JP2008187855A - Output circuit for distributed power supply generator - Google Patents

Output circuit for distributed power supply generator Download PDF

Info

Publication number
JP2008187855A
JP2008187855A JP2007020861A JP2007020861A JP2008187855A JP 2008187855 A JP2008187855 A JP 2008187855A JP 2007020861 A JP2007020861 A JP 2007020861A JP 2007020861 A JP2007020861 A JP 2007020861A JP 2008187855 A JP2008187855 A JP 2008187855A
Authority
JP
Japan
Prior art keywords
output
distributed power
individual
voltage
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020861A
Other languages
Japanese (ja)
Inventor
Tsutomu Isaka
勉 井坂
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007020861A priority Critical patent/JP2008187855A/en
Publication of JP2008187855A publication Critical patent/JP2008187855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an output circuit for a distributed power supply generator that achieves a price reduction of a distributed power supply generator without using an expensive converter while reducing standby electricity and electric loss when converting a DC output voltage into an arbitrary DC voltage. <P>SOLUTION: The output circuit for a distributed power supply generator rectifies a plurality of AC outputs of a permanent magnet generator by individual commutators so as to output each AC output to the outside while adding DC output of each individual commutator to each AC output. The permanent-magnet generator is composed of a plurality of windings that generate different induced-voltage actual values by being driven by a windmill or a waterwheel. Each individual transformer is respectively connected between each of the plurality of windings and each individual commutator. Each voltage of the plurality of windings is converted into an arbitrary voltage so as to output it to the outside while adding the DC output of each individual commutator to the arbitrary voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風車又は水車により駆動される永久磁石型発電機から、風速又は流速に関わらず、風又は水より得られる概略の最大出力を取り出す分散電源用発電装置の出力回路に関し、特に、永久磁石型発電機よりPWMコンバータを用いずに定電圧充電を行う分散電源用発電装置の出力回路に関するものである。   The present invention relates to an output circuit of a power generator for a distributed power source that extracts an approximate maximum output obtained from wind or water, regardless of wind speed or flow velocity, from a permanent magnet generator driven by a wind turbine or water turbine. The present invention relates to an output circuit of a power generator for a distributed power source that performs constant voltage charging without using a PWM converter from a magnet generator.

本出願人は先に、風車又は水車に接続された永久磁石型発電機より、PWMコンバータを用いずに交流を直流に変換して概略の最大出力を取り出すために、永久磁石型発電機の異なる誘起電圧を発生する複数の巻線の交流出力端子に各リアクトルを経て直列に各整流器を接続し、これらの整流器の直流出力を並列接続して外部に出力する分散電源用発電装置について提案している(例えば、特許文献1参照。)。   In order to obtain an approximate maximum output from a permanent magnet generator connected to a windmill or a water turbine without using a PWM converter, the present applicant firstly uses a different permanent magnet generator. Proposing a distributed power generator that connects rectifiers in series via each reactor to the AC output terminals of multiple windings that generate induced voltage, and outputs the rectifier's DC output in parallel. (For example, refer to Patent Document 1).

かかる先願技術を、図6の風車に接続された分散電源用発電装置を示す主回路結線図を参照して詳述する。
図6において、1は風車、2は先願技術の分散電源用発電装置、3は永久磁石型発電機、4、5は第1および第2のリアクトル、8、9は第1および第2の整流器、10はバッテリ、11は負荷である。
図6においては、永久磁石型発電機3は、2種類の巻数を有し、各巻線が3相の場合を示している。
The prior application technique will be described in detail with reference to a main circuit connection diagram showing a power generator for a distributed power source connected to the wind turbine of FIG.
In FIG. 6, 1 is a windmill, 2 is a power generator for distributed power supply of the prior application, 3 is a permanent magnet generator, 4, 5 are first and second reactors, and 8 and 9 are first and second reactors. A rectifier, 10 is a battery, and 11 is a load.
FIG. 6 shows a case where the permanent magnet generator 3 has two types of windings and each winding has three phases.

図6において、永久磁石型発電機3の巻数が少ないために誘起電圧実効値の低い第1の巻線の交流出力端子W1は、第1のリアクトル4に接続され、さらに第1の整流器8に接続される。
巻数が多い第2の巻線の交流出力端子W2は、第2のリアクトル5に接続され、さらに第2の整流器9に接続される。
上記第1、第2の整流器8、9の各々の直流側は、並列接続され、各巻線の合計出力がバッテリ10に充電される。
In FIG. 6, since the number of turns of the permanent magnet generator 3 is small, the AC output terminal W <b> 1 of the first winding having a low induced voltage effective value is connected to the first reactor 4, and further to the first rectifier 8. Connected.
The AC output terminal W2 of the second winding having a large number of turns is connected to the second reactor 5 and further connected to the second rectifier 9.
The direct current sides of the first and second rectifiers 8 and 9 are connected in parallel, and the total output of each winding is charged in the battery 10.

このように構成される分散電源用発電装置2より、概略の風車最大出力を得る方法を以下に示す。
図3は、風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明した図である。
風車は、風車の形状及び風速Uが決まると、風車回転数Nに対する風車出力Pが一義的に定まる。例えば、風速Ux及びUyに対する風車出力Pは、それぞれ図3のように示される。そして、種々の風速に対する風車出力Pのピークは、図3に示す最大出力曲線Ptのようになる。
すなわち、図3の風車回転数対風車出力の特性において、風速がUxの時は、風速Uxの風車出力曲線と最大出力曲線との交点Sxに示すように、風車回転数Nxにおいて、風車最大出力Pxとなる。
又、風速がUyの時は、風車回転数Nyにおいて、風速Uyでの風車最大出力Pyとなる。
A method of obtaining a rough maximum wind turbine output from the power generator 2 for a distributed power source configured as described above will be described below.
FIG. 3 is a diagram for explaining the outline of the wind turbine rotation speed versus the wind turbine output characteristic when the wind speed is used as a parameter.
When the shape of the windmill and the wind speed U are determined, the windmill output P with respect to the windmill rotation speed N is uniquely determined. For example, the wind turbine output P with respect to the wind speeds Ux and Uy is shown as in FIG. And the peak of the windmill output P with respect to various wind speeds becomes like the maximum output curve Pt shown in FIG.
That is, when the wind speed is Ux in the characteristics of the wind turbine rotational speed versus the wind turbine output in FIG. 3, the wind turbine maximum output is obtained at the wind turbine rotational speed Nx as indicated by the intersection Sx of the wind turbine output curve of the wind speed Ux and the maximum output curve. Px.
When the wind speed is Uy, the windmill maximum output Py at the wind speed Uy is obtained at the windmill rotational speed Ny.

すなわち、図3の最大出力曲線の見方を変えると、風から最大出力を得るためには、風車回転数Nが決まると、その時の永久磁石型発電機3の出力Pを一義的に、最大出力曲線Pt上の値に定めれば良いことを表している。   That is, when the way of viewing the maximum output curve in FIG. 3 is changed, in order to obtain the maximum output from the wind, when the wind turbine rotation speed N is determined, the output P of the permanent magnet generator 3 at that time is uniquely determined as the maximum output. This indicates that the value may be determined on the curve Pt.

図4は、先願技術が対象とする分散電源用発電装置2の直流出力をバッテリ等の定電圧源に接続した場合の説明図であり、分散電源用発電装置2の永久磁石型発電機3の第1、第2の巻線の各出力は、各巻線の誘起電圧実効値の違い、及び各巻線内部インダクタンスと各出力端子に接続されるリアクトルによる電圧降下によって、図4の風車回転数対出力特性に示すP1、P2のようになる。   FIG. 4 is an explanatory diagram in the case where the DC output of the distributed power generator 2 targeted by the prior application technology is connected to a constant voltage source such as a battery, and the permanent magnet generator 3 of the distributed power generator 2. The output of the first and second windings of FIG. 4 depends on the difference in the effective value of the induced voltage of each winding and the voltage drop due to the internal inductance of each winding and the reactor connected to each output terminal. P1 and P2 shown in the output characteristics are obtained.

すなわち、風車回転数Nが低い場合には、永久磁石型発電機3内の第1および第2の巻線の発生電圧がバッテリ電圧Vbより低いために、バッテリ10には充電されない。
しかし、風車回転数Nが上昇して、N2付近になると、第2の巻線に電流が流れ始め、風車回転数Nの上昇と共に電流が上昇し、第2の巻線による出力はP2のようになる。
この時、風車回転数Nが上昇して誘起電圧が上昇しても、バッテッリ電圧は、ほぼ一定であるが、第2の巻線のインダクタンスおよび第2のリアクトル5によるインピーダンスが周波数に比例するために、出力P2は漸増するに留まる。
第1の巻線については、さらに回転数Nが上昇することにより出力が取れ始め、第1の巻線の内部インダクタンスおよび第1のリアクトル4が小さいために大きな出力が取れる。
That is, when the wind turbine rotational speed N is low, the voltage generated in the first and second windings in the permanent magnet generator 3 is lower than the battery voltage Vb, so the battery 10 is not charged.
However, when the wind turbine rotational speed N rises and becomes near N2, the current starts to flow through the second winding, and the current increases as the wind turbine rotational speed N increases, and the output from the second winding is P2. become.
At this time, even if the wind turbine rotation speed N increases and the induced voltage increases, the battery voltage is substantially constant, but the inductance of the second winding and the impedance of the second reactor 5 are proportional to the frequency. At the same time, the output P2 only increases gradually.
With respect to the first winding, output begins to be obtained as the rotational speed N further increases, and a large output can be obtained because the internal inductance of the first winding and the first reactor 4 are small.

図5は、先願が対象とする分散電源用発電装置のバッテリ等の定電圧源への出力を示す図である。
永久磁石型発電機3内の第1、第2の巻線の出力P1、P2を加算して得られる合計出力は近似出力曲線Psとなる。
特開2004−64928(図1)
FIG. 5 is a diagram showing an output to a constant voltage source such as a battery of the distributed power generation device targeted by the prior application.
The total output obtained by adding the outputs P1 and P2 of the first and second windings in the permanent magnet generator 3 is an approximate output curve Ps.
JP 2004-64928 (FIG. 1)

以上のような分散電源用発電装置2において、負荷側の直流電圧が分散電源用発電装置2により定電圧充電された直流電圧よりも高い直流電圧、または低い直流電圧で消費する場合、従来は、図2に示すように変換装置12、例えばDC/DCコンバータなどを接続し、消費する負荷の直流電圧に変換を行っていた。しかし、DC/DCコンバータを接続することにより、DC/DCコンバータ内部の制御回路の待機電力等による損失が発生する。また、高価なDC/DCコンバータのような変換装置12を用いることにより、分散電源用発電装置の価格が上昇するという問題があった。   In the distributed power generator 2 as described above, when the DC voltage on the load side is consumed at a DC voltage higher or lower than the DC voltage charged at a constant voltage by the distributed power generator 2, conventionally, As shown in FIG. 2, a converter 12 such as a DC / DC converter is connected to perform conversion into a DC voltage of a consumed load. However, by connecting the DC / DC converter, a loss due to standby power of the control circuit inside the DC / DC converter occurs. In addition, there is a problem that the price of the power generator for the distributed power source increases by using the converter 12 such as an expensive DC / DC converter.

本発明は上記事情に鑑みなされたものであって、主として、その目的とするところは、分散電源用発電装置の出力回路において、直流出力電圧を任意の直流電圧に変換する際に、待機電力および電気損失を減少させるとともに、高価な変換装置を使用せず、分散電源用発電装置の価格を低下させることのできる分散電源用発電装置の出力回路を提供することにある。   The present invention has been made in view of the above circumstances. The main object of the present invention is to provide standby power and power when converting a DC output voltage to an arbitrary DC voltage in an output circuit of a power generator for a distributed power supply. An object of the present invention is to provide an output circuit for a power generator for a distributed power source that can reduce the electric loss and reduce the price of the power generator for the distributed power source without using an expensive converter.

従って、本発明では、風車又は水車により駆動されて、異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の複数の交流出力を、個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する分散電源用発電装置の出力回路において、前記複数の巻線と前記個別の整流器の間に個別の変圧器を接続し、前記複数の巻線の電圧を任意の電圧に変換し、前記個別の整流器の直流出力を加算して外部に出力するものである。   Therefore, in the present invention, a plurality of AC outputs of a permanent magnet type generator configured by a plurality of windings driven by a wind turbine or a water turbine to generate different induced voltage effective values are rectified by individual rectifiers, In the output circuit of the power generator for a distributed power source that adds the DC outputs of the individual rectifiers and outputs them to the outside, an individual transformer is connected between the plurality of windings and the individual rectifiers, and the plurality of windings Is converted into an arbitrary voltage, and the DC outputs of the individual rectifiers are added and output to the outside.

分散電源用発電装置の直流電圧の変換において、待機電力および電気損失を減少させ、出力を増加させるとともに、分散電源用発電装置の価格を低下させることのできる分散電源用発電装置の出力回路を提供することができる。また、永久磁石型発電機およびリアクトルの設計変更を行うことなく、分散電源用発電装置の直流電圧を任意の電圧に変換でき、分散電源用発電装置の汎用性を高めることができる。   Provided an output circuit for a distributed power generator that can reduce standby power and electrical loss, increase output, and reduce the price of the distributed power generator for DC voltage conversion of the distributed power generator can do. In addition, the DC voltage of the distributed power generator can be converted into an arbitrary voltage without changing the design of the permanent magnet generator and the reactor, and the versatility of the distributed power generator can be improved.

異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の複数の交流出力を、個別のリアクトルを通して、個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する分散電源用発電装置の出力回路において、前記個別のリアクトルと前記個別の整流器の間に個別の変圧器を接続し、前記複数の巻線の電圧を任意の電圧に変換し、前記個別の整流器の直流出力を加算して外部に出力するものである。   Multiple AC outputs of a permanent magnet generator composed of multiple windings that generate different induced voltage effective values are rectified by individual rectifiers through individual reactors, and the DC outputs of the individual rectifiers are added. In the output circuit of the distributed power generator that outputs to the outside, an individual transformer is connected between the individual reactor and the individual rectifier, and the voltages of the plurality of windings are converted into arbitrary voltages, The DC outputs of the individual rectifiers are added and output to the outside.

図1は、本発明の、風車又は水車より直流出力を得る分散電源用発電装置の出力回路を説明するための図である。
同図において、20は本発明の分散電源用発電装置、6および7は第1および第2の変圧器であり、図6と同一番号は同一構成部品を表す。
以下、図1について説明する。
FIG. 1 is a diagram for explaining an output circuit of a power generator for a distributed power source that obtains a DC output from a wind turbine or a water turbine according to the present invention.
In the figure, reference numeral 20 denotes a power generator for a distributed power source according to the present invention, reference numerals 6 and 7 denote first and second transformers, and the same reference numerals as those in FIG.
Hereinafter, FIG. 1 will be described.

巻数の多い第2の巻線の交流出力端子W2には、第2のリアクトル5および第2の変圧器7が接続され、さらに第2の整流器9が直列に接続される。巻数の少ない第1の巻線の交流出力端子W1には、第1のリアクトル4および第1の変圧器6が接続され、さらに第1の整流器8が直列に接続される。第1の整流器8、第2の整流器9の合計直流出力がバッテリ10に充電される。
ここで、第1および第2の変圧器6および7は、第1および第2の巻線間の影響を無くすために絶縁変圧器で構成される。
The second reactor 5 and the second transformer 7 are connected to the AC output terminal W2 of the second winding having a large number of turns, and further the second rectifier 9 is connected in series. The first reactor 4 and the first transformer 6 are connected to the AC output terminal W1 of the first winding with a small number of turns, and further the first rectifier 8 is connected in series. The battery 10 is charged with the total DC output of the first rectifier 8 and the second rectifier 9.
Here, the first and second transformers 6 and 7 are constituted by insulating transformers in order to eliminate the influence between the first and second windings.

ここで、第1の巻線に接続させる第1の変圧器6と第2の巻線に接続される第2の変圧器7は、整流後充電されるバッテリ等の直流出力電圧と整合するように設計される。
すなわち、例えば第1および第2の変圧器6および7が無い状態では、バッテリ電圧12Vに充電するように分散電源用発電装置2が設計されているとすると、バッテリ電圧24Vに充電するためには第1および第2の変圧器6および7の変圧比を1:2にすれば、同様に風車より概略の最大出力を得ることができる。
さらに、永久磁石型発電機の出力電圧は回転数に比例するので、変圧器の入力周波数が小さい場合でも変圧器の磁束が飽和することはない。従って、小型の変圧器で構成できる。
Here, the first transformer 6 connected to the first winding and the second transformer 7 connected to the second winding are matched with a DC output voltage of a battery or the like to be charged after rectification. Designed to.
That is, for example, in a state where the first and second transformers 6 and 7 are not provided, if the distributed power generator 2 is designed to be charged to the battery voltage 12V, in order to charge the battery voltage 24V, If the transformation ratio of the first and second transformers 6 and 7 is 1: 2, an approximate maximum output can be obtained from the wind turbine as well.
Furthermore, since the output voltage of the permanent magnet generator is proportional to the rotational speed, the magnetic flux of the transformer is not saturated even when the input frequency of the transformer is small. Therefore, a small transformer can be used.

本発明の分散電源用発電装置の出力回路によれば、風速に関わらず、風より得られる概略の最大出力を取り出すことができると共に、負荷側に任意の直流電圧に出力することが可能となる。   According to the output circuit of the power generator for a distributed power source of the present invention, it is possible to take out a rough maximum output obtained from the wind regardless of the wind speed and to output an arbitrary DC voltage to the load side. .

さらに、永久磁石型発電機およびリアクトルの設計変更を行うことなく、安価な変圧器を接続するだけで直流電圧の変更が可能となるので、非常に汎用性の高い分散電源用発電装置の出力回路を提供できる。   In addition, the DC voltage can be changed by simply connecting an inexpensive transformer without changing the design of the permanent magnet generator and reactor. Can provide.

また、高価な変換装置、例えばDC/DCコンバータなどを接続しないため、分散電源用発電装置の価格が低下させることが可能となる。また、変換装置内部の制御回路の待機電力が不要となり、電気損失を低減し年間出力を増加させることができる。   Further, since an expensive conversion device such as a DC / DC converter is not connected, the price of the distributed power generation device can be reduced. In addition, standby power for the control circuit inside the converter is not required, and electrical loss can be reduced and annual output can be increased.

上記は、風力により説明したが、例えば、水力のように水車の形状が定まれば、最大出力を取り出すときの回転数対出力特性が一義的に定まるような用途にも適用可能である。
また、上記の説明では、3相で説明してきたが、単相および他の相数でも適用可能である。
The above has been described with reference to wind power. However, for example, if the shape of a water turbine is determined like hydraulic power, the present invention can also be applied to applications in which the rotational speed versus output characteristics when the maximum output is taken out are uniquely determined.
In the above description, the description has been made with three phases, but the present invention can also be applied to a single phase and other numbers of phases.

さらに、実施例では、第1の巻線の交流出力端子W1に第1のリアクトル4を接続すると説明してきたが、必要な第1のリアクトル4のインダクタンス値が小さくなるように永久磁石型発電機3を設計して、第1のリアクトル4を削除することが可能である。また、異なる誘起電圧実効値を発生する複数の巻線が2種類の場合で説明したが、複数の巻線の種類が3種類以上の場合にも適用できる。   Further, in the embodiment, it has been described that the first reactor 4 is connected to the AC output terminal W1 of the first winding. However, the permanent magnet generator is configured so that the required inductance value of the first reactor 4 is reduced. 3 can be designed and the first reactor 4 can be deleted. Moreover, although the case where there are two types of the plurality of windings that generate different induced voltage effective values has been described, the present invention can also be applied to the case where there are three or more types of windings.

本発明の、風車により駆動される分散電源用発電装置の出力回路を説明するための図である。It is a figure for demonstrating the output circuit of the generator apparatus for distributed power supplies driven by a windmill of this invention. 従来の分散電源用発電装置の直流電圧変換を行う方式を説明するための接続図である。It is a connection diagram for demonstrating the system which performs the DC voltage conversion of the conventional generator device for distributed power supplies. 風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明する図である。It is a figure explaining the outline | summary of a windmill rotation speed versus windmill output characteristic when a wind speed is made into a parameter. 先願が対象とする分散電源用発電装置の各巻線の出力を説明するための図である。It is a figure for demonstrating the output of each coil | winding of the power generator for distributed power supplies which a prior application makes object. 先願が対象とする分散電源用発電装置のバッテリ等の定電圧源への出力を説明するための図である。It is a figure for demonstrating the output to constant voltage sources, such as a battery, of the generator device for distributed power supplies which a prior application makes object. 先願の分散電源用発電装置の主回路図である。It is a main circuit diagram of the power generator for distributed power supplies of a prior application.

符号の説明Explanation of symbols

1 風車
2 分散電源用発電装置
3 永久磁石型発電機
4 第1のリアクトル
5 第2のリアクトル
6 第1の変圧器
7 第2の変圧器
8 第1の整流器
9 第2の整流器
10 バッテリ
11 負荷
12 変換装置
20 分散電源用発電装置













DESCRIPTION OF SYMBOLS 1 Windmill 2 Distributed power generator 3 Permanent magnet generator 4 1st reactor 5 2nd reactor 6 1st transformer 7 2nd transformer 8 1st rectifier 9 2nd rectifier 10 Battery 11 Load 12 Converter 20 Power generator for distributed power supply













Claims (1)

風車又は水車により駆動されて、異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の複数の巻線の交流出力端子に個別の整流器を接続し、該個別の整流器の直流出力を並列に加算して外部に出力する分散電源用発電装置の出力回路において、該複数の巻線の各交流出力端子に直列に個別のリアクトルを接続し、該個別のリアクトルに直列に個別の変圧器を接続し、該個別の変圧器に直列に個別の整流器を接続し、該個別の整流器の直流出力を加算して外部に出力することを特徴とする分散電源用発電装置の出力回路。 An individual rectifier is connected to an AC output terminal of a plurality of windings of a permanent magnet generator configured by a plurality of windings driven by a windmill or a water turbine to generate different induced voltage effective values, and the individual rectifiers In the output circuit of the power generator for a distributed power source that adds the DC outputs of the outputs in parallel and outputs them to the outside, an individual reactor is connected in series to each AC output terminal of the plurality of windings, and the individual reactors are connected in series. An output of a power generator for a distributed power source, wherein an individual transformer is connected, an individual rectifier is connected in series to the individual transformer, and a direct current output of the individual rectifier is added and output to the outside circuit.
JP2007020861A 2007-01-31 2007-01-31 Output circuit for distributed power supply generator Pending JP2008187855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020861A JP2008187855A (en) 2007-01-31 2007-01-31 Output circuit for distributed power supply generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020861A JP2008187855A (en) 2007-01-31 2007-01-31 Output circuit for distributed power supply generator

Publications (1)

Publication Number Publication Date
JP2008187855A true JP2008187855A (en) 2008-08-14

Family

ID=39730504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020861A Pending JP2008187855A (en) 2007-01-31 2007-01-31 Output circuit for distributed power supply generator

Country Status (1)

Country Link
JP (1) JP2008187855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253924A (en) * 2011-06-03 2012-12-20 Toyo Electric Mfg Co Ltd Direct current output circuit of generator for distributed power source
JP2013031313A (en) * 2011-07-29 2013-02-07 Toyo Electric Mfg Co Ltd Over-rotation prevention circuit of power generator for distributed power supply
JP2013046450A (en) * 2011-08-23 2013-03-04 Toyo Electric Mfg Co Ltd Overspeed prevention device of power generator for distributed power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164230A (en) * 1988-12-16 1990-06-25 Tokyo Electric Power Co Inc:The Dc power transmission system
JP2004064928A (en) * 2002-07-30 2004-02-26 Toyo Electric Mfg Co Ltd Small-sized wind power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164230A (en) * 1988-12-16 1990-06-25 Tokyo Electric Power Co Inc:The Dc power transmission system
JP2004064928A (en) * 2002-07-30 2004-02-26 Toyo Electric Mfg Co Ltd Small-sized wind power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253924A (en) * 2011-06-03 2012-12-20 Toyo Electric Mfg Co Ltd Direct current output circuit of generator for distributed power source
JP2013031313A (en) * 2011-07-29 2013-02-07 Toyo Electric Mfg Co Ltd Over-rotation prevention circuit of power generator for distributed power supply
JP2013046450A (en) * 2011-08-23 2013-03-04 Toyo Electric Mfg Co Ltd Overspeed prevention device of power generator for distributed power supply

Similar Documents

Publication Publication Date Title
JP4145317B2 (en) Main circuit of power generator for distributed power supply
JP4641823B2 (en) Rectifier circuit for power generator for distributed power supply
JP4804211B2 (en) DC output circuit of power generator for distributed power supply
JP4587655B2 (en) Power generator for distributed power supply
JP2008187855A (en) Output circuit for distributed power supply generator
JP5147339B2 (en) Power generator for distributed power supply
JP2006271186A (en) Apparatus for preventing over rotation of wind power generators
JP5300427B2 (en) Rectifier circuit for power generator for distributed power supply
JP5761711B2 (en) Rectifier circuit for power generator for distributed power supply
JP4601348B2 (en) Power generator for distributed power supply
JP4245369B2 (en) Rectifier circuit for power generator for distributed power supply
JP2014011835A (en) Rectifier circuit for power generation system for distributed power sources
JP2011254603A (en) Rectification circuit of power generator for dispersed power
JP5349258B2 (en) Power generator for distributed power supply
JP2007110789A (en) Method of connecting generator with rectifier in power plant for distributed power source
JP2004147427A (en) Generator for distributed power supply
JP2011004558A (en) Wind power generation apparatus
JP2005204426A (en) Distributed power supply generating set
CN203206169U (en) Nine-phase low-voltage direct-current brushless generator
CN103633858A (en) Power generator set, power generation system and rectifying method in power generation process
JP2010148201A (en) Main circuit of power generating device for distributed power supply
JP2009303324A (en) Main circuit of wind energy conversion system
JP2008209247A (en) Simulation power supply for test of power conditioner
JP2009296782A (en) Main circuit of power generating device for distributed power supply
JP2012253924A (en) Direct current output circuit of generator for distributed power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612