は,巻線18の発熱によって溶損しない耐熱性材料で構成されている。また,透磁性部材の継鉄6は,例えば,透磁材と非磁性材が周方向に交互に配置して軸方向に延びて円筒状に形成されている。
【0035】
この磁束制御型発電機は,ロータ3の回転速度に応答して,コントローラ(図示せず)の指令によってアクチュエータ25を作動して磁束制御籠7をステータ4に対して揺動させ,永久磁石部材5からステータ4への磁束を制御し,例えば,一定電圧を発電させる。即ち,この磁束制御型発電機は,コントローラの指令によって磁束制御籠7をステータ4に対して揺動させ,磁束制御集合部8の先端面の外面32と,櫛部10の先端面の内面31との対向面積即ち接触面積を制御する。コントローラの指令によってアクチュエータ25を作動して磁束制御籠7に設けたウォーム噛合部28の支持ブラケット58が揺動し,磁束制御籠7がステータ4に対して相対揺動すると,磁束制御集合部8の外面32と集合部12の内面31との密接状態は調整され,磁束制御籠7の磁束制御集合部8からステータコア15の集合部12へ流れる磁束が制御されることになる。
【0036】
例えば,コントローラは,ロータ3の低速時には,図4に示すように,アクチュエータ25を作動して磁束制御集合部8と集合部12との合口が整合状態になる制御を行い,また,ロータ3の高速時には,図5に示すように,アクチュエータ25を作動して磁束制御籠7を回転させ,磁束制御集合部8と集合部12とが互いにずれて凹部13,43に対向するように移動させ,磁束を減磁させる制御を行い,一定電圧を発電させることができる。即ち,コントローラは,ロータ3のステータ4に対する回転速度である周波数fとステータ4の櫛部10を流れる磁束φとの積(=f×φ)が一定になるように,アクチュエータ25によって磁束制御籠7を揺動させて予め決められた所定の一定の電圧を発電させる制御を行う。従って,コントローラの制御によって磁束制御籠7が移動して磁束制御籠7の磁束制御集合部8がステータコア15の櫛部10間の凹部13に位置した状態では,図5に示すように,集合部12のチャンファ21と磁束制御集合部8のチャンファ20との間には,高精度に隙間Sが形成されことになり,ロータ3からステータ4へ流れる磁束は最も抑制される状態になる。
【0037】
【発明の効果】
この発明による磁束制御型発電機は,上記のように,ステータコアを櫛部を連繋するブリッジ部を設けた形状に構成したので,櫛部と集合部との歯数を容易に異ならせることができ,即ち,ステータを櫛部を連繋するブリッジ部と該ブリッジ部から内方に延びる少ない歯数の集合部とから構成し,磁束制御籠を前記集合部の歯数に対応する磁束制御集合部と該磁束制御集合部を連繋する円筒部とから構成したので,櫛部を多く設けて低速時に大きな電圧を発電できると共に,集合部と磁束制御集合部とを大きく形成して大きな空隙を形成でき,磁束制御籠による永久磁石部材からステータへの磁束減磁を適正に容易に制御でき,例えば,発電電圧を一定電圧に容易に確実に制御することができる。それ故に,この磁束制御型発電機を用いれば,磁束制御によって電圧を一定にすることができるので,電流の断続が無く,従来の発電機のようにスイッチングレギュレータに大型のトランジスタを使用する必要がなくなり,極めて低コストで電流断続によるノイズ発生を抑制でき,発電電圧の制御装置を提供できる。従って,この磁束制御型発電機は,自動車用のエンジン,風力等の駆動系の回転数が刻々変化する自動車用発電機,風力発電機に適用して適正な電圧を発電させ,極めて低コストに製造することができる。
【図面の簡単な説明】
【図1】この発明による磁束制御型発電機の一実施例を概略的に示す断面図である。
【図2】図1の磁束制御型発電機であってファンを取り外した側面図である。
【図3】図1の磁束制御型発電機におけるアクチュエータの付近を拡大して示す側面図である。
【図4】図1の磁束制御型発電機における磁束制御籠の作動状態を示し,ステータの集合部と磁束制御籠の磁束制御集合部との整合状態の磁束を抑制しない状態を示す拡大説明図である。
【図5】図1の磁束制御型発電機における磁束制御籠の作動状態を示し,ステータの集合部と磁束制御籠の磁束制御集合部との非整合状態の磁束を減磁した状態を示す拡大説明図である。
【符号の説明】
1 ハウジング
2 回転軸
3 ロータ
4 ステータ
5 永久磁石部材
6 継鉄
7 磁束制御籠
8 磁束制御集合部
9 円筒部
10 櫛部
11 スロット
12 集合部
13,43 凹部
14 ブリッジ部
15 ステータコア
16 インナステータコア
17 アウタステータコア
18 巻線
19 永久磁石片
20,21 チャンファ
22 嵌合溝
23 外側開口
24 保持パイプ
25 アクチュエータ
26 ウォームギヤ
30 ステッピングモータ
31 内面
32 外面
40 隙間
41 円弧面
50 ポテンショメータ
62 端部
63 内周面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor having a permanent magnet, a stator disposed on the outer periphery of the rotor, and a magnetic flux control generator provided with a magnetic flux control rod for controlling the magnetic flux disposed therebetween.
[0002]
[Prior art]
Conventionally, permanent magnet generators use permanent magnets for the rotor, so that they can obtain a large amount of generated power with a simple structure. In recent years, systems incorporating them have been used as automotive generators, wind power generators, etc. There have been many things. Permanent magnet generators, for example, can deliver their functions sufficiently even when the voltage fluctuates when the generated power is sent to the motor, but this power is used as the battery voltage that drives all the devices in the car. In the case of matching or driving of a device having a plurality of high voltage motors, an operation for adjusting the voltage to a constant voltage must be performed. In order to keep the generated voltage constant, a permanent magnet generator must be operated to cut power using a switching regulator or the like. To turn on and off a large current, a large power transistor is required. In other words, the equipment becomes larger, the cooling loss becomes larger, the cost becomes higher, the radio current is disturbed by excessive inrush current generated when the current is chopped in order to keep the generated voltage constant, and noise countermeasures are taken. Is extremely difficult.
[0003]
However, it is known that the permanent magnet generator has a high magnetic flux density, so the generated power is large and the efficiency is good. However, when the rotor rotation increases when the load is small, the voltage rises and becomes constant. Can not do it. Therefore, conventional high-power AC generators / motors have been developed that control the magnetic flux density according to the rotational speed to control the power generation appropriately. The high-output AC generator / motor has a control ring disposed between a rotor and a stator so as to be relatively rotatable, and is provided with a magnetically permeable material that can contact and separate from the control ring (see, for example, Patent Document 1). .
[0004]
In addition, the permanent magnet generator incorporates a magnetic flux control ring to reduce the magnitude of the magnetic flux that passes through the permanent magnet and flows to the stator side, and controls the magnetic flux from the permanent magnet to the stator to make it a constant voltage. Conceivable. In the permanent magnet generator, a magnetic flux control ring made of a comb-like rotatable brazing material having the same pitch as the comb portion of the stator is disposed between the rotor having the permanent magnet disposed thereon and the stator. When the rotor rotates at a low speed, the teeth of the stator, i.e., the comb, and the teeth of the magnetic flux control ring are aligned and matched, and when the rotor is operated at a high speed, the stator teeth, i.e., the comb, and the teeth of the magnetic flux control ring are shifted. And the magnetic path resistance is increased to control the magnetic flux (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-236260 (first page, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-281695 (first and second pages, FIG. 1)
[0006]
[Problems to be solved by the invention]
By the way, since the permanent magnet generator cannot control the magnetic force of the permanent magnet used in the rotor, that is, the rotor, it is suitable for a generator having no rotational fluctuation on the input side, but there is a rotational fluctuation on the input side. In the generator, the generated voltage increases as the rotation increases, and the voltage on the load side using the electric power becomes unstable. In addition, when the load is partial, the impedance of the generator becomes small, so there is a rise in the terminal voltage, and making this voltage constant is a major issue. In order to make the generated voltage constant, the generated power is generally chopped, leveled, and set to a constant voltage. However, as the generated power increases, the inrush current generated by intermittent current increases. A sharp inrush current becomes a big noise and destroys the control device. Therefore, for the generator, a magnetic flux control rod for controlling the magnetic flux is disposed between the rotor incorporating the permanent magnet and the stator, and a gap is provided between the magnetic flux control rod and the stator tooth portion, that is, the comb portion. By increasing the resistance and reducing the magnetic flux to the stator side, the rising phenomenon of the generated voltage is suppressed, the magnetic flux from the permanent magnet to the stator is demagnetized, and the electromotive force of the stator is reduced to reduce the generated voltage. It is conceivable to keep the value constant. In this method, there is no noise such as ripples in the generated current.
[0007]
However, in the permanent magnet generator, a magnetic flux control ring, that is, a magnetic flux control rod is disposed between the rotor and the stator, and the comb portion of the stator and the magnetic flux control assembly portion of the magnetic flux control rod are associated with each other. In order to obtain a large voltage when the rotor rotates at a low speed when the generated voltage is controlled by adjusting the magnetic flux from the permanent magnet to the stator by changing the overlapping state, that is, the alignment state, the rotor pole It is necessary to increase the number of windings and increase the number of windings. To achieve this, the number of slots between the comb portions of the stator cannot be increased. On the other hand, if the number of teeth of the comb portion of the stator is too large, the number of magnetic flux control assembly portions of the magnetic flux control rod corresponding to the comb portion will be increased. The gap amount, that is, the gap amount, generated between the comb portion of the stator and the magnetic flux control assembly portion of the magnetic flux control rod becomes small, and the magnetic flux control effect by the magnetic flux control rod cannot be exhibited. When the magnetic path resistance is calculated, the material having the smallest magnetic permeability is air, and its value is 4π × 10. -7 Large as H / m. Therefore, it is preferable for the magnetic flux control to have a large gap in the magnetic path.
[0008]
[Means for Solving the Problems]
An object of the present invention is to incorporate a magnetic flux control rod that rotates and moves with respect to the stator between the rotor and the stator, to provide a bridge portion that links the comb portion to the stator, and to wind the winding around the comb portion radially outward from the bridge portion. , A comb portion having a smaller number than the comb portion is formed on the inner side in the radial direction from the bridge portion, and a magnetic flux control aggregate portion is formed on the same number of magnetic flux control rods opposite to the stator aggregate portion, and the number of comb portions is increased. It is configured to generate a large voltage, and it is configured to reduce the number of gathering parts and increase the amount of air gap generated between the gathering part and the flux control gathering part. The effect is ensured, and at the low speed, the teeth of the gathering part and the teeth of the magnetic flux control gathering part are aligned to improve the magnetic permeability and enable large voltage to be generated. Magnetic flux that can be secured It is to provide a control type generator.
[0009]
The present invention relates to a rotor having a permanent magnet member composed of a plurality of permanent magnet pieces mounted on a rotating shaft rotatably attached to a housing, fixed to the housing on the outer peripheral side of the rotor, and circumferentially by a slot A stator having a winding wound around a comb portion provided at a distance from each other, and a tooth portion corresponding to the comb portion and moving relative to the stator between the rotor and the stator to generate a magnetic flux In a magnetic flux control generator having a magnetic flux control rod for controlling
The stator has a bridge portion that connects the inner peripheral side ends of the comb portion in the circumferential direction, and a collection portion that extends inward from the inner peripheral surface of the bridge portion and has a smaller number of teeth than the comb portion. The magnetic flux control rod is a laminated thin plate having a magnetic flux control collective portion corresponding to the number of teeth of the collective portion of the stator and a cylindrical portion connecting the magnetic flux control collective portions in the circumferential direction. The present invention relates to a magnetic flux control generator characterized in that it is composed of a body.
[0010]
Further, in this magnetic flux control type generator, in order to effectively control demagnetization of the permanent magnet member, the number of teeth of the set portion of the stator is formed to be half of the number of teeth of the comb portion, One is formed so as to correspond to two of the comb portions. Further, the number of teeth of the comb portion of the stator is formed to be 36, the slot is formed to be 36 in the circumferential direction, the number of teeth of the magnetic flux control assembly portion of the magnetic flux control rod is formed to be two, A thin plate laminate formed so that one magnetic flux control assembly portion corresponds to the comb portion is formed in a cylindrical shape.
[0011]
Further, in this magnetic flux control type generator, chamfers are respectively provided at both ends in the circumferential direction of the collective portion of the stator and the magnetic flux control collective portion of the magnetic flux control rod.
[0012]
In this magnetic flux control generator, the front end surfaces of the collective portion of the stator and the magnetic flux control collective portion of the magnetic flux control rod have the same width, and the width of the recess between the collective portions and between the magnetic flux control collective portions. Are formed to be larger than the width of the tip surface, the tip surfaces are aligned with each other when the magnetic flux is easy to pass through, and the tip surfaces are shifted from each other when the magnetic flux is demagnetized. In the state where the collective portion and the magnetic flux control collective portion are located in the center of the concave portion, the same gap is formed on both sides of the collective portion and the magnetic flux control collective portion so that the magnetic flux is maximized. Demagnetized.
[0013]
In order to generate three-phase alternating current, the permanent magnet member has six or twelve permanent magnet pieces arranged in the circumferential direction of the rotating shaft, and is configured with six or twelve poles.
[0014]
The stator core that constitutes the stator is formed on the inner peripheral surface of the outer peripheral side open-type inner stator core composed of the comb portion, the bridge portion, and the collecting portion, and a fitting groove that fits the outer end portion of the comb portion. The bridge portion has a width that is 1/5 or less of the width of the comb portion.
[0015]
In order to increase the space factor of the winding, the stator winds the winding around the comb portion through an outer opening between the comb portions of the inner stator core, and fits the outer stator core to the outer peripheral surface of the inner stator core. It has a two-body structure.
[0016]
The rotor is disposed adjacent to an outer periphery of a yoke in which the permanent magnet piece having an outer peripheral surface formed in an arc surface is fixed in an annular shape in the circumferential direction of the rotating shaft, and holds the permanent magnet member. The holding pipe is fitted and fixed in contact with the outer peripheral surface of the permanent magnet member.
[0017]
The magnetic flux control rod is rotated through a worm gear by a stepping motor or a direct current motor that is an actuator controlled by a controller, and the magnetic flux control to the stator is performed by opening a clearance between the collective portion and the magnetic flux control collective portion. The voltage is made constant.
[0018]
This magnetic flux control type generator is preferably applied to a generator for an automobile such as a wind power generator, a refrigerated vehicle, a vehicle equipped with a hydraulic drive device, a vehicle equipped with a large medical device, a vehicle equipped with an electronic communication device.
[0019]
Since this magnetic flux control generator is configured as described above, the number of teeth of the stator comb portion is increased to increase the number of turns of the winding, thereby generating a large voltage when the rotor rotates at a low speed. In addition, the number of teeth of the stator gathering portion can be made smaller than the number of teeth of the comb portion, and a large gap can be secured between the flux control rod and the flux control gathering portion. The effect of can be improved. In this magnetic flux control type generator, since the stator core is provided with a bridge portion and the comb portions are formed in an open outer shape, the number of teeth of the stator core comb portion for winding many windings with the bridge portion as a boundary. As a result, it is possible to reduce the number of teeth in the gathered portion of the stator core for controlling the magnetic flux, increase the clearance between the stator and the magnetic flux control rod, and increase the magnetic flux control area. An appropriate state can be set only by the rotational movement of
[0020]
This magnetic flux control generator is particularly preferable when applied to a small generator. That is, in the small generator, the rotor diameter, which is a rotor, is small, so the outer diameter of the magnetic flux control rod is also small. If the number of teeth is the same, the clearance, that is, the air gap that is created between the collecting part and the magnetic flux control collecting part of the magnetic flux control rod does not increase. However, if this magnetic flux control generator is used, the stator collecting part Since the number of teeth is smaller than that of the comb portion, the clearance, that is, the gap between them is increased, and the magnetic flux density from the permanent magnet member to the stator can be controlled easily, reliably, and with high accuracy. Can be improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a magnetic flux control generator according to the present invention will be described below with reference to the drawings. This magnetic flux control generator is attached to an output shaft of an engine such as a generator provided in an engine mounted on a vehicle such as an automobile, a generator incorporated in an engine of a cogeneration system, a gas engine, or a hybrid car. Preferred for application to small generators that drive various devices such as generators, wind power generators, auxiliary equipment mounted on vehicles, refrigerators, hydraulically driven industrial equipment, large medical equipment, electronic communication equipment, etc. It is.
[0022]
Some of the magnetic flux control generators are provided with a magnetic flux control rod 7 for controlling the magnetic flux flowing through the comb portion 10 of the stator core 15 constituting the stator 4. In this embodiment, as shown in FIGS. 1 to 5, the magnetic flux control type generator is rotatably supported by a housing 1 and a housing 1 to which a stator 4 is attached via a pair of bearings 37. A rotor 3 having a permanent magnet member 5 fixed to the shaft 2 and the rotating shaft 2, a stator 4 arranged on the outer peripheral side of the rotor 3 and fixed to the housing 1, and a stator 4 on the inner peripheral side of the stator 4 On the other hand, the magnetic flux control rod 7 is attached so as to be relatively movable, and the actuator 25 is configured to move the magnetic flux control rod 7 relative to the stator 4 according to the rotational speed of the rotor 3. The housing 1 includes, for example, a pair of housing main bodies 1A and 1B on both sides and bolts that connect the two housing main bodies 1A and 1B to each other. In FIG. 1, both ends of the outer stator core 17 constituting the stator core 15 are sandwiched between the housing main bodies 1A and 1B. The actuator 25 is attached to a support bracket 64 provided on the housing body 1B.
[0023]
In this magnetic flux control generator, both ends of the rotating shaft 2 constituting the rotor 3 are rotatably supported by the housing 1 by bearings 37. One end of the rotor 3 is fixed to the rotary shaft 2 by a nut 51 screwed into a screw (not shown) formed on the rotary shaft 2 via a presser plate 52. The other end of the rotor 3 is fixed to the rotary shaft 2 with spacers 53 and 54, a presser plate 52, etc. between the rotor 37 and the bearing 37. The housing main body 1B is provided with an end plate 60 that is rotatably supported by a bearing 37. The magnetic flux control rod 7 is attached to a support bracket 59 fixed to the end plate 60. The magnetic flux control generator is configured to be fixed to other parts via a flange portion 36 provided in the housing main bodies 1A and 1B.
[0024]
In FIG. 1, the rotary shaft 2 is provided with a belt pulley 34 that serves as an input via a speed increaser 35 at one end thereof. A belt attached to the output shaft of the engine is hung on the belt pulley 34. In FIG. 1, an input shaft 44 extending parallel to the rotation shaft 2 is rotatably supported by the housing 1 by a bearing 47, and a belt pulley 34 is fixed to one end of the input shaft 44 by a nut 55. In FIG. 1, the speed increaser 35 includes an input gear 46 provided on the input shaft 44 and an output gear 45 provided on one end of the rotary shaft 2. Further, the cooling fan 33 is fixed by a nut 56 with a spacer 57 interposed between the other end portion of the rotating shaft 2 and the bearing 37 in order to dissipate heat generated in the rotor 3 and the stator 4. The yoke 6 which is a magnetically permeable member of the rotor 3 is formed with ventilation holes 39 (FIGS. 4 and 5) through which cooling air generated by the cooling fan 33 flows. A ventilation hole 38 (FIG. 1) through which cooling air generated by the cooling fan 33 flows is formed in the housing 1.
[0025]
Further, in this magnetic flux control generator, a gap 40 as small as possible is formed between the magnetic flux control rod 7 and the rotor 3. The stator 4 includes an inner stator core 16 that is a comb-like cylindrical member spaced so as to form slots 11 with a predetermined interval in the circumferential direction, and a ring-shaped yoke portion in which thin plates fitted and fixed to the inner stator core 16 are stacked. The outer stator core 17 is a thin plate laminated stator core 15 and the winding 18 wound around the stator core 15. The inner stator core 16 includes a comb portion 10 provided on the outer side in the radial direction, a bridge portion 14 that connects inner end portions of the comb portion 10 in the circumferential direction, and an outer side in the radial direction, that is, from the inner peripheral surface of the bridge portion 14 to the inner side. It has the aggregation part 12 of the number of teeth smaller than the number of teeth of the comb part 10 extended. The winding 18 is positioned in the slot 11 formed between the comb portions 10 and is wound up on the comb portion 10, and the slot 11 is filled with a nonmagnetic material 61 such as a resin in order to mold and fix the wound winding 18. Yes.
[0026]
The winding 18 can be composed of, for example, a high-voltage side winding with a large number of turns wound on the comb portion 10 of the stator core 15 of the stator 4 and a low-voltage side winding with a small number of turns wound on the comb portion 10. . On the inner peripheral side of the slot 11 and the comb portion 10 in the stator core 15, a magnetic flux control rod 7 is arranged in a contact state and swingable with respect to the stator 4. The magnetic flux control rod 7 is rotated with respect to the stator core 15 by being attached to the housing 1 via a bearing so as to be rotatable or swingable, or fitted into the stator core 15 so as to be rotatable in a contact state without using a bearing. Can be attached as possible.
[0027]
The rotor 3 includes a permanent magnet member 5 and a permanent magnet member 5 disposed on the outer peripheral surface of the yoke 6 and the yoke 6 of a magnetically permeable member provided with a cooling vent 39 attached to the outer periphery of the rotating shaft 2. A holding pipe 24 is provided which is fixed to the outer peripheral surface of the magnet and engages and fixes the permanent magnet member 5. Specifically, the rotor 3 is disposed adjacent to the outer periphery of a yoke 6 in which a permanent magnet piece 19 having an outer surface formed on a circular arc surface 41 is annularly fixed in the circumferential direction of the rotary shaft 2. In order to hold the member 5, a holding pipe 24 is fitted and fixed in contact with the outer surface of the permanent magnet member 5. In order to generate a three-phase alternating current, the permanent magnet member 5 is arranged, for example, in the circumferential direction of a hexagonal (or dodecagonal, not shown) yoke 6 fixed on the rotary shaft 2. It is composed of six (or twelve, not shown) permanent magnet pieces 19 and a non-magnetic material 42 interposed between the permanent magnet pieces 19 and is composed of 6 poles or 12 poles. . The permanent magnet piece 19 has a circular arc surface 41 on its outer surface and a flat inner surface, and is disposed in contact with the rectangular outer peripheral surface of the yoke 6 that is annularly fixed in the circumferential direction of the rotary shaft 2. .
[0028]
This magnetic flux control type generator is particularly characterized by the shape of the stator core 15. The stator 4 is configured to increase the number of teeth of the comb portion 10 in the inner stator core 16 in order to increase the space factor of the winding 18. The inner stator core 16 extends inward from the comb portion 10 around which the winding 18 is wound up, the narrow bridge portion 14 that connects the inner peripheral side ends of the comb portion 10 in the circumferential direction, and the inner peripheral surface of the bridge portion 14. The assembly portion 12 has a smaller number of teeth than the number of teeth of the comb portion 10. The magnetic flux control rod 7 includes an outer peripheral magnetic flux control collective portion 8 corresponding to the number of teeth of the collective portion 12 of the inner stator core 16 and an inner peripheral cylindrical portion 9 that connects the magnetic flux control collective portions 8 in the circumferential direction. It is comprised from the laminated body which laminated | stacked many thin plates which have. Furthermore, an end ring member 66 and a ring-shaped end plate 67 are provided at both ends of the magnetic flux control rod 7 so as to sandwich the laminated body of thin plates. The end ring member 66 and the end plate 67 are separated from each other by 120 ° in the circumferential direction, and the support rod 65 is composed of three nonmagnetic material fixing shafts disposed in the recesses 43 between the magnetic flux control gathering portions 8. Are joined together by welding, screws or the like. The three support rods 65 are provided so as to be separated from each other by a nonmagnetic material, and are configured so that no induced current flows. The end ring member 66 constituting the magnetic flux control rod 7 is driven to swing by the actuator 25 via the end plate 60. A gap 40 as small as possible is formed between the cylindrical portion 9 of the magnetic flux control rod 7 and the outer peripheral surface of the holding pipe 24 of the rotor 3. The magnetic flux control rod 7 is configured by laminating a magnetically permeable silicon steel plate and a nickel-iron alloy plate, and the plate is bonded by an insulating member made of a resin material or a ceramic material.
[0029]
As shown in FIGS. 4 and 5, this magnetic flux control type generator is configured such that, for example, in order to effectively control demagnetization of the permanent magnet member 5, the number of teeth of the assembly portion 12 of the stator 4 is changed to the comb portion of the stator 4. It is formed in half of the number of 10 teeth, and one of the aggregate portions 12 is formed so as to correspond to two of the comb portions 10. In general, this magnetic flux control type generator has, for example, 36 teeth of the comb portion 10 of the stator 4 and 36 slots 11 in the circumferential direction. The number of teeth of the set portion 8 is 18 and one magnetic flux control set portion 8 corresponds to the two comb portions 10. Further, in this magnetic flux control type generator, for example, in the case of a 6-pole, 36-slot generator, six comb portions 10 of the inner stator core 16 corresponding to the arc surface 41 of one permanent magnet piece 19 are positioned correspondingly. ing. Further, at least the chamfers 21 of, for example, 30 ° to 45 ° are applied to both ends of the teeth of the collective portion 12 of the inner stator core 16 in some cases, and the magnetic flux control rod 7 moves. In some cases, the maximum clearance, that is, the gap S is cleared, and the dimension adjustment of the gap S can be performed with high accuracy and reliability.
[0030]
In this magnetic flux control type generator, the inner surface 31 on the inner peripheral side which is the front end surface of the collective portion 12 of the stator 4 and the outer surface 32 on the outer peripheral side which is the front end surface of the magnetic flux control collective portion 8 of the magnetic flux control rod 7 are the same. Each is formed in a width, and as shown in FIG. Further, the widths of the concave portions 13 between the collecting portions 12 and the concave portions 43 between the magnetic flux control collecting portions 8 are formed larger than the width of the tip surface so as not to cause magnetic flux saturation. In a state where the magnetic flux from the permanent magnet member 5 to the stator 4 is not demagnetized, as shown in FIG. 4, the tip surfaces overlap each other and are aligned. When the magnetic flux from the permanent magnet member 5 to the stator 4 is demagnetized, it is achieved by shifting the front end surface of the collective portion 12 and the front end surface of the magnetic flux control collective portion 8. Further, as shown in FIG. 5, in the state where the collective portion 12 and the magnetic flux control collective portion 8 are located at the center of the concave portions 13 and 43, the same gap is formed on both sides of the collective portion 12 and the magnetic flux control collective portion 8. S is formed, and the magnetic flux from the permanent magnet member 5 to the stator 4 is demagnetized to the maximum. In this magnetic flux control type generator, for example, it is possible to achieve a demagnetizing effect of about 15% magnetic flux when the air gap S is 1 mm, and to achieve a magnetic demagnetizing effect of 60% or more when the air gap S is 3 mm. The result was confirmed. Therefore, it is confirmed that the demagnetization effect of the magnetic flux from the permanent magnet member 5 to the stator core 15 depends on how large the gap S formed between the collecting portion 12 and the magnetic flux control collecting portion 8 is secured. It was done.
[0031]
In order to generate a three-phase alternating current, the magnetic flux control generator generates, for example, six permanent magnet members 5 in the circumferential direction of the rotating shaft 2 as shown in FIGS. Twelve permanent magnet pieces 19 are disposed and configured to have 6 or 12 poles. Further, the stator core 15 constituting the stator 4 includes fitting grooves 22 for fitting the outer peripheral side open type inner stator core 16 including the comb portion 10, the bridge portion 14, and the collecting portion 12 and the outer peripheral side end portion 62 of the comb portion 10. Is formed of a cylindrical outer stator core 17 formed on the inner peripheral surface 63. The stator 4 winds the winding 18 around the comb portion 10 so as to increase the space factor of the winding 18, and then winds the winding 18 around the comb portion 10 through the outer opening 23 between the comb portions 10 of the inner stator core 16. An outer stator core 17 is fitted on the outer peripheral surface of the stator core 16. The outer stator core 17 is fitted to the inner stator core 16 by inserting and fitting the end 62 of the comb portion 10 into the fitting groove 22 of the outer stator core 17.
[0032]
In this magnetic flux control type generator, the position of the magnetic flux control rod 7 with respect to the stator 4 is easily detected by the potentiometer 50, the position information is input to the controller, and the stepping motor 30 which is the actuator 25 by the controller in response to the information. The magnetic flux control rod 7 is rotated through a kind of worm gear 26, the magnetic flux density from the permanent magnet member 5 to the stator 4 is controlled, and the generated voltage is made constant. In the actuator 25, for example, the output shaft of the stepping motor 30 rotates the worm shaft 29 via the gear transmission device 48, and the worm 27 that is a screw gear provided on the worm shaft 29 rotates. The worm shaft 29 is rotatably supported by a support bracket 64 of the housing 1 via a bearing 49. The magnetic flux control rod 7 is rotatably supported by the housing 1 by support brackets 58 and 59 and an end plate 60. The support bracket 58 is provided with a worm engagement portion 28 (a part of the worm wheel) that engages with the worm 27. When the worm engagement portion 28 swings or rotates due to the rotation of the worm 27, the magnetic flux control rod 7 rotates or swings relative to the stator 4 following the rotation of the worm engagement portion 28.
[0033]
For example, the inner stator core 16 is not shown, but the plate material is punched on both sides except for the portions that become the bridge portion 14 and the gathering portion 12, the punched plate material is bent into a circular shape, and both ends are joined to form a comb-like disk. It is formed into a member and is formed by laminating a number of the above comb-like circular plate members. On the fitting surface between the inner stator core 16 constituting the stator 4 and the outer stator core 17 made of an outer cylindrical member, the outer stator core 17 provided with a fitting groove 22 in a portion corresponding to the comb portion 10 of the inner stator core 16 and the comb portion 10; In order to reduce the magnetic path resistance, a paste-like iron powder can be embedded in the fitting surface to form a good magnetic path.
[0034]
The permanent magnet member 5 is composed of a permanent magnet piece 19 that is spaced apart in the circumferential direction and arranged in a state where the polarities are alternately different and extends in the axial direction, and a non-magnetic material 42 interposed between the adjacent permanent magnet pieces 19. It is configured. The permanent magnet piece 19 is formed with a circular surface 41 on the outer surface and a flat surface on the inner surface, and a plurality of permanent magnet pieces 19 are arranged in the circumferential direction. Further, the non-magnetic material such as resin is made of a heat-resistant material that does not melt due to the heat generated by the winding 18. Further, the yoke 6 of the magnetically permeable member is formed in a cylindrical shape, for example, by alternately arranging a permeable material and a nonmagnetic material in the circumferential direction and extending in the axial direction.
[0035]
In response to the rotational speed of the rotor 3, the magnetic flux control generator operates the actuator 25 in response to a command from a controller (not shown) to swing the magnetic flux control rod 7 with respect to the stator 4, and thereby a permanent magnet member. The magnetic flux from 5 to the stator 4 is controlled, for example, a constant voltage is generated. That is, the magnetic flux control generator swings the magnetic flux control rod 7 with respect to the stator 4 according to a command from the controller, and the outer surface 32 of the front end surface of the magnetic flux control assembly portion 8 and the inner surface 31 of the front end surface of the comb portion 10 The opposite area, that is, the contact area is controlled. When the actuator 25 is actuated by a controller command and the support bracket 58 of the worm engagement portion 28 provided on the magnetic flux control rod 7 swings, and the magnetic flux control rod 7 swings relative to the stator 4, the magnetic flux control assembly portion 8. The close contact state between the outer surface 32 and the inner surface 31 of the collective portion 12 is adjusted, and the magnetic flux flowing from the magnetic flux control collective portion 8 of the magnetic flux control rod 7 to the collective portion 12 of the stator core 15 is controlled.
[0036]
For example, when the rotor 3 is running at a low speed, the controller controls the actuator 25 to operate so that the joint of the magnetic flux control collection unit 8 and the collection unit 12 is aligned as shown in FIG. At high speed, as shown in FIG. 5, the actuator 25 is operated to rotate the magnetic flux control rod 7, and the magnetic flux control collecting portion 8 and the collecting portion 12 are shifted from each other so as to face the recesses 13, 43, It can control to demagnetize the magnetic flux and generate a constant voltage. That is, the controller controls the magnetic flux control rod 7 by the actuator 25 so that the product (= f × φ) of the frequency f which is the rotational speed of the rotor 3 with respect to the stator 4 and the magnetic flux φ flowing through the comb portion 10 of the stator 4 becomes constant. Is controlled so as to generate a predetermined constant voltage. Therefore, in a state where the magnetic flux control rod 7 is moved by the control of the controller and the magnetic flux control aggregate portion 8 of the magnetic flux control rod 7 is located in the recess 13 between the comb portions 10 of the stator core 15, as shown in FIG. The gap S is formed between the chamfer 21 and the chamfer 20 of the magnetic flux control assembly 8 with high accuracy, and the magnetic flux flowing from the rotor 3 to the stator 4 is most suppressed.
[0037]
【The invention's effect】
In the magnetic flux control generator according to the present invention, as described above, since the stator core is formed in a shape provided with a bridge portion that connects the comb portions, the number of teeth of the comb portion and the aggregate portion can be easily made different. The stator is composed of a bridge portion connecting comb portions and an aggregation portion having a small number of teeth extending inwardly from the bridge portion, and a magnetic flux control rod corresponding to the number of teeth of the aggregation portion and the magnetic flux control Because it is composed of a cylindrical part that connects the gathering part, it can generate a large voltage at low speed by providing many comb parts, and it can form a large gap by forming the gathering part and the flux control gathering part. The magnetic flux demagnetization from the permanent magnet member to the stator can be controlled appropriately and easily. For example, the generated voltage can be easily and reliably controlled to a constant voltage. Therefore, if this magnetic flux control generator is used, the voltage can be made constant by magnetic flux control, so there is no current interruption and it is necessary to use a large transistor for the switching regulator as in the conventional generator. Therefore, noise generation due to current interruption can be suppressed at a very low cost, and a control device for the generated voltage can be provided. Therefore, this magnetic flux control generator can be applied to an automobile engine, an automobile generator in which the rotational speed of a drive system such as wind power changes every moment, and an appropriate voltage can be generated for extremely low cost. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an embodiment of a magnetic flux control generator according to the present invention.
2 is a side view of the magnetic flux control generator of FIG. 1 with a fan removed. FIG.
FIG. 3 is an enlarged side view showing the vicinity of an actuator in the magnetic flux control type generator shown in FIG. 1;
4 is an enlarged explanatory view showing an operating state of the magnetic flux control rod in the magnetic flux control generator of FIG. 1 and showing a state where the magnetic flux in the alignment state of the stator collecting portion and the magnetic flux control collecting portion of the magnetic flux control rod is not suppressed. FIG. It is.
5 shows an operation state of the magnetic flux control rod in the magnetic flux control type generator of FIG. 1, and an enlarged view showing a state in which the magnetic flux in an inconsistent state between the stator collecting portion and the magnetic flux control collecting portion of the magnetic flux control rod is demagnetized. It is explanatory drawing.
[Explanation of symbols]
1 Housing
2 Rotating shaft
3 Rotor
4 Stator
5 Permanent magnet member
6 yokes
7 Magnetic flux control
8 Magnetic flux control assembly
9 Cylindrical part
10 Comb
11 slots
12 Meeting part
13, 43 recess
14 Bridge part
15 Stator core
16 Inner stator core
17 Outer stator core
18 windings
19 Permanent magnet piece
20, 21 Chanfa
22 Fitting groove
23 Outside opening
24 Holding pipe
25 Actuator
26 Worm gear
30 Stepping motor
31 Inside
32 Exterior
40 gap
41 Arc surface
50 Potentiometer
62 End
63 Inner peripheral surface

Claims (11)

ハウジングに回転可能に取り付けられた回転軸上に取り付けられた複数の永久磁石片から成る永久磁石部材を備えたロータ,前記ロータの外周側で前記ハウジングに固定され且つスロットによって周方向に隔置して設けられた櫛部に巻き上げられた巻線を備えたステータ,及び前記櫛部に対応する歯部を備えて前記ロータと前記ステータとの間で前記ステータに対して相対移動して磁束を制御する磁束制御籠を有する磁束制御型発電機において,
前記ステータは,前記櫛部の内周側端部をそれぞれ周方向に連繋するブリッジ部と前記ブリッジ部の内周面から内方に延び且つ前記櫛部の歯数より少ない歯数の集合部とを有し,前記磁束制御籠は,前記ステータの前記集合部の歯数に対応する前記歯部である磁束制御集合部と該磁束制御集合部をそれぞれ周方向に連繋する円筒部とを有する薄板の積層体から構成されていることを特徴とする磁束制御型発電機。
A rotor having a permanent magnet member comprising a plurality of permanent magnet pieces mounted on a rotating shaft rotatably mounted on a housing, fixed to the housing on the outer peripheral side of the rotor and spaced circumferentially by a slot A stator provided with a winding wound around a comb portion provided and a tooth portion corresponding to the comb portion, and a magnetic flux that controls a magnetic flux relative to the stator between the rotor and the stator. In a magnetic flux control generator with a control rod,
The stator has a bridge portion that connects the inner peripheral side ends of the comb portion in the circumferential direction, and a collection portion that extends inward from the inner peripheral surface of the bridge portion and has a smaller number of teeth than the comb portion. The magnetic flux control rod is a laminated thin plate having a magnetic flux control collective portion corresponding to the number of teeth of the collective portion of the stator and a cylindrical portion connecting the magnetic flux control collective portions in the circumferential direction. A magnetic flux control type generator comprising a body.
前記永久磁石部材の減磁制御を効果的にするため,前記ステータの前記集合部の歯数は前記櫛部の歯数の半分に形成され,前記集合部の1個が前記櫛部の2個に対応するように形成されていることを特徴とする請求項1に記載の磁束制御型発電機。In order to effectively control the demagnetization of the permanent magnet member, the number of teeth of the set portion of the stator is formed to be half of the number of teeth of the comb portion, and one of the set portions corresponds to two of the comb portions. The magnetic flux control type generator according to claim 1, wherein the magnetic flux control type generator is formed as described above. 前記ステータの前記櫛部の歯数を36個形成して前記スロットを周方向に36個形成し,前記磁束制御籠の前記磁束制御集合部の歯数を18個形成し,2個の前記櫛部に1個の前記磁束制御集合部が対応するように形成された薄板の積層体で筒状に構成されていることを特徴とする請求項2に記載の磁束制御型発電機。36 teeth of the comb portion of the stator are formed to form 36 slots in the circumferential direction, 18 teeth of the magnetic flux control assembly portion of the magnetic flux control rod are formed, and two comb portions are formed. 3. The magnetic flux control generator according to claim 2, wherein the magnetic flux control generator is formed in a cylindrical shape by a laminated body of thin plates formed so that one of the magnetic flux control aggregate portions corresponds. 前記ステータの前記集合部と前記磁束制御籠の前記磁束制御集合部には周方向両端にチャンファがそれぞれ施されていることを特徴とする請求項1〜3のいずれか1項に記載の磁束制御型発電機。The magnetic flux control according to any one of claims 1 to 3, wherein chamfers are respectively provided on both ends in the circumferential direction of the collective portion of the stator and the magnetic flux control collective portion of the magnetic flux control rod. Type generator. 前記ステータの前記集合部と前記磁束制御籠の前記磁束制御集合部との先端面は同一幅に且つ前記集合部間と前記磁束制御集合部間との凹部の幅は前記先端面の幅より大きくそれぞれ形成され,前記磁束が通り易いようにする場合には前記先端面が互いに整合し,前記磁束を減磁する場合には前記先端面が互いにずれた状態であり,また,前記集合部と前記磁束制御集合部とが前記凹部の中央に位置する状態では前記集合部と前記磁束制御集合部とのそれぞれの両側に同一の空隙が形成されて前記磁束が最大に減磁されることを特徴とする請求項1〜4のいずれか1項に記載の磁束制御型発電機。The front end surfaces of the collecting portion of the stator and the magnetic flux control collecting portion of the magnetic flux control rod have the same width, and the width of the recess between the collecting portions and between the magnetic flux control collecting portions is larger than the width of the front end surface. When the magnetic fluxes are formed and the magnetic fluxes are easy to pass, the front end surfaces are aligned with each other, and when the magnetic fluxes are demagnetized, the front end surfaces are shifted from each other. In the state where the magnetic flux control aggregate portion is located at the center of the concave portion, the same gap is formed on both sides of the aggregate portion and the magnetic flux control aggregate portion, and the magnetic flux is demagnetized to the maximum. The magnetic flux control type generator according to any one of claims 1 to 4. 前記永久磁石部材は,三相交流を発電するため,前記回転軸の周方向に6個又は12個の前記永久磁石片が配設され,6極又は12極に構成されていることを特徴とする請求項1〜5のいずれか1項に記載の磁束制御型発電機。In order to generate a three-phase alternating current, the permanent magnet member has six or twelve permanent magnet pieces arranged in the circumferential direction of the rotating shaft, and is configured with six or twelve poles. The magnetic flux control type generator according to any one of claims 1 to 5. 前記ステータを構成するステータコアは,前記櫛部,前記ブリッジ部及び前記集合部から成る外周側開放型のインナステータコアと,前記櫛部の外端部をそれぞれ嵌合する嵌合溝が内周面に形成された円筒状のアウタステータコアとから構成され,前記ブリッジ部の幅は前記櫛部の幅の1/5以下の寸法に形成されていることを特徴とする請求項1〜6のいずれか1項に記載の磁束制御型発電機。The stator core that constitutes the stator is formed on the inner peripheral surface of the outer peripheral side open-type inner stator core composed of the comb portion, the bridge portion, and the collecting portion, and a fitting groove that fits the outer end portion of the comb portion. The cylindrical outer stator core is formed, and the width of the bridge portion is 1/5 or less of the width of the comb portion. Magnetic flux control generator. 前記ステータは,前記巻線の占積率をアップさせるため,前記インナステータコアの前記櫛部間の外側開口を通じて前記巻線を前記櫛部に巻き上げ,前記インナステータコアの外周面に前記アウタステータコアを嵌合して構成されている二体構造になっていることを特徴とする請求項7に記載の磁束制御型発電機。In order to increase the space factor of the winding, the stator winds the winding around the comb portion through an outer opening between the comb portions of the inner stator core, and fits the outer stator core to the outer peripheral surface of the inner stator core. The magnetic flux control type generator according to claim 7, wherein the magnetic flux control generator has a two-body structure. 前記ロータは,外周面を円弧面に形成した前記永久磁石片が前記回転軸の周方向に環状に固定された継鉄の外周に隣接して配設され,前記永久磁石部材を保持するため前記永久磁石部材の外周面に接して嵌合固定された保持パイプを有していることを特徴とする請求項1〜8のいずれか1項に記載の磁束制御型発電機。The rotor is disposed adjacent to an outer periphery of a yoke in which the permanent magnet piece having an outer peripheral surface formed in an arc surface is fixed in an annular shape in the circumferential direction of the rotating shaft, and holds the permanent magnet member. The magnetic flux control generator according to any one of claims 1 to 8, further comprising a holding pipe fitted and fixed in contact with the outer peripheral surface of the permanent magnet member. 前記磁束制御籠は,コントローラによって制御されるアクチュエータであるステッピングモータ又は直流モータによってウォームギヤを通じて回転し,前記集合部と前記磁束制御集合部とのクリアランスを明けて前記ステータへの磁束制御がされ,発電電圧が一定にされることを特徴とする請求項1〜9のいずれか1項に記載の磁束制御型発電機。The magnetic flux control rod is rotated through a worm gear by a stepping motor or a direct current motor that is an actuator controlled by a controller, and the magnetic flux control to the stator is performed by opening a clearance between the collective portion and the magnetic flux control collective portion. The magnetic flux control generator according to any one of claims 1 to 9, wherein the voltage is made constant. 風力発電機,或いは冷凍保冷車,油圧駆動機器搭載車,大型医療機器搭載車,電子通信機器搭載車等の自動車用発電機に適用されることを特徴とする請求項1〜10のいずれか1項に記載の磁束制御型発電機。11. The apparatus according to claim 1, wherein the generator is applied to a wind power generator or a motor generator such as a refrigerated vehicle, a vehicle equipped with a hydraulic drive device, a vehicle equipped with a large medical device, a vehicle equipped with an electronic communication device. The magnetic flux control type generator according to item.
JP2003123069A 2003-04-28 2003-04-28 Magnetic flux control generator Expired - Fee Related JP3737492B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003123069A JP3737492B2 (en) 2003-04-28 2003-04-28 Magnetic flux control generator
CN 200410038422 CN1610222A (en) 2003-04-28 2004-04-26 Magneto generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123069A JP3737492B2 (en) 2003-04-28 2003-04-28 Magnetic flux control generator

Publications (2)

Publication Number Publication Date
JP2004328944A JP2004328944A (en) 2004-11-18
JP3737492B2 true JP3737492B2 (en) 2006-01-18

Family

ID=33501054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123069A Expired - Fee Related JP3737492B2 (en) 2003-04-28 2003-04-28 Magnetic flux control generator

Country Status (1)

Country Link
JP (1) JP3737492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050261A1 (en) 2012-09-26 2014-04-03 ダイキン工業株式会社 Radial gap type rotating electrical machine, blower, compressor, and air conditioner

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191782A (en) * 2004-12-09 2006-07-20 Yamaha Motor Co Ltd Rotating-electric machine
JP4802014B2 (en) * 2005-08-05 2011-10-26 ヤマハ発動機株式会社 A straddle-type vehicle equipped with a rotating electrical machine
US7541705B2 (en) 2007-03-28 2009-06-02 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable flux paths in stator back iron
US7605503B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot opening and back iron flux paths
US7605504B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot flux paths
US7567006B2 (en) 2007-07-26 2009-07-28 Kura Laboratory Corporation Field controllable rotating electric machine system with flux shunt control
WO2009013934A1 (en) 2007-07-26 2009-01-29 Kura Laboratory Corporation Flux shunt control rotary electric machine system
EP2187508A4 (en) 2007-08-17 2013-03-13 Kura Lab Corp Magnetic flux distribution control type rotary electrical machine system
US7999432B2 (en) 2007-08-17 2011-08-16 Kura Laboratory Corporation Field controllable rotating electric machine system with magnetic excitation part
NO331710B1 (en) * 2010-07-09 2012-03-05 Smartmotor As Electric machine for underwater applications and energy conversion system.
JP7288337B2 (en) * 2019-04-12 2023-06-07 株式会社kaisei three phase alternator
WO2021019703A1 (en) * 2019-07-30 2021-02-04 株式会社kaisei Three-phase ac generator
WO2021095065A1 (en) * 2019-11-12 2021-05-20 Mavel edt S.p.A. Process for making a continuous winding for a stator of an electric machine and winding made with such process
EP4059119A1 (en) * 2019-11-12 2022-09-21 Mavel EDT S.p.A. Stator with closed slots with continuous winding for an electric machine and process for making such stator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050261A1 (en) 2012-09-26 2014-04-03 ダイキン工業株式会社 Radial gap type rotating electrical machine, blower, compressor, and air conditioner
US9923424B2 (en) 2012-09-26 2018-03-20 Daikin Industries, Ltd. Radial gap type rotating electrical machine, blower, compressor, and air conditioner

Also Published As

Publication number Publication date
JP2004328944A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4707696B2 (en) Axial gap type motor
JP3737492B2 (en) Magnetic flux control generator
US6995494B2 (en) Axial gap brushless DC motor
US7999432B2 (en) Field controllable rotating electric machine system with magnetic excitation part
JP4729551B2 (en) Axial gap type motor
JP4403253B1 (en) Magnetic flux amount variable axial gap rotating electrical machine system
JP4784726B2 (en) DC motor
JP5589506B2 (en) Permanent magnet motor
WO2011111357A1 (en) Motor
US6724115B2 (en) High electrical and mechanical response structure of motor-generator
EP1414140A1 (en) Electric machine, in particular an axial gap brushless DC motor
JP4337989B1 (en) Magnetic excitation variable magnetic rotating machine system with magnet excitation
CN102651597B (en) Permanent-magnet type electric rotating machine
JP2015019496A (en) Transverse flux motor and vehicle
JP2001275326A (en) Motor
WO2021142433A1 (en) Curved magnets for a variable-flux memory motor
JPH10304633A (en) Synchronous rotary machine using permanent magnet and method for driving it
JPH08308192A (en) Ac generator
JP2014027834A (en) Rotary machine
JP4848670B2 (en) Rotor, electric motor, compressor, blower, and air conditioner
JP3825002B2 (en) Permanent magnet generator
JP3691769B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP3907987B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP2004088880A (en) Back surface field type inductor rotating machine
JP2010093929A (en) Axial gap-type motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees