JP3825002B2 - Permanent magnet generator - Google Patents

Permanent magnet generator Download PDF

Info

Publication number
JP3825002B2
JP3825002B2 JP2003025788A JP2003025788A JP3825002B2 JP 3825002 B2 JP3825002 B2 JP 3825002B2 JP 2003025788 A JP2003025788 A JP 2003025788A JP 2003025788 A JP2003025788 A JP 2003025788A JP 3825002 B2 JP3825002 B2 JP 3825002B2
Authority
JP
Japan
Prior art keywords
comb
permanent magnet
stator
magnetic flux
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003025788A
Other languages
Japanese (ja)
Other versions
JP2004242369A (en
Inventor
英男 河村
正 深尾
Original Assignee
フジセラテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジセラテック株式会社 filed Critical フジセラテック株式会社
Priority to JP2003025788A priority Critical patent/JP3825002B2/en
Publication of JP2004242369A publication Critical patent/JP2004242369A/en
Application granted granted Critical
Publication of JP3825002B2 publication Critical patent/JP3825002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,永久磁石を持つロータ,該ロータの外周に配置されたステータ及び両者間に配置された磁束を制御する磁束制御リングを備えた永久磁石式発電機に関する。
【0002】
【従来の技術】
従来,永久磁石式発電機は,ロータに永久磁石を用いるので,構造が簡単で大きな発電電力を得ることができ,近年,それを組み込んだシステムが自動車用発電機,風力発電機等として利用されることが多くなってきた。永久磁石式発電機は,例えば,発電した電力を電動機に送る場合に,電圧が変動してもその機能が十分に発揮できるが,この電力を自動車の全ての装置を駆動しているバッテリ電圧に合わせる場合に,電圧変動を一定の電圧に揃える操作をしなければならない。永久磁石式発電機は,発電した電圧を一定にするためには,スイッチングレギュレタ等を用いて電力を切り刻む操作をしなければならないが,大電流をオン・オフするためには大型のパワートランジスタを要し,装置が大型になり,冷却ロスが大きくなり,高価になったり,また,発電電圧を一定にするために,電流を切り刻む時に,発生するリプルは電波障害の引き金になり,そのノイズ対策が極めて大変である。
【0003】
従来の高出力交流発電・電動機は,回転速度に応じて磁束密度を制御して発電量を適正に制御するものであり,ロータとステータとの間に制御リングを相対回転可能に配置し,制御リングに接離可能な透磁性体を設けたものである(例えば,特許文献1参照)。
【0004】
しかしながら,永久磁石式発電機は,磁束密度が大きいので,発電電力が大きく,効率が良いことが知られているが,ロータの回転が大きくなると,電圧が上昇し,一定電圧にすることができない。そこで,永久磁石式発電機は,永久磁石を通過し,ステータ側に流れる磁束の大きさを減少させて一定電圧にする磁束制御リングを組み込んで,磁束を制御することが考えられる。永久磁石式発電機は,永久磁石を配設したロータとステータとの間に,ステータの櫛部と同一ピッチを持った櫛歯状の回転可能な籠材から成る磁束制御リングを配設し,ロータの低速回転時ではステータの歯部即ち櫛部と磁束制御リングの歯部とを整合一致させ,ロータの高速時にはステータの歯部即ち櫛部と磁束制御リングの歯部とをずらして両者間に大きな空隙を発生させ,磁路抵抗を増加させて磁束を制御するように構成されている(例えば,特許文献2参照)。
【0005】
【特許文献1】
特開平7−236260号公報(第1頁,図1)
【特許文献2】
特開2002−281695号公報(第1,2頁,図1)
【0006】
【発明が解決しようとする課題】
しかしながら,上記のような磁束制御リングを組み込んだ永久磁石式発電機については,次の問題点がある。第1に,永久磁石をロータに固定するために取り付けているSUS304等の非透磁性材の保持パイプが永久磁石部材と磁束制御リングとの間に介在することによって空隙が存在し,その磁路通路にとって大きな抵抗となり,磁束密度が著しく小さくなる。第2に,永久磁石の磁束が大きいにもかかわらず,この磁力により発電できる高圧な発電電圧を得るための巻線数を増大させる必要があり,そのコイルを収容できるスペースが小さいことである。第3に,磁束制御を行うためには,ステータのステータコアを構成する櫛部の内側の歯部と,磁束制御リングの外側に設けられた歯部との間隔が十分に揃っていなけれなならないことである。第4に,磁束の永久磁石式発電機のステータの櫛部間のスロット部の形状では,内側に開口しており,外側には全周を取り囲む磁路を形成する円筒部が存在し,櫛部間に巻線を巻き上げる時に,巻線の締め付け力によって櫛部に変形をもたらし,スロット部即ち櫛部間の間隔がずれてしまうことである。第5に,磁束制御を行うため,磁束制御リングをステータに対して移動させる時に,磁束制御の効果が十分に確保できない。
【0007】
【課題を解決するための手段】
この発明の目的は,ロータとステータとの間に,ステータに対して回転移動する磁束制御リングを組み込み,ロータを構成する永久磁石部材を保持する保持パイプを透磁性部と非透磁性部とを周方向に交互に配設して構成し,隣接する永久磁石部材の境界部に非透磁性部を位置させて永久磁石部材の円弧部分の中央部に対応するステータの櫛部に磁束を集合させ,櫛部を連繋するブリッジ部を通っての磁束の漏れを抑制し,磁束制御リングによる磁束制御の十分な効果を確保し,高速回転時の電圧上昇を抑制して一定電圧を確保することを特徴とする永久磁石式発電機を提供することである。
【0008】
この発明は,ハウジングに回転可能に支持されたロータ,前記ロータの外周側で前記ハウジングに固定され且つスロットによって周方向に隔置して設けられた櫛部に巻き上げられた巻線を備えたステータ,及び前記櫛部に対応する歯部を備えて前記ロータと前記ステータとの間で前記ステータに対して相対移動して磁束を制御する磁束制御リングを有し,前記ロータは,前記ハウジングに回転可能に取り付けられた回転軸,前記回転軸の周方向に環状に固定された透磁性部材,外周面が円弧面に形成されて前記透磁性部材の外周に隣接して複数の永久磁石片が配設された永久磁石部材,及び前記永久磁石部材を保持するため前記永久磁石部材の外周面に接して嵌合固定された保持パイプを有する永久磁石式発電機において,
前記保持パイプは,長手方向に延びる透磁性金属板と長手方向に延びる非透磁性金属板とが周方向に交互に順次配設されて長手方向に互いに接合され,前記非透磁性金属板は隣接して配置された前記永久磁石片の隣接境界部にそれぞれ位置するように円筒状に成形され,前記透磁性金属板の幅は前記非透磁性金属板の幅の実質的に2倍の大きさに形成され,前記透磁性金属板は前記永久磁石片の円周方向幅の65〜85%をカバーしており,
前記ステータは,インナステータコアを構成し且つ前記巻線が巻き上げられる櫛部を持つ櫛状円筒部材と前記インナステータコアの外周面に嵌合されたアウタステータコアを構成する外筒部材とから構成され,前記櫛状円筒部材は,隣接する前記櫛部を連繋するブリッジ部,前記ブリッジ部より外側に位置して前記巻線が巻き上げられる外側の前記櫛部,及び前記ブリッジ部より内側に位置して前記磁束制御リングに対向する内側の櫛部から構成されていることを特徴とする永久磁石式発電機に関する。
【000
前記透磁性金属板はフェライト,マルテンサイト系ステンレススチール又は炭素鋼から形成され,前記非透磁性金属板はオーステナイト系ステンレススチールから形成されている。
【0010
1つの前記永久磁石片の前記円弧面が対応する前記透磁性金属板は,前記ステータの前記櫛部が3個以上対応して位置し,前記永久磁石部材の磁束が前記透磁性金属板に集まるように構成されている。
【0011
前記磁束制御リングは,前記歯部が前記ステータの前記櫛部側に位置する周方向に順次配列された前記歯部と前記ロータ側に位置して前記歯部と一体に構成された連続体の円筒部とから形成され,前記櫛部と前記歯部とには周方向両端に実質的に45°のチャンファがそれぞれ施されている。
【0012
前記磁束制御リングは,透磁性の珪素鋼板及び/又はニッケル−鉄系合金板の板材を積層して構成され,前記板材は樹脂材又はセラミックス材の絶縁部材によって互いに接着されている。
【0013
前記ステータは,前記巻線の占積率をアップさせるため,前記櫛状円筒部材の前記櫛部間の外側開口を通じて前記櫛部に前記巻線を巻き上げた後に,前記櫛状円筒部材の外周面に前記外筒部材を嵌合して構成されている。
【0014
前記櫛状円筒部材は,板材を前記ブリッジ部となる部分を残して両側を打ち抜いて前記内側櫛部と前記外側櫛部とから成る前記櫛部を形成し,前記板材を円形に曲げて両端を接合して櫛状円板部材に成形し,前記櫛状円形板部材を多数積層して形成されている。
【0015
この永久磁石式発電機は,前記ステータを構成する前記櫛状円筒部材の前記櫛部と前記櫛部に対応する部分に溝を設けた前記外筒部材との嵌合面には,磁路抵抗を低減するためペースト状の鉄粉が流入埋設されている。
【0016
この永久磁石式発電機は,上記のように構成されているので,永久磁石部材からの磁力が透磁性のよいフェライト系金属を通って磁束制御リングの櫛部の歯部を通り,永久磁石部材の円弧部の真中部分に対応するステータの櫛部に磁力が集中することになる。櫛部をブリッジ部で連繋するタイプのステータコアでは,円弧部の両脇に相当する部分のステータの櫛部はブリッジ部によって隣接の櫛部と繋がっているので,ブリッジ部を通じて磁力の漏れが発生する。上記のように,磁力を永久磁石部材の中心部分からステータに流すことによって,ブリッジ部からの磁束の漏れを抑制することができ,そのためには,永久磁石部材の周方向に円弧面の実質的に2/3程度のサイズに透磁性金属板の幅を設定することが好ましい。言い換えれば,透磁性金属板の幅は,非透磁性金属板の幅の2倍に形成することが好ましい。
【0017
磁路抵抗Rは,それぞれの材質について下記のような関係式がある。
R=l1 /μ1 ・S1 +l2 /μ2 ・S2 +l3 /μ3 ・S3
4 /μ4 ・S4 ────ln /μn ・Sn ────
ここで,lは磁路の長さ,μは透磁率,Sは磁路面積,nは整数である。
磁路抵抗の中で空気の透磁率μは4・π・10-7H/mであり,珪素鋼板の透磁率は500倍であり,パーマロイは4000倍の大きさである。
従って,磁路抵抗を計算すると,空気部分が支配的であり,軟質磁性材料では大きな値とならないので,ロータと磁束制御リングとの間のクリアランス(空隙)が最大の抵抗になる。例えば,磁路抵抗を計算すると,上記空隙が1mmあると,107 /4・πが空隙抵抗,磁性材経路抵抗は105 /2・πである。磁束制御を実施するとき,空隙抵抗が大きいので,磁束制御によって歯部と歯部とのクリアランスを2mmとしても磁路抵抗を3倍にしかできない。
ところが,上記のフェライト金属によりロータと磁束制御リング間のクリアランスを0.25mmにすると,空隙部の抵抗が107 /16・πとなり,磁束制御によるクリアランス2mmに設定すると,磁路抵抗は107 /2・πとなり,磁力が1/8に減少する。 上記のように,本発明による磁束制御リングを用いた磁束制御は,永久磁石式発電機の性能を維持するために極めて効果的なものであることが分かる。
【0018
【発明の実施の形態】
以下,図面を参照して,この発明による永久磁石式発電機の実施例を説明する。この永久磁石式発電機は,例えば,自動車等の車両に搭載されたエンジンに設けた発電機,コージェネレーションシステムのエンジンに組み込まれた発電機,ガスエンジン,ハイブリット自動車等のエンジンの出力軸に取り付けられた発電機,風力発電機,排気ガスエネルギを回収するターボチャージャに組み込まれた発電機,或いはエネルギ回収装置に設けた発電機が車両に搭載された補機や冷凍機等の機器を駆動するのに適用したり,或いはハイブリット車の電動機を駆動するのに適用して好ましいものである。
【0019
この永久磁石式発電機は,ステータ4を構成するステータコア15の櫛部10を流れる磁束を制御するための磁束制御リング7が設けられたものがある。この実施例では,永久磁石式発電機は,図1及び図2に示すように,ステータ4が取り付けられたハウジング1,ハウジング1に一対の軸受13を介して回転可能にそれぞれ支持されている回転軸2,回転軸2に固定されている永久磁石部材5から成るロータ3,ロータ3の外周側に配置され且つハウジング1に固定されているステータ4,ステータ4の内周側にステータ4に対して相対移動可能に取り付けられた磁束制御リング7,及び磁束制御リング7をロータ3の回転速度に応じてステータ4に対して相対移動させるアクチュエータ25から構成されている。ハウジング1は,例えば,両側の一対のハウジング本体1A,1Bと両ハウジング本体1A,1Bを互いに連結するボルト36から構成されている。図1ではハウジング本体1A,1B間にステータコア15のアウタステータコア即ち円筒部材のリング状継鉄部材17の両端が挟み込まれている。また,回転軸2には,例えば,回転軸2の一端部に入力となるベルトプーリ47が固定され,ベルトプーリ47には,図示していないが,エンジンの出力軸に取り付けたベルトが掛けられている。
【0020
また,回転軸2の他端部には,ロータ3やステータ4で発生する熱を放熱するため冷却ファン(図示せず)が取り付けられている。ロータ3の透磁性部材6とハウジング1には,冷却ファンで発生する冷却風が流れる通風孔28,37が形成されている。ステータ4は,周方向に所定間隔のスロット部11を形成するように隔置されたインナステータコアである櫛状円筒部材30とアウタステータコアであるリング状継鉄部17とから成る薄板積層形のステータコア15,及びステータコア15に巻き上げられた巻線14から構成されている。櫛状円筒部材30は,内側櫛部32と外側櫛部33とから成る櫛部10と,櫛部10を連繋するブリッジ部31から構成されている。巻線14は,櫛部10における外側櫛部33間に形成されたスロット部11に位置して外側櫛部33に巻き上げられ,巻線14を成形固定するためスロット部11内に非磁性材54が充填されている。
【0021
巻線14は,例えば,ステータ4のステータコア15の櫛部10に巻き上げられた巻数の多い高電圧側巻線38と,櫛部10に巻き上げられた巻数の少ない低電圧側巻線39とから構成することができる。ステータコア15におけるスロット部11と櫛部10との内周側には,磁束制御リング7が接触状態に且つステータ4に対して揺動移動可能に配置されている。磁束制御リング7は,ハウジング1に軸受を介して回転又は揺動自在に取り付けるか,又は軸受を使用することなく,ステータコア15に回転自在に接触状態に嵌合させることによってステータコア15に対して回転可能に取り付けることができる。
【0022
この永久磁石式発電機は,特に,ロータ3の構造に特徴を有するものである。ロータ3は,回転軸2の外周に取り付けられた冷却用の通風孔28を備えた透磁部材6,透磁性部材6の外周面に配置された永久磁石部材5,及び永久磁石部材5の外周面に固定された透磁性と非透磁性とから成る保持パイプ16を備えている。保持パイプ16は,長手方向に延びる透磁性金属板20と長手方向に延びる非透磁性金属板21とが周方向に交互に順次長手方向に接合されて配設されており,非透磁性金属板21は隣接して配置された永久磁石部材5の永久磁石片19の隣接境界部52即ち非磁性材の位置にそれぞれ位置されている。
【0023
保持パイプ16について,透磁性金属板20の幅は,非透磁性金属板21の幅の実質的に2倍の大きさに形成され,言い換えれば,透磁性金属板20は,永久磁石片19の円周方向幅の65〜85%を被覆即ちカバーしている。透磁性金属板20はフェライト,マルテンサイト系ステンレススチール又は炭素鋼から作製されている。また,非透磁性金属板21はオーステナイト系ステンレススチールから作製されている。保持パイプ16は,透磁性金属板20と非透磁性金属板21とが交互に配設して溶着部34で互いに溶接によって接合され,透磁性金属板20と非透磁性金属板21とが交互に周方向に位置するように板部材18に形成され,次いで,板部材18を円筒状に成形して作製されている。
【0024
また,1つの永久磁石片19の円弧面の外周面27が対応する透磁性金属板20には,ステータ4の櫛部10が3個以上対応して位置し,永久磁石部材5の磁束が透磁性金属板20に集まる構造に構成されている。また,磁束制御リング7は,ステータ4の櫛部10側に位置する周方向に順次配列された歯部8と,ロータ3側に位置して歯部8が一体に構成された連続体の円筒部9とから形成されている。櫛部10には周方向両端に実質的に45°のチャンファ51が施され,また,歯部8には周方向両端に実質的に45°のチャンファ50が施されている。磁束制御リング7は,透磁性の珪素鋼板,ニッケル−鉄系合金板の板材を積層して構成され,板材は樹脂材又はセラミックス材の絶縁部材によって接着されている。
【0025
ステータ4を構成するステータコア15は,巻線14の占積率をアップさせるため,内側櫛部32と外側櫛部33を持つようにブリッジ部31で互いに接続された櫛状円筒部材30に形成され,櫛状円筒部材30の櫛部10間に外側の開口即ち外開きの外側開口53から巻線14を巻き上げた後に,櫛状円筒部材30のインナステータコアの外周面に外筒部材でなるリング状継鉄部材17のアウタステータコアを嵌合して構成されている。櫛状円筒部材30は,例えば,板材をブリッジ部31となる部分を残して両側を打ち抜いて内側櫛部32と外側櫛部33とから成る櫛部10を形成し,板材を円形に曲げて両端を接合して櫛状円板部材(図示せず)に成形し,上記櫛状円形板部材を多数積層して形成されている。ステータ4を構成する櫛状円筒部材30のインナステータコアと外筒部材でなるリング状継鉄部材17のアウタステータコアとの嵌合面35には,即ち,図2の(A)に図2の符号A部分を拡大して示すように,櫛状円筒部材30の櫛部10と櫛部10に対応する部分に溝56を設けた外筒部材との嵌合面35には,磁路抵抗を低減するためペースト状の鉄粉55が流入埋設されている。
【0026
永久磁石部材5は,周方向に隔置して極性が交互に異なる状態に配置され且つ軸方向に延びる永久磁石片19と,隣接する永久磁石片19間に介在された非磁性材(図示せず)とから構成されている。永久磁石片19は,外周面27が円弧面に形成され,周方向に複数個配設されている。また,非磁性材は,巻線14の発熱によって溶損しない耐熱性材料で構成されている。また,透磁性部材6は,例えば,透磁材と非磁性材が周方向に交互に配置して軸方向に延びて円筒状に形成されている。
【0027
この永久磁石式発電機は,ロータ3を構成する回転軸2の両端が軸受13でハウジング1に回転可能に支持されている。ロータ3は,回転軸2の一端に形成されたねじ40に押さえ板41を介して固定ナット42が螺入されて一端が固定され,回転軸2の他端はスペーサ46を介して軸受13で固定されている。回転軸2の一端には,軸受13がスペーサ43を介して一端に形成されたねじ49にナット44が螺入して固定されている。回転軸2の他端には,ロータ3を回転駆動するプーリ47が配置され,プーリ47は回転軸2の他端に形成されたねじ49にナット48が螺入して固定されている。また,磁束制御リング7とロータ3との間には,可及的に小さい隙間22が形成されている。
【0028
この永久磁石式発電機は,ステータ4とロータ3との間でステータ4に対して相対回転移動即ち揺動可能に配置された磁束密度を調整して電圧を制御する磁束制御リング7,磁束制御リング7をステータ4に対してロッド26を介して揺動させるアクチュエータ25,及びロータ3の回転速度に応答して磁束制御リング7の揺動量を制御するコントローラ(図示せず)を有する。磁束制御リング7は,外周側がステータ4の櫛部10と同数であって凹部12で隔置され且つ櫛部10に接触可能な透磁性突起部である透磁部即ち歯部8と,内周側で歯部8を互いに連繋する円筒部9とから構成されたリング状連続体に形成されている。
【0029
また,磁束制御リング7の歯部8は,周方向に隔置して配置され且つステータ4の櫛部10間のスロット部11の幅より小さい幅を有する概略断面四角形状に形成され,歯部8の外面23が櫛部10の内面24に対向状態に接触可能に構成されている。また,ステータコア15の櫛部10には,その内周端面の角部にチャンファ51が形成されており,また,磁束制御リング7の歯部8には,その外周端面の角部にチャンファ50が形成されている。更に,磁束制御リング7は,歯部8と円筒部9との境界における磁束の流れをスムースにするため,歯部8に形成された凹部12の角部がR部に形成されている。磁束制御リング7の歯部8は,ロータ3側の内側部が周方向に幅広になる張り出し部となるR部に形成されている。従って,磁束制御リング7の円筒部9は,永久磁石部材5からの磁束の流れをスムースにして磁束の漏れを低減する集磁部として機能する。
【0030
コントローラは,磁束制御リング7のステータ4に対する揺動によって歯部8の外面23と,櫛部10の内面24との対向面積即ち接触面積との量を制御するように構成されている。コントローラの指令によってアクチュエータ25を作動してロッド26のピニオン29に螺合した磁束制御リング7に設けたラックが揺動し,磁束制御リング7がステータ4に対して相対揺動すると,歯部8の外面23と櫛部10の内面24との密接状態は調整され,磁束制御リング7の歯部8からステータコア15の櫛部10へ流れる磁束が制御されることになる。例えば,コントローラは,ロータ3の低速時には,図4に示すように,アクチュエータ25を作動して歯部8と櫛部10との合口が整合状態になる制御を行い,また,ロータ3の高速時には,図5に示すように,アクチュエータ25を作動して歯部8を櫛部10間のスロット部11へと移動させ,櫛部10との対向面積を低減させる制御を行う。また,コントローラは,ロータ3のステータ4に対する回転速度,即ち,周波数fとステータ4の櫛部10を流れる磁束φとの積(=f×φ)が一定になるようにアクチュエータ25によって磁束制御リング7を揺動させて予め決められた所定の一定の電圧を発電させる制御を行う。コントローラの制御によって磁束制御リング7が移動して磁束制御リング7の歯部8がステータコア15の櫛部10間に位置した状態では,図5に示すように,櫛部10のチャンファ51と歯部8のチャンファ50との間には,高精度に隙間Sが形成されことになり,ロータ3からステータ4へ流れる磁束は最も抑制される状態になる。従って,このような磁束制御形の発電機で,電圧を一定にし,インバータを用いて駆動に必要な周波数の電流を作ることにより,直接,永久磁石式電動機を作動させた方が効率的であることが多い。しかし,この発電機の出力として一定電圧の出力も必要である。
【0031
【発明の効果】
この発明による永久磁石式発電機は,上記のように,保持パイプを透磁性金属板と非透磁性金属板で形成し,永久磁石片間に非透磁性金属板が位置するように設定されているので,ステータコアを構成するインナステータコアを櫛部と,該櫛部を連繋するブリッジ部とから構成したタイプについて,透磁性金属板が磁束を集合させ,ブリッジ部を通じて磁束の漏れが防止され,磁束制御リングによって適正な磁束制御ができ,例えば,所望の一定電圧に制御することができる。更に,ステータとロータとの間には,磁束制御リングが配置されているので,ロータの永久磁石部材からステータの櫛部へ流れる磁束は調整され,確実に一定電圧を出力するように制御できる。
【図面の簡単な説明】
【図1】 この発明による永久磁石式発電機の一実施例を示す概略断面図である。
【図2】 図1の永久磁石式発電機であって磁束制御リングの歯部をステータの櫛部に整合させた状態を示す断面図である。
【図3】 図1の永久磁石式発電機におけるロータを構成する保持パイプを製作する素材を示す説明図である。
【図4】 図1の永久磁石式発電機における磁束制御リングの作動状態を示し,ステータの櫛部と磁束制御リングの歯部とが整合した磁束を抑制しない状態を示す拡大説明図である。
【図5】 図1の永久磁石式発電機における磁束制御リングの作動状態を示し,ステータの櫛部と磁束制御リングの歯部とが非整合した磁束を抑制する状態を示す拡大説明図である。
【符号の説明】
1 ハウジング
2 回転軸
3 ロータ
4 ステータ
5 永久磁石部材
6 透磁性部材
7 磁束制御リング
8 歯部
9 円筒部
10 櫛部
11 スロット部
12 凹部
13 軸受
14 巻線
15 ステータコア
16 保持パイプ
17 リング状継鉄部(外側部材,アウタステータコア)
18 板部材
19 永久磁石片
20 透磁性金属板
21 非透磁性金属板
23 外面
24 内面
25 アクチュエータ
27 外周面
30 櫛状円筒部材(インナステータコア)
31 ブリッジ部
32 内側櫛部
33 外側櫛部
34 溶着部
35 嵌合面
50 チャンファ
51 チャンファ
52 隣接境界部
53 外側開口
54 非磁性材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet generator including a rotor having a permanent magnet, a stator disposed on the outer periphery of the rotor, and a magnetic flux control ring for controlling a magnetic flux disposed therebetween.
[0002]
[Prior art]
Conventionally, permanent magnet generators use permanent magnets for the rotor, so that they can obtain a large amount of generated power with a simple structure. In recent years, systems incorporating them have been used as automotive generators, wind power generators, etc. There have been many things. Permanent magnet generators, for example, can deliver their functions sufficiently even when the voltage fluctuates when the generated power is sent to the motor, but this power is used as the battery voltage that drives all the devices in the car. When adjusting, voltage fluctuation must be adjusted to a constant voltage. In order to keep the generated voltage constant, a permanent magnet generator must be operated to cut power using a switching regulator or the like. To turn on and off a large current, a large power transistor is required. In other words, the equipment becomes larger, the cooling loss becomes larger, the cost becomes higher, and when the current is chopped in order to keep the generated voltage constant, the generated ripple triggers radio interference, and measures against noise Is extremely difficult.
[0003]
The conventional high-output AC generator / motor controls the magnetic flux density according to the rotational speed and controls the amount of power generation appropriately. A control ring is arranged between the rotor and the stator so as to be able to rotate relative to each other. A magnetically permeable material that can contact and separate from the ring is provided (see, for example, Patent Document 1).
[0004]
However, it is known that the permanent magnet generator has a high magnetic flux density, so the generated power is large and the efficiency is high. However, when the rotor rotation increases, the voltage rises and cannot be made constant. . Therefore, it is conceivable that the permanent magnet type generator controls the magnetic flux by incorporating a magnetic flux control ring that passes through the permanent magnet and reduces the magnitude of the magnetic flux flowing to the stator side to make a constant voltage. In the permanent magnet generator, a magnetic flux control ring made of a comb-like rotatable brazing material having the same pitch as the comb portion of the stator is disposed between the rotor having the permanent magnet disposed thereon and the stator. When the rotor rotates at a low speed, the teeth of the stator, i.e., the comb, and the teeth of the magnetic flux control ring are aligned and matched, and when the rotor is operated at a high speed, the stator teeth, i.e., the comb, and the teeth of the magnetic flux control ring are shifted. And the magnetic path resistance is increased to control the magnetic flux (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-236260 (first page, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-281695 (first and second pages, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the permanent magnet generator incorporating the magnetic flux control ring as described above has the following problems. First, a non-permeable material holding pipe such as SUS304, which is attached to fix the permanent magnet to the rotor, is interposed between the permanent magnet member and the magnetic flux control ring, so that a gap exists, and its magnetic path This creates a large resistance for the passage and significantly reduces the magnetic flux density. Secondly, it is necessary to increase the number of windings for obtaining a high-voltage generated voltage that can be generated by this magnetic force even though the magnetic flux of the permanent magnet is large, and the space that can accommodate the coil is small. Third, in order to perform magnetic flux control, the distance between the teeth on the inner side of the comb portion constituting the stator core of the stator and the teeth provided on the outer side of the magnetic flux control ring must be sufficiently aligned. is there. Fourth, in the shape of the slot between the comb portions of the stator of the permanent magnet generator of magnetic flux, there is a cylindrical portion that opens to the inside and forms a magnetic path that surrounds the entire circumference on the outside. When the winding is wound, the comb portion is deformed by the tightening force of the winding, and the gap between the slot portions, that is, the comb portions is shifted. Fifth, since the magnetic flux control is performed, the magnetic flux control effect cannot be sufficiently ensured when the magnetic flux control ring is moved with respect to the stator.
[0007]
[Means for Solving the Problems]
An object of the present invention is to incorporate a magnetic flux control ring that rotates and moves with respect to the stator between the rotor and the stator, and to connect the holding pipe that holds the permanent magnet member constituting the rotor between the magnetically permeable portion and the non-permeable portion. Alternately arranged in the circumferential direction, the non-permeable portion is located at the boundary between adjacent permanent magnet members, and the magnetic flux is collected at the comb portion of the stator corresponding to the central portion of the arc portion of the permanent magnet member; It is characterized by suppressing the leakage of magnetic flux through the bridge part connecting the comb parts, ensuring a sufficient effect of magnetic flux control by the magnetic flux control ring, and ensuring a constant voltage by suppressing the voltage rise at high speed rotation. It is to provide a permanent magnet generator.
[0008]
The present invention relates to a rotor rotatably supported by a housing, a stator having windings fixed to the housing on the outer peripheral side of the rotor and wound up on a comb portion provided circumferentially separated by slots, And a toothed portion corresponding to the comb portion, and a magnetic flux control ring for controlling the magnetic flux by moving relative to the stator between the rotor and the stator, the rotor being rotatable on the housing An attached rotating shaft, a magnetically permeable member annularly fixed in the circumferential direction of the rotating shaft, an outer peripheral surface is formed in an arc surface, and a plurality of permanent magnet pieces are disposed adjacent to the outer periphery of the magnetically permeable member. A permanent magnet generator, and a permanent magnet generator having a holding pipe fitted and fixed in contact with the outer peripheral surface of the permanent magnet member to hold the permanent magnet member;
In the holding pipe, a permeable metal plate extending in the longitudinal direction and a non-permeable metal plate extending in the longitudinal direction are alternately arranged in the circumferential direction and joined to each other in the longitudinal direction, and the non-permeable metal plates are adjacent to each other. Are formed in a cylindrical shape so as to be positioned at adjacent boundary portions of the permanent magnet pieces arranged in the same manner, and the width of the magnetically permeable metal plate is substantially twice the width of the non-permeable metal plate. The permeable metal plate covers 65 to 85% of the circumferential width of the permanent magnet piece,
The stator is composed of a comb-like cylindrical member that constitutes an inner stator core and has a comb portion around which the winding is wound, and an outer cylinder member that constitutes an outer stator core fitted to the outer peripheral surface of the inner stator core, The cylindrical member includes a bridge portion that connects the adjacent comb portions, an outer comb portion that is positioned outside the bridge portion and on which the winding is wound up, and an inner portion that is positioned inside the bridge portion and is connected to the magnetic flux control ring. The present invention relates to a permanent magnet generator, which is composed of opposed inner comb portions .
[000 9 ]
The permeable metal plate is made of ferrite, martensitic stainless steel or carbon steel, and the non-permeable metal plate is made of austenitic stainless steel.
[00 10 ]
The magnetically permeable metal plate to which the arc surface of one permanent magnet piece corresponds corresponds to three or more comb portions of the stator so that the magnetic flux of the permanent magnet member gathers on the permeable metal plate. It is configured.
[00 11 ]
The magnetic flux control ring is a continuous cylinder in which the tooth portions are sequentially arranged in the circumferential direction located on the comb portion side of the stator and the teeth portion located on the rotor side and integrally formed with the tooth portions. The comb portion and the tooth portion are respectively provided with substantially 45 ° chamfers at both ends in the circumferential direction.
[00 12 ]
The magnetic flux control ring is formed by laminating a magnetically permeable silicon steel plate and / or a nickel-iron alloy plate, and the plates are bonded to each other by an insulating member made of a resin material or a ceramic material.
[00 13 ]
In order to increase the space factor of the winding, the stator winds the winding around the comb portion through an outer opening between the comb portions of the comb-shaped cylindrical member, and then on the outer peripheral surface of the comb-shaped cylindrical member. It is configured by fitting an outer cylinder member.
[00 14 ]
The comb-shaped cylindrical member is formed by punching out both sides of the plate material leaving the portion to be the bridge portion to form the comb portion composed of the inner comb portion and the outer comb portion, and bending the plate material into a circular shape and joining both ends. It is formed into a comb-shaped disk member and is formed by laminating a large number of the comb-shaped circular plate members.
[00 15 ]
The permanent magnet generator reduces magnetic path resistance on a fitting surface between the comb portion of the comb-shaped cylindrical member constituting the stator and the outer cylindrical member provided with a groove in a portion corresponding to the comb portion. In order to do so, paste-like iron powder is buried inflow.
[00 16 ]
Since this permanent magnet generator is configured as described above, the magnetic force from the permanent magnet member passes through the ferritic metal having good permeability and passes through the teeth of the comb portion of the magnetic flux control ring. The magnetic force concentrates on the comb portion of the stator corresponding to the middle portion of the arc portion. In the stator core of the type in which the comb portions are connected by the bridge portion, the stator comb portions corresponding to both sides of the arc portion are connected to the adjacent comb portions by the bridge portion, so that magnetic leakage occurs through the bridge portion. As described above, leakage of magnetic flux from the bridge portion can be suppressed by flowing a magnetic force from the central portion of the permanent magnet member to the stator. For this purpose, a substantially circular arc surface is provided in the circumferential direction of the permanent magnet member. It is preferable to set the width of the permeable metal plate to a size of about 2/3. In other words, the width of the magnetically permeable metal plate is preferably formed to be twice the width of the non-permeable metal plate.
[00 17 ]
The magnetic path resistance R has the following relational expression for each material.
R = l 1 / μ 1 · S 1 + l 2 / μ 2 · S 2 + l 3 / μ 3 · S 3 +
l 4 / μ 4 · S 4 ────l n / μ n · S n ────
Here, l is the length of the magnetic path, μ is the magnetic permeability, S is the magnetic path area, and n is an integer.
Among the magnetic path resistances, the permeability μ of air is 4 · π · 10 −7 H / m, the permeability of the silicon steel sheet is 500 times, and the permalloy is 4000 times as large.
Therefore, when the magnetic path resistance is calculated, the air portion is dominant, and the soft magnetic material does not have a large value. Therefore, the clearance (gap) between the rotor and the magnetic flux control ring becomes the maximum resistance. For example, to calculate the magnetic path resistance and the gap is 1mm, 10 7/4 · π void resistance, magnetic material path resistance is 10 5/2 · π. When the magnetic flux control is performed, the air gap resistance is large. Therefore, even if the clearance between the tooth portion and the tooth portion is 2 mm by the magnetic flux control, the magnetic path resistance can only be tripled.
However, when the 0.25mm clearance between said ferrite metal by the rotor and the magnetic flux control ring, the resistance is 10 7/16 · [pi next to the gap portion, setting the clearance 2mm by flux control, the magnetic path resistance 10 7 / 2 · π and the magnetic force is reduced to 1/8. As described above, it is understood that the magnetic flux control using the magnetic flux control ring according to the present invention is extremely effective for maintaining the performance of the permanent magnet generator.
[00 18 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a permanent magnet generator according to the present invention will be described below with reference to the drawings. This permanent magnet generator is attached to an output shaft of an engine such as a generator provided in an engine mounted on a vehicle such as an automobile, a generator incorporated in an engine of a cogeneration system, a gas engine, or a hybrid car. Generators, wind power generators, generators built into turbochargers that recover exhaust gas energy, or generators installed in energy recovery devices drive equipment such as auxiliary machines and refrigerators mounted on vehicles It is preferable to be applied to the above or to drive an electric motor of a hybrid vehicle.
[00 19 ]
Some permanent magnet generators are provided with a magnetic flux control ring 7 for controlling the magnetic flux flowing through the comb portion 10 of the stator core 15 constituting the stator 4. In this embodiment, as shown in FIGS. 1 and 2, the permanent magnet generator is rotatably supported by a housing 1 and a housing 1 to which a stator 4 is attached via a pair of bearings 13. A rotor 3 composed of a permanent magnet member 5 fixed to the shaft 2 and the rotary shaft 2, a stator 4 disposed on the outer peripheral side of the rotor 3 and fixed to the housing 1, and an inner peripheral side of the stator 4 with respect to the stator 4 The magnetic flux control ring 7 is mounted so as to be relatively movable, and the actuator 25 moves the magnetic flux control ring 7 relative to the stator 4 in accordance with the rotational speed of the rotor 3. The housing 1 includes, for example, a pair of housing main bodies 1A and 1B on both sides and bolts 36 that connect the two housing main bodies 1A and 1B to each other. In FIG. 1, both ends of an outer stator core of the stator core 15, that is, a ring-shaped yoke member 17 as a cylindrical member, are sandwiched between the housing main bodies 1A and 1B. Further, for example, a belt pulley 47 serving as an input is fixed to the rotary shaft 2 at one end portion of the rotary shaft 2, and a belt attached to the output shaft of the engine is hung on the belt pulley 47, although not shown. ing.
[00 20 ]
In addition, a cooling fan (not shown) is attached to the other end of the rotating shaft 2 in order to dissipate heat generated in the rotor 3 and the stator 4. The magnetic permeability member 6 and the housing 1 of the rotor 3 are formed with ventilation holes 28 and 37 through which cooling air generated by the cooling fan flows. The stator 4 is a thin plate laminated stator core comprising a comb-shaped cylindrical member 30 as an inner stator core and a ring-shaped yoke portion 17 as an outer stator core, which are spaced apart so as to form slot portions 11 having a predetermined interval in the circumferential direction. 15 and a winding 14 wound around the stator core 15. The comb-shaped cylindrical member 30 includes a comb portion 10 including an inner comb portion 32 and an outer comb portion 33 and a bridge portion 31 that connects the comb portions 10 together. The winding 14 is positioned in the slot portion 11 formed between the outer comb portions 33 in the comb portion 10 and is wound up on the outer comb portion 33, and the slot portion 11 is filled with a nonmagnetic material 54 to fix the winding 14. ing.
[00 21 ]
The winding 14 is composed of, for example, a high-voltage side winding 38 having a large number of turns wound around the comb portion 10 of the stator core 15 of the stator 4 and a low-voltage side winding 39 having a small number of turns wound around the comb portion 10. Can do. On the inner peripheral side of the slot portion 11 and the comb portion 10 in the stator core 15, the magnetic flux control ring 7 is arranged in a contact state and swingable with respect to the stator 4. The magnetic flux control ring 7 is rotated with respect to the stator core 15 by being attached to the housing 1 via a bearing so as to be rotatable or swingable, or by being fitted to the stator core 15 so as to be rotatable in a contact state without using a bearing. Can be attached as possible.
[00 22 ]
This permanent magnet generator is particularly characterized by the structure of the rotor 3. The rotor 3 includes a permanent magnet member 5 provided on the outer peripheral surface of the magnetically permeable member 6 and the permeable member 6 provided with cooling ventilation holes 28 attached to the outer periphery of the rotary shaft 2, and the outer periphery of the permanent magnet member 5. A holding pipe 16 made of magnetic permeability and non-magnetic permeability fixed to the surface is provided. The holding pipe 16 includes a magnetically permeable metal plate 20 extending in the longitudinal direction and a non-permeable metal plate 21 extending in the longitudinal direction, which are alternately and sequentially joined in the circumferential direction in the circumferential direction. 21 are respectively located at the adjacent boundary portions 52 of the permanent magnet pieces 19 of the permanent magnet members 5 arranged adjacent to each other, that is, at the position of the nonmagnetic material.
[00 23 ]
With respect to the holding pipe 16, the width of the permeable metal plate 20 is formed to be substantially twice the width of the non-permeable metal plate 21. In other words, the permeable metal plate 20 is formed of the permanent magnet piece 19. Covers or covers 65-85% of the circumferential width. The permeable metal plate 20 is made of ferrite, martensitic stainless steel or carbon steel. The non-permeable metal plate 21 is made of austenitic stainless steel. In the holding pipe 16, the permeable metal plate 20 and the non-permeable metal plate 21 are alternately arranged and joined to each other by welding at the welded portion 34, and the permeable metal plate 20 and the non-permeable metal plate 21 are alternately arranged. The plate member 18 is formed so as to be positioned in the circumferential direction, and then the plate member 18 is formed into a cylindrical shape.
[00 24 ]
Further, three or more comb portions 10 of the stator 4 are positioned on the magnetically permeable metal plate 20 to which the outer peripheral surface 27 of the arc surface of one permanent magnet piece 19 corresponds, and the magnetic flux of the permanent magnet member 5 is permeable to magnetic flux. The metal plate 20 is configured to gather. Further, the magnetic flux control ring 7 includes a tooth portion 8 sequentially arranged in the circumferential direction located on the comb portion 10 side of the stator 4 and a continuous cylindrical portion formed integrally with the tooth portion 8 located on the rotor 3 side. 9. The comb portion 10 is provided with substantially 45 ° chamfers 51 at both circumferential ends, and the tooth portion 8 is provided with substantially 45 ° chamfers 50 at both circumferential ends. The magnetic flux control ring 7 is formed by laminating a magnetically permeable silicon steel plate and a nickel-iron alloy plate, and the plate is bonded by an insulating member made of a resin material or a ceramic material.
[00 25 ]
The stator core 15 constituting the stator 4 is formed on a comb-shaped cylindrical member 30 connected to each other by a bridge portion 31 so as to have an inner comb portion 32 and an outer comb portion 33 in order to increase the space factor of the winding 14. A ring-shaped yoke member formed of an outer cylindrical member on the outer peripheral surface of the inner stator core of the comb-shaped cylindrical member 30 after winding the winding 14 from the outer opening, that is, the outer opening 53, between the comb portions 10 of the cylindrical cylindrical member 30 17 outer stator cores are fitted together. The comb-shaped cylindrical member 30 is formed by, for example, punching a plate material on both sides except for a portion that becomes a bridge portion 31 to form a comb portion 10 including an inner comb portion 32 and an outer comb portion 33, and bending the plate material into a circular shape to join both ends. And formed into a comb-like disk member (not shown), and a large number of the above-mentioned comb-like circular plate members are laminated. The fitting surface 35 between the inner stator core of the comb-shaped cylindrical member 30 constituting the stator 4 and the outer stator core of the ring-shaped yoke member 17 formed of an outer cylindrical member, that is, FIG. In order to reduce the magnetic path resistance, the fitting portion 35 of the comb-shaped cylindrical member 30 and the outer cylinder member provided with the groove 56 in the portion corresponding to the comb portion 10 is shown in FIG. Paste-like iron powder 55 is embedded inflow.
[00 26 ]
The permanent magnet member 5 is arranged in a circumferentially spaced state with alternately different polarities and extends in the axial direction, and a non-magnetic material (not shown) interposed between adjacent permanent magnet pieces 19. Z)). The permanent magnet piece 19 has an outer peripheral surface 27 formed in a circular arc surface, and a plurality of permanent magnet pieces 19 are arranged in the circumferential direction. The nonmagnetic material is made of a heat resistant material that does not melt due to the heat generated by the winding 14. Further, the magnetically permeable member 6 is formed in a cylindrical shape, for example, by alternately arranging a magnetically permeable material and a nonmagnetic material in the circumferential direction and extending in the axial direction.
[00 27 ]
In this permanent magnet generator, both ends of the rotating shaft 2 constituting the rotor 3 are rotatably supported on the housing 1 by bearings 13. In the rotor 3, a fixing nut 42 is screwed into a screw 40 formed at one end of the rotating shaft 2 via a holding plate 41, and one end is fixed, and the other end of the rotating shaft 2 is connected to the bearing 13 via a spacer 46. It is fixed. At one end of the rotating shaft 2, the bearing 13 is fixed by screwing a nut 44 into a screw 49 formed at one end via a spacer 43. A pulley 47 that rotationally drives the rotor 3 is disposed at the other end of the rotating shaft 2, and the pulley 47 is fixed by screwing a nut 48 into a screw 49 formed at the other end of the rotating shaft 2. Further, a gap 22 that is as small as possible is formed between the magnetic flux control ring 7 and the rotor 3.
[00 28 ]
This permanent magnet generator includes a magnetic flux control ring 7 that controls the voltage by adjusting a magnetic flux density that is disposed between the stator 4 and the rotor 3 so as to be able to move relative to the stator 4. An actuator 25 that swings the ring 7 with respect to the stator 4 via a rod 26 and a controller (not shown) that controls the swing amount of the magnetic flux control ring 7 in response to the rotational speed of the rotor 3 are provided. The magnetic flux control ring 7 has the same number of outer peripheral sides as the comb portions 10 of the stator 4 and is separated by the concave portions 12 and is a magnetically permeable projection portion, that is, a tooth portion 8 that can contact the comb portion 10. It is formed in the ring-shaped continuous body comprised from the cylindrical part 9 which connects the tooth | gear part 8 mutually.
[00 29 ]
Further, the tooth portions 8 of the magnetic flux control ring 7 are formed in a substantially square shape with a width smaller than the width of the slot portion 11 between the comb portions 10 of the stator 4 and spaced apart in the circumferential direction. The outer surface 23 is configured to be able to contact the inner surface 24 of the comb portion 10 in an opposed state. Further, a chamfer 51 is formed at the corner of the inner peripheral end surface of the comb portion 10 of the stator core 15, and a chamfer 50 is formed at the corner of the outer peripheral end surface of the tooth portion 8 of the magnetic flux control ring 7. Has been. Further, in the magnetic flux control ring 7, in order to make the flow of magnetic flux at the boundary between the tooth portion 8 and the cylindrical portion 9 smooth, the corner portion of the recess 12 formed in the tooth portion 8 is formed in the R portion. The tooth portion 8 of the magnetic flux control ring 7 is formed in an R portion that becomes an overhanging portion in which the inner portion on the rotor 3 side becomes wider in the circumferential direction. Accordingly, the cylindrical portion 9 of the magnetic flux control ring 7 functions as a magnetic collecting portion that smoothes the flow of magnetic flux from the permanent magnet member 5 and reduces leakage of magnetic flux.
[00 30 ]
The controller is configured to control the amount of the facing area, that is, the contact area between the outer surface 23 of the tooth portion 8 and the inner surface 24 of the comb portion 10 by swinging the magnetic flux control ring 7 with respect to the stator 4. When the actuator 25 is actuated by a controller command and the rack provided on the magnetic flux control ring 7 screwed into the pinion 29 of the rod 26 swings, and the magnetic flux control ring 7 swings relative to the stator 4, the tooth portion 8 The close state between the outer surface 23 and the inner surface 24 of the comb portion 10 is adjusted, and the magnetic flux flowing from the tooth portion 8 of the magnetic flux control ring 7 to the comb portion 10 of the stator core 15 is controlled. For example, when the rotor 3 is at a low speed, the controller controls the actuator 25 to operate so that the joint of the tooth portion 8 and the comb portion 10 is aligned as shown in FIG. As shown in FIG. 5, the actuator 25 is operated to move the tooth portion 8 to the slot portion 11 between the comb portions 10, and control to reduce the area facing the comb portion 10 is performed. Further, the controller controls the magnetic flux control ring 7 by the actuator 25 so that the rotational speed of the rotor 3 with respect to the stator 4, that is, the product (= f × φ) of the frequency f and the magnetic flux φ flowing through the comb portion 10 of the stator 4 becomes constant. Is controlled so as to generate a predetermined constant voltage. In a state where the magnetic flux control ring 7 is moved by the control of the controller and the tooth portion 8 of the magnetic flux control ring 7 is positioned between the comb portions 10 of the stator core 15, as shown in FIG. 5, the chamfer 51 of the comb portion 10 and the tooth portion 8 A gap S is formed with high accuracy between the chamfer 50 and the magnetic flux flowing from the rotor 3 to the stator 4 is most suppressed. Therefore, it is more efficient to operate the permanent magnet motor directly with such a magnetic flux control generator by making the voltage constant and using the inverter to generate the current at the frequency required for driving. There are many cases. However, a constant voltage output is also required as the generator output.
[00 31 ]
【The invention's effect】
As described above, the permanent magnet generator according to the present invention is configured such that the holding pipe is formed of a permeable metal plate and a non-permeable metal plate, and the non-permeable metal plate is positioned between the permanent magnet pieces. Therefore, for the type in which the inner stator core constituting the stator core is composed of a comb portion and a bridge portion connecting the comb portions, a magnetically permeable metal plate collects magnetic flux and prevents leakage of the magnetic flux through the bridge portion. Thus, appropriate magnetic flux control can be performed, and for example, a desired constant voltage can be controlled. Further, since a magnetic flux control ring is arranged between the stator and the rotor, the magnetic flux flowing from the permanent magnet member of the rotor to the comb portion of the stator is adjusted, and it can be controlled to output a constant voltage with certainty.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of a permanent magnet generator according to the present invention.
2 is a cross-sectional view showing a state in which the tooth portion of the magnetic flux control ring is aligned with the comb portion of the stator in the permanent magnet generator of FIG. 1. FIG.
3 is an explanatory view showing a material for producing a holding pipe constituting a rotor in the permanent magnet generator of FIG. 1. FIG.
4 is an enlarged explanatory view showing an operating state of a magnetic flux control ring in the permanent magnet generator of FIG. 1 and showing a state in which a magnetic flux in which a comb portion of a stator and a tooth portion of the magnetic flux control ring are aligned is not suppressed. FIG.
5 is an enlarged explanatory view showing an operating state of the magnetic flux control ring in the permanent magnet generator of FIG. 1 and showing a state of suppressing magnetic flux in which the comb portion of the stator and the tooth portion of the magnetic flux control ring are not aligned. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 2 Rotating shaft 3 Rotor 4 Stator 5 Permanent magnet member 6 Permeable member 7 Magnetic flux control ring 8 Tooth part 9 Cylindrical part 10 Comb part 11 Slot part 12 Recess 13 Bearing 14 Winding 15 Stator core 16 Holding pipe 17 Ring-shaped yoke part (Outer member, outer stator core)
DESCRIPTION OF SYMBOLS 18 Plate member 19 Permanent magnet piece 20 Permeable metal plate 21 Non-permeable metal plate 23 Outer surface 24 Inner surface 25 Actuator 27 Outer surface 30 Comb-shaped cylindrical member (inner stator core)
31 Bridge portion 32 Inner comb portion 33 Outer comb portion 34 Welded portion 35 Fitting surface 50 Chamfer 51 Chamfer 52 Adjacent boundary portion 53 Outer opening 54 Nonmagnetic material

Claims (8)

ハウジングに回転可能に支持されたロータ,前記ロータの外周側で前記ハウジングに固定され且つスロットによって周方向に隔置して設けられた櫛部に巻き上げられた巻線を備えたステータ,及び前記櫛部に対応する歯部を備えて前記ロータと前記ステータとの間で前記ステータに対して相対移動して磁束を制御する磁束制御リングを有し,前記ロータは,前記ハウジングに回転可能に取り付けられた回転軸,前記回転軸の周方向に環状に固定された透磁性部材,外周面が円弧面に形成されて前記透磁性部材の外周に隣接して複数の永久磁石片が配設された永久磁石部材,及び前記永久磁石部材を保持するため前記永久磁石部材の外周面に接して嵌合固定された保持パイプを有する永久磁石式発電機において,
前記保持パイプは,長手方向に延びる透磁性金属板と長手方向に延びる非透磁性金属板とが周方向に交互に順次配設されて長手方向に互いに接合され,前記非透磁性金属板は隣接して配置された前記永久磁石片の隣接境界部にそれぞれ位置するように円筒状に成形され,前記透磁性金属板の幅は前記非透磁性金属板の幅の実質的に2倍の大きさに形成され,前記透磁性金属板は前記永久磁石片の円周方向幅の65〜85%をカバーしており,
前記ステータは,インナステータコアを構成し且つ前記巻線が巻き上げられる櫛部を持つ櫛状円筒部材と前記インナステータコアの外周面に嵌合されたアウタステータコアを構成する外筒部材とから構成され,前記櫛状円筒部材は,隣接する前記櫛部を連繋するブリッジ部,前記ブリッジ部より外側に位置して前記巻線が巻き上げられる外側の前記櫛部,及び前記ブリッジ部より内側に位置して前記磁束制御リングに対向する内側の櫛部から構成されていることを特徴とする永久磁石式発電機。
A rotor rotatably supported by a housing, a stator having windings fixed to the housing on the outer peripheral side of the rotor and wound around a comb portion provided circumferentially by slots, and the comb portion A rotation control ring provided with a corresponding tooth portion and configured to move relative to the stator to control the magnetic flux between the rotor and the stator, the rotor being rotatably attached to the housing; Permanent magnet member in which a shaft, a magnetically permeable member fixed in an annular shape in the circumferential direction of the rotating shaft, and a plurality of permanent magnet pieces are disposed adjacent to the outer periphery of the magnetically permeable member with an outer peripheral surface formed in an arc surface And a permanent magnet generator having a holding pipe fitted and fixed in contact with the outer peripheral surface of the permanent magnet member to hold the permanent magnet member,
In the holding pipe, a permeable metal plate extending in the longitudinal direction and a non-permeable metal plate extending in the longitudinal direction are alternately arranged in the circumferential direction and joined to each other in the longitudinal direction, and the non-permeable metal plates are adjacent to each other. Are formed in a cylindrical shape so as to be positioned at adjacent boundary portions of the permanent magnet pieces arranged in the same manner, and the width of the magnetically permeable metal plate is substantially twice the width of the non-permeable metal plate. The permeable metal plate covers 65 to 85% of the circumferential width of the permanent magnet piece,
The stator is composed of a comb-like cylindrical member that constitutes an inner stator core and has a comb portion around which the winding is wound, and an outer cylinder member that constitutes an outer stator core fitted to the outer peripheral surface of the inner stator core, The cylindrical member includes a bridge portion that connects the adjacent comb portions, an outer comb portion that is positioned outside the bridge portion and on which the winding is wound up, and an inner portion that is positioned inside the bridge portion and is connected to the magnetic flux control ring. A permanent magnet generator comprising an inner comb portion facing each other .
前記透磁性金属板はフェライト,マルテンサイト系ステンレススチール又は炭素鋼から形成され,前記非透磁性金属板はオーステナイト系ステンレススチールから形成されていることを特徴とする請求項1に記載の永久磁石式発電機。2. The permanent magnet type according to claim 1, wherein the magnetically permeable metal plate is made of ferrite, martensitic stainless steel or carbon steel, and the non-permeable metal plate is made of austenitic stainless steel. Generator. 1つの前記永久磁石片の前記円弧面が対応する前記透磁性金属板は,前記ステータの前記櫛部が3個以上対応して位置し,前記永久磁石部材の磁束が前記透磁性金属板に集まるように構成されていることを特徴とする請求項1又は2に記載の永久磁石式発電機。The magnetically permeable metal plate to which the arc surface of one permanent magnet piece corresponds corresponds to three or more comb portions of the stator so that the magnetic flux of the permanent magnet member gathers on the permeable metal plate. permanent magnet generator according to claim 1 or 2, characterized in that it is configured to. 前記磁束制御リングは,前記歯部が前記ステータの前記櫛部側に位置する周方向に順次配列された前記歯部と前記ロータ側に位置して前記歯部と一体に構成された連続体の円筒部とから形成され,前記櫛部と前記歯部とには周方向両端に実質的に45°のチャンファがそれぞれ施されていることを特徴とする請求項1〜のいずれか1項に記載の永久磁石式発電機。The magnetic flux control ring is a continuous cylinder in which the tooth portions are sequentially arranged in the circumferential direction located on the comb portion side of the stator and the teeth portion located on the rotor side and integrally formed with the tooth portions. The chamfer of 45 degrees is substantially given to the circumferential direction both ends in the said comb part and the said tooth part, respectively, The said comb part and the said tooth part are given, The any one of Claims 1-3 characterized by the above-mentioned. Permanent magnet generator. 前記磁束制御リングは,透磁性の珪素鋼板及び/又はニッケル−鉄系合金板の板材を積層して構成され,前記板材は樹脂材又はセラミックス材の絶縁部材によって互いに接着されていることを特徴とする請求項1〜のいずれか1項に記載の永久磁石式発電機。The magnetic flux control ring is formed by laminating magnetically permeable silicon steel plates and / or nickel-iron alloy plates, and the plates are bonded to each other by an insulating member made of a resin material or a ceramic material. The permanent magnet generator according to any one of claims 1 to 4 . 前記ステータは,前記巻線の占積率をアップさせるため,前記櫛状円筒部材の前記櫛部間の外側開口を通じて前記櫛部に前記巻線を巻き上げた後に,前記櫛状円筒部材の外周面に前記外筒部材を嵌合して構成されていることを特徴とする請求項1〜5のいずれか1項に記載の永久磁石式発電機。In order to increase the space factor of the winding, the stator winds the winding around the comb portion through an outer opening between the comb portions of the comb-shaped cylindrical member, and then on the outer peripheral surface of the comb-shaped cylindrical member. The permanent magnet generator according to any one of claims 1 to 5, wherein an outer tube member is fitted. 前記櫛状円筒部材は,板材を前記ブリッジ部となる部分を残して両側を打ち抜いて前記内側櫛部と前記外側櫛部とから成る前記櫛部を形成し,前記板材を円形に曲げて両端を接合して櫛状円板部材に成形し,前記櫛状円形板部材を多数積層して形成されていることを特徴とする請求項1〜6のいずれか1項に記載の永久磁石式発電機。The comb-shaped cylindrical member is formed by punching a plate material on both sides except for a portion to be the bridge portion to form the comb portion composed of the inner comb portion and the outer comb portion, and bending the plate material into a circular shape and joining both ends. The permanent magnet generator according to any one of claims 1 to 6, wherein the permanent magnet generator is formed by forming a comb-shaped disk member and laminating a plurality of the comb-shaped circular plate members. 前記ステータを構成する前記櫛状円筒部材の前記櫛部と前記櫛部に対応する部分に溝を設けた前記外筒部材との嵌合面には,磁路抵抗を低減するためペースト状の鉄粉が流入埋設されていることを特徴とする請求項1〜7のいずれか1項に記載の永久磁石式発電機。On the fitting surface between the comb portion of the comb-shaped cylindrical member constituting the stator and the outer cylinder member provided with a groove in a portion corresponding to the comb portion, paste-like iron powder is provided to reduce magnetic path resistance. The permanent magnet generator according to claim 1 , wherein the permanent magnet generator is embedded in an inflow.
JP2003025788A 2003-02-03 2003-02-03 Permanent magnet generator Expired - Lifetime JP3825002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025788A JP3825002B2 (en) 2003-02-03 2003-02-03 Permanent magnet generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025788A JP3825002B2 (en) 2003-02-03 2003-02-03 Permanent magnet generator

Publications (2)

Publication Number Publication Date
JP2004242369A JP2004242369A (en) 2004-08-26
JP3825002B2 true JP3825002B2 (en) 2006-09-20

Family

ID=32953986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025788A Expired - Lifetime JP3825002B2 (en) 2003-02-03 2003-02-03 Permanent magnet generator

Country Status (1)

Country Link
JP (1) JP3825002B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101673A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Rotating machine with permanent magnet and method for manufacturing teeth of stator iron core of the same
KR100966605B1 (en) * 2008-10-21 2010-06-29 (주)화인 A cooling system for refrigerator car using permanent magnet type generator with mechanical controller
JP5840253B2 (en) * 2011-12-22 2016-01-06 ヤマハ発動機株式会社 Rotating electrical machine
CN112072809B (en) * 2020-08-24 2022-09-27 清华大学 Permanent magnet rotating armature motor capable of adjusting magnetic field in mechanical mode

Also Published As

Publication number Publication date
JP2004242369A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP4707696B2 (en) Axial gap type motor
US8040008B2 (en) Axial gap motor
JP3737492B2 (en) Magnetic flux control generator
JPH0614772B2 (en) Limited angle torque motor with magnetic centering and stop
CN102651597B (en) Permanent-magnet type electric rotating machine
JP6081304B2 (en) Transverse magnetic flux type rotating electric machine and vehicle
JP3825002B2 (en) Permanent magnet generator
JP3907987B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP3691769B2 (en) Permanent magnet generator / motor with magnetic flux controller
JP4848670B2 (en) Rotor, electric motor, compressor, blower, and air conditioner
JPH07236260A (en) High-output ac generator
JP3490330B2 (en) High torque type electric / generator
JP2004088880A (en) Back surface field type inductor rotating machine
WO2005008864A1 (en) Steering device for vehicle
JP2003164125A (en) Both sided air gap type rotary electric machine
JP4373865B2 (en) Permanent magnet generator
JP3698644B2 (en) Permanent magnet generator / motor flux controller
JP5114135B2 (en) Axial gap type motor
JP3803046B2 (en) Permanent magnet generator / motor installed on a rotating body
JP2010093929A (en) Axial gap-type motor
JP2008118745A (en) Permanent-magnet generator without cogging
JP3628900B2 (en) Electric generators that increase low-speed torque and suppress high-speed torque
JP2007318853A (en) Motor
JP3529746B2 (en) Permanent magnet type generator / motor equipped with an open comb-shaped stator
JP2000261996A (en) High-torque motor generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4