JP5185637B2 - Synchronous generator - Google Patents

Synchronous generator Download PDF

Info

Publication number
JP5185637B2
JP5185637B2 JP2008007592A JP2008007592A JP5185637B2 JP 5185637 B2 JP5185637 B2 JP 5185637B2 JP 2008007592 A JP2008007592 A JP 2008007592A JP 2008007592 A JP2008007592 A JP 2008007592A JP 5185637 B2 JP5185637 B2 JP 5185637B2
Authority
JP
Japan
Prior art keywords
phase
transformer
winding
synchronous generator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008007592A
Other languages
Japanese (ja)
Other versions
JP2008237009A (en
Inventor
信宏 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2008007592A priority Critical patent/JP5185637B2/en
Publication of JP2008237009A publication Critical patent/JP2008237009A/en
Application granted granted Critical
Publication of JP5185637B2 publication Critical patent/JP5185637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Description

本発明は、同期発電機に関し、詳しくは、三相四線式交流同期発電機から三相四線式と単相三線式とを同時に出力可能とした同期発電機に関する。   The present invention relates to a synchronous generator, and more particularly to a synchronous generator capable of simultaneously outputting a three-phase four-wire system and a single-phase three-wire system from a three-phase four-wire AC synchronous generator.

低圧の同期発電機には、様々な負荷に電気を供給するため、三相三線式、三相四線式、単相二線式及び単相三線式の4種類があるが、実用的には、三相四線式と単相三線式とが出力できれば、ほとんどの負荷に電気を供給することが可能である。また、一般に、通常の数10kWクラスの発電機は、同期発電機をエンジンで駆動する可搬型エンジン発電装置が圧倒的に多い。   There are four types of low-voltage synchronous generators for supplying electricity to various loads: three-phase three-wire, three-phase four-wire, single-phase two-wire, and single-phase three-wire. If a three-phase four-wire system and a single-phase three-wire system can be output, electricity can be supplied to most loads. Further, in general, the ordinary tens of kW class generators are predominantly portable engine generators that drive the synchronous generators with the engine.

このような可搬型エンジン発電装置は、工事用やイベント用の仮設電源として様々な場所に移動して使用され、不特定の負荷に電気を供給している。例えば、ポンプやモータ等の電源には三相200Vが使用され、電動工具や事務機等の電源には単相100Vが使用されるため、一般的には、発電機から三相200Vで出力し、負荷側に設けた変圧器で単相100Vに変成することが多く行われているが、この場合は、可搬型エンジン発電装置とは別に変圧器を用意しなければならない。   Such portable engine power generators are used by moving to various places as temporary power sources for construction and events, and supply electricity to unspecified loads. For example, three-phase 200V is used for power sources such as pumps and motors, and single-phase 100V is used for power sources such as electric tools and office machines. In many cases, a transformer provided on the load side is transformed into a single-phase 100 V. In this case, a transformer must be prepared separately from the portable engine power generator.

このようなことから、電機子巻線を分割したり(例えば、特許文献1参照。)、本来の電機子巻線に別の電機子巻線を組み合わせたり(例えば、特許文献2参照。)することによって三相四線式と単相三線式とを同時に出力可能な構造を有する同期発電機が提案されている。
特開2002−335696号公報 特開2004−72985号公報
For this reason, the armature winding is divided (for example, see Patent Document 1), or another armature winding is combined with the original armature winding (for example, see Patent Document 2). Thus, a synchronous generator having a structure capable of simultaneously outputting a three-phase four-wire system and a single-phase three-wire system has been proposed.
JP 2002-335696 A JP 2004-72985 A

しかし、上記両特許文献に記載されたものでは、発電機の製作時に発電機内に単相出力用の電機子巻線をあらかじめ組み込んでおく必要があり、発電機の寸法が大きくなってしまう問題がある。さらに、三相、単相の同時使用は一般的ではないことから、使用する可能性の低い単相出力用の電機子巻線を組み込んでおくことは経済的ではない。また、三相、単相をスイッチで切り替える方式も提案されているが、この場合はスイッチが必要になるだけでなく、三相、単相の同時使用は不可能である。さらに、可搬型発電装置は、不特定多数の使用者によって操作されるため、単純な構造で、操作が簡単なことが望まれている。   However, in the above-mentioned patent documents, it is necessary to incorporate an armature winding for single-phase output in the generator in advance when the generator is manufactured, and there is a problem that the size of the generator increases. is there. Furthermore, since the simultaneous use of three-phase and single-phase is not common, it is not economical to incorporate an armature winding for single-phase output that is unlikely to be used. In addition, a method of switching between three and single phases with a switch has been proposed, but in this case, not only a switch is required, but simultaneous use of three and single phases is impossible. Furthermore, since the portable power generation device is operated by an unspecified number of users, it is desired that the portable power generation device has a simple structure and is easy to operate.

そこで本発明は、三相出力用の同期発電機に簡単な追加改造を行うだけで三相、単相の同時使用を可能とした同期発電機を提供することを目的としている。   Accordingly, an object of the present invention is to provide a synchronous generator that enables simultaneous use of a three-phase and a single phase by simply performing a simple additional modification to the synchronous generator for three-phase output.

上記目的を達成するため、本発明の同期発電機は、三相の電機子巻線(a,b,c)を120度の位相差で中性点(O)にY結線した三相四線式交流同期発電機において、前記三相の電機子巻線(a,b,c)の一つの相の電機子巻線(c)の両端に変圧器(T)の一次巻線(d)の両端を接続するとともに、該変圧器(T)の二次巻線(e)の一端を前記中性点(O)に接続し、前記三相の電機子巻線(a,b,c)の出力端(U,V,W)と中性点(O)とを三相四線式電源とし、同時に前記変圧器(T)の二次巻線(e)の他端(N)と前記三相の電機子巻線(a,b,c)の残りの二つの電機子巻線(a,b)の出力端(U,V)とを単相三線式電源としたことを特徴としている。   In order to achieve the above object, a synchronous generator according to the present invention is a three-phase four-wire in which three-phase armature windings (a, b, c) are Y-connected to a neutral point (O) with a phase difference of 120 degrees. In the AC synchronous generator, the primary winding (d) of the transformer (T) is connected to both ends of the one-phase armature winding (c) of the three-phase armature winding (a, b, c). In addition to connecting both ends, one end of the secondary winding (e) of the transformer (T) is connected to the neutral point (O), and the three-phase armature windings (a, b, c) The output end (U, V, W) and the neutral point (O) serve as a three-phase four-wire power source, and at the same time, the other end (N) of the secondary winding (e) of the transformer (T) and the three The output terminals (U, V) of the remaining two armature windings (a, b) of the phase armature windings (a, b, c) are single-phase three-wire power supplies.

さらに、本発明の同期発電機は、前記変圧器は発電機本体とは別体に形成され、前記変圧器(T)の一次巻線(d)の両端は前記三相の電機子巻線(a,b,c)の一つの相の電機子巻線(c)の両端に、前記変圧器(T)の二次巻線(e)の一端は前記中性点(O)に着脱可能に接続されることを特徴としている。また、前記変圧器(T)の一次電圧と二次電圧との比率が、1:0.5以下に設定され、さらに、前記変圧器は一次電圧と二次電圧との比率が変更可能となっていることを特徴としている。   Further, in the synchronous generator according to the present invention, the transformer is formed separately from the generator body, and both ends of the primary winding (d) of the transformer (T) are connected to the three-phase armature winding ( a, b, c) one end of the armature winding (c) of one phase, one end of the secondary winding (e) of the transformer (T) is detachable from the neutral point (O) It is characterized by being connected. The ratio of the primary voltage to the secondary voltage of the transformer (T) is set to 1: 0.5 or less, and the transformer can change the ratio of the primary voltage to the secondary voltage. It is characterized by having.

本発明の同期発電機によれば、変圧器の一次巻線及び一次巻線を発電機の中性点及び一つの出力点にそれぞれ接続するだけで三相、単相の同時使用が可能となる。したがって、発電機の製作時に発電機内に単相出力用の電機子巻線をあらかじめ組み込んでおく必要がないので発電機自体が大型化することはない。また、変圧器接続用の端子だけをあらかじめ設けておくことにより、必要に応じて変圧器を着脱することができ、使用場所に応じた対応が可能となる。さらに、一次電圧と二次電圧との比率は1:0.5が基本となるが、この比率を、例えば1:0.25に設定することにより、変圧器を小型化することができる。   According to the synchronous generator of the present invention, three-phase and single-phase simultaneous use is possible only by connecting the primary winding and primary winding of the transformer to the neutral point and one output point of the generator, respectively. . Therefore, since it is not necessary to previously incorporate an armature winding for single-phase output in the generator when the generator is manufactured, the generator itself does not increase in size. Moreover, by providing only the terminals for connecting the transformer in advance, the transformer can be attached and detached as necessary, and it is possible to cope with the place of use. Furthermore, the ratio between the primary voltage and the secondary voltage is basically 1: 0.5. By setting this ratio to, for example, 1: 0.25, the transformer can be reduced in size.

図1は本発明の同期発電機の一形態例を示す電機子巻線部分の結線図、図2は同期発電機を駆動したときの電圧ベクトル図、図3は変圧器の巻線の状態を示す結線図、図4は同期発電機全体の回路図、図5は可搬型エンジン発電装置への適用例を示す説明図、図6は変圧器の一次電圧と二次電圧との比率を1:0.25に設定したときの電圧ベクトル図、図7は変圧器の電圧比率を変えたときの位相と単相出力の理論的な推移を示す図である。   FIG. 1 is a wiring diagram of an armature winding portion showing an embodiment of a synchronous generator of the present invention, FIG. 2 is a voltage vector diagram when the synchronous generator is driven, and FIG. 3 is a state of a winding of a transformer. 4 is a circuit diagram of the entire synchronous generator, FIG. 5 is an explanatory diagram showing an application example to a portable engine power generator, and FIG. 6 shows the ratio of the primary voltage to the secondary voltage of the transformer 1: FIG. 7 is a diagram showing the theoretical transition of the phase and the single-phase output when the voltage ratio of the transformer is changed.

この同期発電機は、同一巻数の三相の電機子巻線a,b,cを120度の位相差で中性点OにY結線した三相四線式交流同期発電機であって、前記三相の電機子巻線a,b,cの内の一つの相の電機子巻線cの両端に、変圧器Tを構成する一次巻線dの両端を接続するとともに、該変圧器Tを構成する二次巻線eの一端を前記中性点Oに接続している。 このように結線した同期発電機をエンジン等で駆動することにより、図2に示すように、前記三相の電機子巻線a,b,cの出力端U,V,Wに向かって電圧ベクトルUv,Vv,Wvが発生し、出力端U,V,W及び中性点Oが三相四線式の電力を出力する電源となる。同時に、変圧器Tを構成する一次巻線dには一次電圧E1が印加され、前記変圧器Tの二次巻線eには二次電圧E2が発生することで、二次巻線eの他端(出力端)Nと前記三相の電機子巻線a,b,cの残りの二つの電機子巻線a,bの出力端U,Vとの間に電圧ベクトルUv,Vv,E2が発生し、単相三線式の電力を出力する電源となる。例えば、図1に示すように、出力端U,V間が200Vの場合、二次巻線eの出力端Nが単相三線式の中性点となって出力端U,N間及び出力端N,V間は、理論的にはそれぞれ100Vの電圧となる。   The synchronous generator is a three-phase four-wire AC synchronous generator in which three-phase armature windings a, b, and c having the same number of turns are Y-connected to a neutral point O with a phase difference of 120 degrees. Both ends of the primary winding d constituting the transformer T are connected to both ends of the armature winding c of one phase of the three-phase armature windings a, b, c, and the transformer T One end of the secondary winding e to be configured is connected to the neutral point O. By driving the synchronous generator thus connected with an engine or the like, as shown in FIG. 2, a voltage vector is directed toward the output terminals U, V, W of the three-phase armature windings a, b, c. Uv, Vv, and Wv are generated, and the output terminals U, V, and W and the neutral point O serve as a power source that outputs three-phase four-wire power. At the same time, a primary voltage E1 is applied to the primary winding d constituting the transformer T, and a secondary voltage E2 is generated in the secondary winding e of the transformer T. Voltage vectors Uv, Vv, E2 are provided between the end (output end) N and the output ends U, V of the remaining two armature windings a, b of the three-phase armature windings a, b, c. It generates and becomes a power source that outputs single-phase three-wire power. For example, as shown in FIG. 1, when the output terminals U and V are 200 V, the output terminal N of the secondary winding e becomes a neutral point of a single-phase three-wire system and between the output terminals U and N and the output terminal The voltage between N and V is theoretically 100V.

変圧器Tは、図3に示すように、直列に配置した一次巻線dと二次巻線eとの間に中性点Oを接続し、一次巻線dの先端に電機子巻線cの出力端Wを接続した回路で形成できるので、同期発電機への変圧器Tの組み込みは、図4に示すように、同期発電機本体11の中性点Oから引き出した配線12を一次巻線dと二次巻線eとの間に接続し、同期発電機の一つの出力Wを一次巻線dの先端に接続するとともに、二次巻線eの先端からの配線13に対して同期発電機からの他の二つの出力U,Vに接続した配線14,15を組み合わせるだけで三相、単相の同時使用が可能となる。また、単相出力U,N,Vの回路には、三相出力U,V,Wに設けられている過電流保護用のMCCB(配線用遮断器)−Tと同様にMCCB−Sが設けられている。   As shown in FIG. 3, the transformer T has a neutral point O connected between a primary winding d and a secondary winding e arranged in series, and an armature winding c is connected to the tip of the primary winding d. As shown in FIG. 4, the primary winding of the wiring 12 drawn from the neutral point O of the synchronous generator main body 11 is used to incorporate the transformer T into the synchronous generator. Connected between the line d and the secondary winding e, one output W of the synchronous generator is connected to the tip of the primary winding d, and synchronized with the wiring 13 from the tip of the secondary winding e. Three-phase and single-phase simultaneous use is possible only by combining the wirings 14 and 15 connected to the other two outputs U and V from the generator. Further, the MCCB-S is provided in the circuit of the single-phase outputs U, N, V in the same manner as the MCCB (circuit breaker for wiring) -T provided for the three-phase outputs U, V, W. It has been.

このように、変圧器Tは、同期発電機本体11から引き出した配線に接続するだけで単相出力用として機能することから、通常の三相四線式交流同期発電機を使用した三相出力の一般的な可搬型エンジン発電装置においても、変圧器Tを追加改造することによって三相、単相の同時使用が可能となる。   Thus, since the transformer T functions as a single-phase output only by connecting to the wiring drawn out from the synchronous generator main body 11, a three-phase output using a normal three-phase four-wire AC synchronous generator. In the general portable engine power generation apparatus, three-phase and single-phase simultaneous use is possible by additionally remodeling the transformer T.

例えば、図5に示すように、エンジン21、ラジエータ21a、同期発電機22、燃料タンク23,AVRを含む制御装置24等をケーシング25内に収納した可搬型エンジン発電装置26では、比較的余裕のある中央部の上部空間に、支持台27に載置した状態で変圧器Tを設置し、必要な配線を接続するだけで三相、単相を同時使用可能な可搬型エンジン発電装置とすることができる。このとき追加が必要な配線は、同期発電機22から引き出されている三相四線式の出力配線から分岐した配線と、配線用遮断器及び出力端子を備えた単相三線式の出力配線だけであり、発電機本体内部や制御装置の改造はまったく行う必要はなく、出力切替用のスイッチも必要としないので、極めて簡単に追加改造を行うことができる。また、変圧器Tを取り外して三相出力専用として再使用することも容易に行える。   For example, as shown in FIG. 5, the portable engine power generator 26 in which the engine 21, the radiator 21 a, the synchronous generator 22, the fuel tank 23, the control device 24 including the AVR, etc. are housed in the casing 25 has a relatively large margin. A portable engine power generator capable of using three phases and a single phase at the same time by installing a transformer T in an upper space in a central portion while being placed on a support stand 27 and connecting necessary wiring. Can do. The only wiring that needs to be added at this time is a wiring branched from the three-phase four-wire output wiring drawn from the synchronous generator 22, and a single-phase three-wire output wiring having a circuit breaker and an output terminal. Therefore, it is not necessary to modify the generator main body or the control device at all, and since no switch for output switching is required, additional modification can be performed very easily. Further, the transformer T can be removed and reused exclusively for three-phase output.

さらに、図6に示すように、変圧器Tを収納した変圧器盤31を可搬型エンジン発電装置32のボンネット外表面に設置したり、図7に示すように、可搬型エンジン発電装置32から離れた建物33の壁面等に変圧器Tを収納した変圧器盤31を設置することも可能である。これらの場合においても、同期発電機から引き出されている三相四線式の出力配線から分岐した配線と、配線用遮断器及び出力端子を備えた単相三線式の出力配線を追加するだけでよく、内部空間に変圧器Tを収納する空間が得られない可搬型エンジン発電装置や、三相、単相同時使用の機能を有していない可搬型エンジン発電装置を使用現場で改造する場合に有効である。   Further, as shown in FIG. 6, a transformer panel 31 containing the transformer T is installed on the outer surface of the hood of the portable engine power generator 32, or away from the portable engine power generator 32 as shown in FIG. It is also possible to install a transformer panel 31 containing the transformer T on the wall surface of the building 33. In these cases, just add the wiring branched from the three-phase four-wire output wiring drawn from the synchronous generator, and the single-phase three-wire output wiring with the circuit breaker and output terminal. Well, when remodeling a portable engine power generator that does not have enough space to store the transformer T in the internal space or a portable engine power generator that does not have the function of three-phase or single-phase simultaneous use at the site of use. It is valid.

また、変圧器Tにおける一次電圧E1と二次電圧E2との比率mは、m=1:0.5が基本であり、例えば、図1に示すように、三相出力が200Vに場合には、m=1:0.5として100Vのベクトル線を完全に一致させ、理論的に単相出力を100Vにすることが基本であるが、図8に示すように、m=1:0.25に設定して二次電圧E2を低くすると、100Vのベクトル線が完全に一致せず、単相出力が104Vになるが、実用上はまったく問題はなく、二次電圧E2を低くすることによって変圧器Tの二次巻線eの巻数を減らすことができ、変圧器Tの小型化及びコストダウンを図ることができる。前記比率mを変えたときの位相と単相出力の理論的な推移を図9に示す。このように、単相出力を供給する負荷の状態に応じて比率mを変更することにより、適切な大きさの変圧器を選択することができる。   Further, the ratio m between the primary voltage E1 and the secondary voltage E2 in the transformer T is basically m = 1: 0.5. For example, as shown in FIG. 1, when the three-phase output is 200V, , M = 1: 0.5, and 100V vector lines are completely matched to theoretically set the single-phase output to 100V. However, as shown in FIG. 8, m = 1: 0.25. If the secondary voltage E2 is set low and the vector line of 100V does not match completely, the single-phase output becomes 104V, but there is no problem in practical use, and the voltage is transformed by reducing the secondary voltage E2. The number of turns of the secondary winding e of the transformer T can be reduced, and the transformer T can be reduced in size and cost. FIG. 9 shows the theoretical transition of the phase and the single-phase output when the ratio m is changed. Thus, a transformer having an appropriate size can be selected by changing the ratio m in accordance with the state of the load that supplies the single-phase output.

本発明の同期発電機の一形態例を示す電機子巻線部分の結線図である。It is a connection diagram of the armature winding part which shows one example of a synchronous generator of the present invention. 同期発電機を駆動したときの電圧ベクトル図である。It is a voltage vector diagram when a synchronous generator is driven. 変圧器の巻線の状態を示す結線図である。It is a connection diagram which shows the state of the coil | winding of a transformer. 同期発電機全体の回路図である。It is a circuit diagram of the whole synchronous generator. 可搬型エンジン発電装置に適用した第1形態例を示す説明図である。It is explanatory drawing which shows the 1st form example applied to the portable engine electric power generating apparatus. 可搬型エンジン発電装置に適用した第2形態例を示す説明図である。It is explanatory drawing which shows the 2nd form example applied to the portable engine electric power generating apparatus. 可搬型エンジン発電装置に適用した第3形態例を示す説明図である。It is explanatory drawing which shows the 3rd form example applied to the portable engine electric power generating apparatus. 変圧器の一次電圧と二次電圧との比率を1:0.25に設定したときの電圧ベクトル図である。It is a voltage vector figure when the ratio of the primary voltage of a transformer and a secondary voltage is set to 1: 0.25. 変圧器の電圧比率を変えたときの位相と単相出力の理論的な推移を示す図である。It is a figure which shows the theoretical transition of a phase when changing the voltage ratio of a transformer, and a single phase output.

符号の説明Explanation of symbols

11…同期発電機本体、21…エンジン、22…同期発電機、23…燃料タンク、24…制御装置、25…ケーシング、26…可搬型エンジン発電装置、27…支持台、31…変圧器盤、32…可搬型エンジン発電装置、33…建物、a,b,c…電機子巻線、d…一次巻線、e…二次巻線、E1,E2,Uv,Vv,Wv…電圧ベクトル、O…中性点、T…変圧器   DESCRIPTION OF SYMBOLS 11 ... Synchronous generator main body, 21 ... Engine, 22 ... Synchronous generator, 23 ... Fuel tank, 24 ... Control device, 25 ... Casing, 26 ... Portable engine power generator, 27 ... Support stand, 31 ... Transformer board, 32 ... Portable engine power generator, 33 ... Building, a, b, c ... Armature winding, d ... Primary winding, e ... Secondary winding, E1, E2, Uv, Vv, Wv ... Voltage vector, O ... Neutral point, T ... Transformer

Claims (4)

三相の電機子巻線(a,b,c)を120度の位相差で中性点(O)にY結線した三相四線式交流同期発電機において、前記三相の電機子巻線(a,b,c)の一つの相の電機子巻線(c)の両端に変圧器(T)の一次巻線(d)の両端を接続するとともに、該変圧器(T)の二次巻線(e)の一端を前記中性点(O)に接続し、前記三相の電機子巻線(a,b,c)の出力端(U,V,W)と中性点(O)とを三相四線式電源とし、同時に前記変圧器(T)の二次巻線(e)の他端(N)と前記三相の電機子巻線(a,b,c)の残りの二つの電機子巻線(a,b)の出力端(U,V)とを単相三線式電源としたことを特徴とする同期発電機。   In a three-phase four-wire AC synchronous generator in which a three-phase armature winding (a, b, c) is Y-connected to a neutral point (O) with a phase difference of 120 degrees, the three-phase armature winding Both ends of the primary winding (d) of the transformer (T) are connected to both ends of the armature winding (c) of one phase of (a, b, c), and the secondary of the transformer (T) One end of the winding (e) is connected to the neutral point (O), and the output end (U, V, W) of the three-phase armature winding (a, b, c) and the neutral point (O ) Is a three-phase four-wire power source, and at the same time, the other end (N) of the secondary winding (e) of the transformer (T) and the rest of the three-phase armature windings (a, b, c) A synchronous generator characterized in that the output terminals (U, V) of the two armature windings (a, b) are single-phase three-wire power sources. 前記変圧器は発電機本体とは別体に形成され、前記変圧器(T)の一次巻線(d)の両端は前記三相の電機子巻線(a,b,c)の一つの相の電機子巻線(c)の両端に、前記変圧器(T)の二次巻線(e)の一端は前記中性点(O)に着脱可能に接続されることを特徴とする請求項1記載の同期発電機。   The transformer is formed separately from the generator body, and both ends of the primary winding (d) of the transformer (T) are one phase of the three-phase armature windings (a, b, c). An end of the secondary winding (e) of the transformer (T) is detachably connected to the neutral point (O) at both ends of the armature winding (c) of the transformer. The synchronous generator according to 1. 前記変圧器(T)の一次電圧と二次電圧との比率が、1:0.5以下に設定されていることを特徴とする請求項1又は2記載の同期発電機。   The synchronous generator according to claim 1 or 2, wherein a ratio of a primary voltage and a secondary voltage of the transformer (T) is set to 1: 0.5 or less. 前記変圧器は一次電圧と二次電圧との比率が変更可能となっていることを特徴とする請求項3記載の同期発電機。   The synchronous generator according to claim 3, wherein the transformer can change a ratio of a primary voltage and a secondary voltage.
JP2008007592A 2007-02-19 2008-01-17 Synchronous generator Expired - Fee Related JP5185637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007592A JP5185637B2 (en) 2007-02-19 2008-01-17 Synchronous generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007037871 2007-02-19
JP2007037871 2007-02-19
JP2008007592A JP5185637B2 (en) 2007-02-19 2008-01-17 Synchronous generator

Publications (2)

Publication Number Publication Date
JP2008237009A JP2008237009A (en) 2008-10-02
JP5185637B2 true JP5185637B2 (en) 2013-04-17

Family

ID=39909114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007592A Expired - Fee Related JP5185637B2 (en) 2007-02-19 2008-01-17 Synchronous generator

Country Status (1)

Country Link
JP (1) JP5185637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575424B2 (en) * 2009-06-12 2014-08-20 日本車輌製造株式会社 Synchronous generator
JP3179015U (en) * 2012-07-31 2012-10-11 三協フロンテア株式会社 Portable generator with transformer for assembly house
JP5685335B1 (en) * 2014-04-04 2015-03-18 北越工業株式会社 AC generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181157A (en) * 1984-09-25 1986-04-24 Fukuo Shibata Structure of rotary electric machine
JPH01264552A (en) * 1988-04-13 1989-10-20 Nippon Sharyo Seizo Kaisha Ltd Synchronous generator
JPH04275011A (en) * 1991-02-28 1992-09-30 Toshiba Corp Forced-air-cooled isolated phase bus-bar
JP4767435B2 (en) * 2001-05-10 2011-09-07 日本車輌製造株式会社 Generator
JP2003088190A (en) * 2001-09-13 2003-03-20 Meidensha Corp Power generating facility
JP3839738B2 (en) * 2002-03-07 2006-11-01 フジセラテック株式会社 Self-voltage controlled permanent magnet generator
JP2003333814A (en) * 2002-05-16 2003-11-21 Nippon Sharyo Seizo Kaisha Ltd Setting-changeable generator
JP2006049731A (en) * 2004-08-09 2006-02-16 Hitachi Industrial Equipment Systems Co Ltd Transformer
JP4780966B2 (en) * 2005-01-20 2011-09-28 デンヨー株式会社 Generator

Also Published As

Publication number Publication date
JP2008237009A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US7863868B2 (en) Generator with quadrature AC excitation
US9570913B2 (en) Generator for producing electric power
JP2002051592A (en) Synchronous generator having auxiliary power winding and variable frequency power source and its using method
JP2000217275A (en) Centralized power feeding apparatus for ship
RU2315413C2 (en) Power matching system for turbine motor-generator (modifications) and methods for control of motor-generator
CA3026901C (en) Brushless starter/generator
CN106936269A (en) Polyphase machine and application method
US7990115B2 (en) High frequency generator without rotating diode rectifier
JP5185637B2 (en) Synchronous generator
JP2009044836A (en) Power supply system for shipping
JP5209973B2 (en) Synchronous generator
JP5395394B2 (en) Generator series connection device
JP4780966B2 (en) Generator
JP5575424B2 (en) Synchronous generator
KR20170046619A (en) How to produce electricity 24 hours a day without pollution and fossil fuel
JP2011239487A (en) Synchronous generator
JP2008187855A (en) Output circuit for distributed power supply generator
JPH0960575A (en) Wind power generating facility
RU2713488C1 (en) Propellant electrical installation
JP6732834B2 (en) Generator
JP2008061483A (en) Three-phase power generation method by new energy and reactive power generation method for assisting this method
JP2010051067A (en) Power generator
JP2003299390A (en) Electric power unit for driving three-phase ac motor
JP2018026902A (en) Power distribution system
JP4666647B2 (en) Power recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees