JP5300427B2 - Rectifier circuit for power generator for distributed power supply - Google Patents

Rectifier circuit for power generator for distributed power supply Download PDF

Info

Publication number
JP5300427B2
JP5300427B2 JP2008289876A JP2008289876A JP5300427B2 JP 5300427 B2 JP5300427 B2 JP 5300427B2 JP 2008289876 A JP2008289876 A JP 2008289876A JP 2008289876 A JP2008289876 A JP 2008289876A JP 5300427 B2 JP5300427 B2 JP 5300427B2
Authority
JP
Japan
Prior art keywords
phase
rectifier circuit
winding
series
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008289876A
Other languages
Japanese (ja)
Other versions
JP2010119194A (en
Inventor
剛 塩田
勉 井坂
一樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2008289876A priority Critical patent/JP5300427B2/en
Publication of JP2010119194A publication Critical patent/JP2010119194A/en
Application granted granted Critical
Publication of JP5300427B2 publication Critical patent/JP5300427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: a winding having a large number of turns must increase its dielectric voltage because of generation of high voltage in a permanent magnet generator of generating equipment for distributed power supply having a plurality of types of windings for obtaining maximum outputs from wind power or the like without a PWM converter. <P>SOLUTION: In the rectification circuit of the generating equipment for distributed power supply, a reactor is connected to an output terminal of each of a first and a second three-phase winding insulated of a permanent magnet generator and DC outputs obtained from each alternating current are connected with each other in parallel and are output to the outside. The first three-phase winding is connected with a full-wave rectification circuit through the reactors. The second three-phase winding is connected with a voltage doubler rectification circuit of each phase through the reactors on a phase-by-phase basis. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、風車又は水車により駆動される永久磁石型発電機から、風速又は流速に関わらず、風又は水より得られる最大出力を取り出すための分散電源用発電装置の整流回路に関し、特に、PWMコンバータを用いずに定電圧充電を行う分散電源用発電装置の整流回路に関するものである。   The present invention relates to a rectifier circuit of a power generator for a distributed power source for extracting a maximum output obtained from wind or water from a permanent magnet generator driven by a wind turbine or a water turbine, regardless of wind speed or flow velocity, and in particular, PWM. The present invention relates to a rectifier circuit of a power generator for a distributed power source that performs constant voltage charging without using a converter.

本出願人は先に、風車又は水車により駆動される永久磁石型発電機3の固定子に巻かれ、それぞれ絶縁された第1の3相巻線および第2の3相巻線の出力端子にリアクトルを接続し、それぞれの交流より得られる直流出力を並列接続して外部に出力する分散電源用発電装置において、第1の3相巻線はリアクトルを経て3相全波整流回路に接続し、第2の3相巻線はリアクトルを経て3相の中の2相は単相全波整流回路に接続し、他の1相は前記単相全波整流回路の直流側に並列に接続された2直列コンデンサの中点に接続することを特徴とする分散電源用発電装置の整流回路について提案している(例えば、公開特許文献1参照。)。   The present applicant has first wound the stator of the permanent magnet generator 3 driven by a wind turbine or a water turbine, and outputs it to the insulated output terminals of the first three-phase winding and the second three-phase winding, respectively. In a distributed power generator that connects reactors and outputs the DC output obtained from each AC in parallel and outputs to the outside, the first three-phase winding is connected to a three-phase full-wave rectifier circuit via a reactor, The second three-phase winding is connected to the single-phase full-wave rectifier circuit through the reactor, and two of the three phases are connected in parallel to the DC side of the single-phase full-wave rectifier circuit. A rectifier circuit of a power generator for a distributed power source, characterized by being connected to the midpoint of a two series capacitor, is proposed (see, for example, published patent document 1).

かかる先願技術を、図5の風車に接続された分散電源用発電装置を示す主回路結線図を参照して詳述する。
図5において、1は風車、2は先願技術の分散電源用発電装置の整流回路、3は永久磁石型発電機、4は第1のリアクトル、5は第2のリアクトル、61は3相全波整流回路、62は単相全波整流回路、81は第1の3相巻線出力端子、85は第2の3相巻線出力端子、11は正側出力端子、12は負側出力端子、13はバッテリ、14は第1のコンデンサ、15は第2のコンデンサ、16は直列コンデンサ回路、74は2倍昇圧回路である。
The prior application technique will be described in detail with reference to a main circuit connection diagram showing a power generator for a distributed power source connected to the wind turbine of FIG.
In FIG. 5, 1 is a windmill, 2 is a rectifier circuit of a distributed power generation device of the prior application, 3 is a permanent magnet generator, 4 is a first reactor, 5 is a second reactor, and 61 is a three-phase all Wave rectifier circuit, 62 is a single-phase full-wave rectifier circuit, 81 is a first three-phase winding output terminal, 85 is a second three-phase winding output terminal, 11 is a positive output terminal, and 12 is a negative output terminal , 13 is a battery, 14 is a first capacitor, 15 is a second capacitor, 16 is a series capacitor circuit, and 74 is a double booster circuit.

図5において、第1の3相巻線に接続される第1の3相巻線出力端子81は、第1のリアクトル4に接続され、さらに3相全波整流回路61に接続される。
第2の3相巻線に接続される第2の巻線出力端子85は、第2のリアクトル5に接続され、さらに3相の中の2相は単相全波整流回路62に接続し、他の1相は前記単相全波整流回路62の直流側に並列に接続された直列コンデンサ回路16の中点Sに接続される。直列コンデンサ回路16は第1のコンデンサ14と第2のコンデンサ15が直列に接続されて構成される。上記単相全波整流回路62と直列コンデンサ回路16により2倍昇圧整流回路74が構成される。
上記3相全波整流器61および単相全波整流器62の各々の直流側は、正側出力端子11及び負側出力端子12に接続され、各巻線の合計出力がバッテリ13に充電される。
In FIG. 5, the first three-phase winding output terminal 81 connected to the first three-phase winding is connected to the first reactor 4 and further connected to the three-phase full-wave rectifier circuit 61.
The second winding output terminal 85 connected to the second three-phase winding is connected to the second reactor 5, and two of the three phases are connected to the single-phase full-wave rectifier circuit 62, The other phase is connected to the midpoint S of the series capacitor circuit 16 connected in parallel to the DC side of the single-phase full-wave rectifier circuit 62. The series capacitor circuit 16 includes a first capacitor 14 and a second capacitor 15 connected in series. The single-phase full-wave rectifier circuit 62 and the series capacitor circuit 16 constitute a double boost rectifier circuit 74.
The direct current sides of the three-phase full-wave rectifier 61 and the single-phase full-wave rectifier 62 are connected to the positive output terminal 11 and the negative output terminal 12, and the total output of each winding is charged in the battery 13.

このように構成される分散電源用発電装置2より、風車の最大出力を得る方法を以下に示す。
図4は、風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明した図である。
風車は、風車の形状及び風速Uが決まると、風車回転数Nに対する風車出力Pが一義的に定まり、例えば風速Ux及びUyに対する風車出力Pは、それぞれ図4のように示される。そして、種々の風速に対する風車出力Pのピークは、図4に示す最大出力曲線Ptのようになる。
すなわち、図4の風車回転数対風車出力特性において、風速がUxの時は、風速Uxの風車出力曲線と最大出力曲線との交点Sxに示すように、風車回転数Nxにおいて、風車最大出力Pxとなる。
又、風速がUyの時は、風車回転数Nyにおいて、風速Uyでの風車最大出力Pyとなる。
A method for obtaining the maximum output of the wind turbine from the power generator 2 for distributed power supply configured as described above will be described below.
FIG. 4 is a diagram for explaining the outline of the wind turbine rotation speed versus the wind turbine output characteristic when the wind speed is used as a parameter.
In the windmill, when the shape of the windmill and the wind speed U are determined, the windmill output P with respect to the windmill rotational speed N is uniquely determined. For example, the windmill output P with respect to the wind speeds Ux and Uy is shown in FIG. And the peak of the windmill output P with respect to various wind speeds becomes like the maximum output curve Pt shown in FIG.
That is, when the wind speed is Ux in the wind turbine rotation speed vs. wind turbine output characteristics of FIG. 4, the wind turbine maximum output Px at the wind turbine rotation speed Nx as indicated by the intersection Sx of the wind turbine output curve of the wind speed Ux and the maximum output curve. It becomes.
When the wind speed is Uy, the windmill maximum output Py at the wind speed Uy is obtained at the windmill rotational speed Ny.

すなわち、図4の最大出力曲線を見方を変えて見ると、風から最大出力を得るためには、風車回転数Nが決まると、その時の永久磁石型発電機3の出力Pを一義的に、最大出力曲線Pt上の値に定めれば良いことを表している。   That is, looking at the maximum output curve of FIG. 4 in a different way, in order to obtain the maximum output from the wind, when the wind turbine rotation speed N is determined, the output P of the permanent magnet generator 3 at that time is uniquely determined. This indicates that the value may be determined on the maximum output curve Pt.

図3は、先願技術が対象とする分散電源用発電装置2の直流出力をバッテリ等の定電圧源に接続した場合の説明図である。分散電源用発電装置2の永久磁石型発電機内3の同一巻数に巻かれた第1、第2の3相巻線の各出力は、各巻線の誘起電圧実効値の違い、各巻線内部インダクタンスと各出力端子に接続されるリアクトルによる電圧降下、及び2倍昇圧回路の有無のために、図3の風車回転数対出力特性に示すP1、P2のようになる。   FIG. 3 is an explanatory diagram in the case where the DC output of the distributed power generator 2 targeted by the prior application technique is connected to a constant voltage source such as a battery. The outputs of the first and second three-phase windings wound in the same number of turns in the permanent magnet generator 3 of the power generator 2 for the distributed power source are the difference in the effective value of the induced voltage of each winding, the internal inductance of each winding, Due to the voltage drop due to the reactor connected to each output terminal and the presence or absence of the double booster circuit, P1 and P2 shown in the wind turbine rotation speed versus output characteristic of FIG. 3 are obtained.

すなわち、風車回転数Nが低い場合には、永久磁石型発電機3内の第1および第2の3相巻線の発生電圧がバッテリ電圧Vbより低いために、バッテリ13には充電されない。
第2の3相巻線は、第2の3相巻線出力端子85およびリアクトル5を経て、単相全波整流回路62、および直列コンデンサ回路16の中点Sに接続され、第1のコンデンサ14と第2のコンデンサ15の合計電圧がバッテリ13に出力される。
That is, when the wind turbine rotational speed N is low, the voltage generated in the first and second three-phase windings in the permanent magnet generator 3 is lower than the battery voltage Vb, so the battery 13 is not charged.
The second three-phase winding is connected to the midpoint S of the single-phase full-wave rectifier circuit 62 and the series capacitor circuit 16 via the second three-phase winding output terminal 85 and the reactor 5, and the first capacitor The total voltage of 14 and the second capacitor 15 is output to the battery 13.

ここで、第1のコンデンサ14と第2のコンデンサ15のそれぞれの直流電圧は、コンデンサ容量を同一とすれば、バッテリ13の電圧の半分に充電される。従って、風車回転数Nが上昇して、N2になると、第2の3相巻線よりバッテリ13に充電を開始する。例えば、第2の3相巻線の巻数が、第1の3相巻線の巻数と等しい場合は、図3における風車回転数N2が風車回転数N1の半分で充電可能な電圧となり、バッテリ13に充電を開始することになる。   Here, each DC voltage of the first capacitor 14 and the second capacitor 15 is charged to half of the voltage of the battery 13 if the capacitor capacity is the same. Accordingly, when the wind turbine rotation speed N increases and reaches N2, charging of the battery 13 is started from the second three-phase winding. For example, when the number of turns of the second three-phase winding is equal to the number of turns of the first three-phase winding, the windmill speed N2 in FIG. 3 becomes a voltage that can be charged at half the windmill speed N1, and the battery 13 Will start charging.

風車回転数Nが上昇すると、第2の3相巻線の電流が風車回転数Nの上昇と共に上昇し、第2の巻線による出力はP2のようになる。この時、風車回転数Nが上昇して誘起電圧が上昇しても、バッテッリ電圧は、ほぼ一定であるが、第2の巻線のインダクタンスおよび第2のリアクトル5によるインピーダンスが周波数に比例するために、出力P2は漸増するに留まる。   When the wind turbine rotational speed N increases, the current of the second three-phase winding increases as the wind turbine rotational speed N increases, and the output by the second winding becomes P2. At this time, even if the wind turbine rotation speed N increases and the induced voltage increases, the battery voltage is substantially constant, but the inductance of the second winding and the impedance of the second reactor 5 are proportional to the frequency. At the same time, the output P2 only increases gradually.

第1の巻線の出力は、風車回転数Nが上昇して、N1になると第1の巻線出力端子9、リアクトル4および3相全波整流回路61を経てバッテリ13に出力される。
第1の3相巻線については、さらに回転数Nが上昇することにより出力が取れるが、第1の巻線の内部インダクタンスおよび第2のリアクトル4が小さいために大きな出力が取れる。
The output of the first winding is output to the battery 13 via the first winding output terminal 9, the reactor 4, and the three-phase full-wave rectifying circuit 61 when the wind turbine rotational speed N increases to N1.
As for the first three-phase winding, an output can be obtained by further increasing the rotational speed N, but a large output can be obtained because the internal inductance of the first winding and the second reactor 4 are small.

このように構成される分散電源用発電装置2のバッテリ13等の定電圧源への出力は、永久磁石型発電機3内の第1、第2の巻線の出力P1、P2を加算して得られる合計出力である最大出力曲線Ptと概ね同一である。
特開2006−238539号公報(図1)
The output to the constant voltage source such as the battery 13 of the distributed power generator 2 configured as described above is obtained by adding the outputs P1 and P2 of the first and second windings in the permanent magnet generator 3. It is almost the same as the maximum output curve Pt which is the total output obtained.
JP 2006-238539 A (FIG. 1)

図2に2倍昇圧整流回路に接続される第2の3相巻線の電流波形Iu、Iv、Iwを示す。解決しようとする問題点は、上記のような分散電源用発電装置の整流回路においては、2倍昇圧整流回路に接続される第2の3相巻線の電流が、図2に示すように、バランスのとれていない不平衡の状態になるので、永久磁石型発電機3内の第2の3相巻線に異なる巻線仕様を設けなければならないので、製作が煩雑となる、さらに、電流が不平衡であるために振動や騒音の原因となるという点である。   FIG. 2 shows current waveforms Iu, Iv, and Iw of the second three-phase winding connected to the double boosting rectifier circuit. The problem to be solved is that the current of the second three-phase winding connected to the double boost rectifier circuit in the rectifier circuit of the distributed power generator as described above is as shown in FIG. Since it is in an unbalanced state, the second three-phase winding in the permanent magnet generator 3 must be provided with different winding specifications, making the production complicated, and the current It is a point of causing vibration and noise due to unbalance.

本発明は上記事情に鑑みなされたものであって、風車又は水車により駆動される永久磁石型発電機の相互に絶縁された第1および第2の3相巻線の出力端子にリアクトルを接続し、それぞれの交流より得られる直流出力を並列接続して外部に出力する分散電源用発電装置において、第1の3相巻線は該リアクトルを経て全波整流回路に接続し、第2の3相巻線は各相毎に前記リアクトルを経て各相倍電圧整流回路に接続し、該各相倍電圧整流回路の直流出力端子を直列に接続して該全波整流回路に並列接続し、該第2の3相巻線は各相絶縁された巻線で構成し、該各相倍電圧整流回路は、ダイオードのアノード側とカソード側が直列に接続される直列ダイオードと、コンデンサが直列に接続される直列コンデンサが並列に接続されて該各相倍電圧整流回路を構成し、該直列ダイオードの中点に該各相絶縁された巻線の一方から該リアクトルを経て接続され、該直列コンデンサの中点には前記各相絶縁された巻線の他方が接続されることを特徴とする分散電源用発電装置の整流回路である。
The present invention has been made in view of the above circumstances, and a reactor is connected to the output terminals of the first and second three-phase windings insulated from each other of a permanent magnet generator driven by a wind turbine or a water turbine. In the distributed power generation apparatus that outputs the DC output obtained from each AC in parallel and outputs it to the outside, the first three-phase winding is connected to the full-wave rectifier circuit via the reactor, and the second three-phase The winding is connected to each phase voltage doubler rectifier circuit through the reactor for each phase, and the DC output terminal of each phase voltage doubler rectifier circuit is connected in series to be connected in parallel to the full wave rectifier circuit . The three three-phase windings are composed of windings that are insulated from each other, and each phase voltage doubler rectifier circuit includes a series diode in which the anode side and the cathode side of the diode are connected in series, and a capacitor in series. A series capacitor is connected in parallel to A voltage rectifier circuit, connected to the middle point of the series diode from one of the phase-insulated windings via the reactor, and the middle point of the series capacitor to the other point of the phase-insulated windings; Is a rectifier circuit of a power generator for a distributed power source.

本発明の分散電源用発電装置の整流回路においては、出力する電力が小さいために細い巻線での構成が可能な第2の3相巻線は、リアクトルを経て各相が倍電圧整流回路に接続されるために、風車回転数Nが低いときでも従来例と同様にバッテリ13に充電できる第2の3相巻線の誘起電圧を従来例の1/(2√3)にすることができ、しかも電流が不平衡とならない。
従って、第2の3相巻線の絶縁耐圧を強化する必要が無いので、分散電源用発電装置の価格を下げることができる。
In the rectifier circuit of the power generator for a distributed power source according to the present invention, since the output power is small, the second three-phase winding, which can be configured with a thin winding, passes through the reactor and each phase becomes a voltage doubler rectifier circuit. Because of the connection, the induced voltage of the second three-phase winding that can charge the battery 13 can be reduced to 1 / (2√3) of the conventional example even when the wind turbine speed N is low as in the conventional example. Moreover, the current does not become unbalanced.
Therefore, since it is not necessary to strengthen the withstand voltage of the second three-phase winding, the price of the power generator for the distributed power source can be reduced.

風車又は水車により駆動される永久磁石型発電機3の絶縁された第1および第2の3相巻線の出力端子にリアクトルを接続し、それぞれの交流より得られる直流出力を並列接続して外部に出力する分散電源用発電装置において、第1の3相巻線はリアクトルを経て3相全波整流回路に接続し、第2の3相巻線は各相毎にリアクトルを経て倍電圧整流回路に接続し、その各相の倍電圧整流回路の直流出力端子を直列に接続して前記3相全波整流回路に並列接続することを特徴とする分散電源用発電装置の整流回路である。   A reactor is connected to the output terminals of the insulated first and second three-phase windings of the permanent magnet generator 3 driven by a windmill or a water turbine, and DC outputs obtained from the respective ACs are connected in parallel. The first three-phase winding is connected to the three-phase full-wave rectifier circuit via the reactor, and the second three-phase winding is connected to the reactor for each phase through the reactor. And a DC output terminal of each voltage doubler rectifier circuit connected in series and connected in parallel to the three-phase full-wave rectifier circuit.

図1は、本発明を風車に適用した場合であり、風車により駆動される分散電源用発電装置の主回路結線図である。
同図において、17は第1のダイオード、18は第2のダイオード、19は直列ダイオード回路、82は第2の3相巻線U相出力端子、83は第2のV相出力端子、84は第2のW相出力端子、71は第1の倍電圧整流回路、72は第2の倍電圧整流回路、74は第3の倍電圧整流回路であり、図5と同一番号は同一構成部品を表す。
以下、図1について説明する。
FIG. 1 is a main circuit connection diagram of a power generator for a distributed power source driven by a windmill when the present invention is applied to the windmill.
In the figure, 17 is a first diode, 18 is a second diode, 19 is a series diode circuit, 82 is a second three-phase winding U-phase output terminal, 83 is a second V-phase output terminal, and 84 is The second W-phase output terminal, 71 is a first voltage doubler rectifier circuit, 72 is a second voltage doubler rectifier circuit, and 74 is a third voltage doubler rectifier circuit. The same reference numerals as in FIG. Represent.
Hereinafter, FIG. 1 will be described.

第1の3相巻線の交流出力は、従来例と同様に、第1の3相巻線出力端子81、リアクトル4および3相全波整流回路61を経てバッテリ13に出力される。ここで、3相全波整流回路61を用いているので、第1の3相巻線は相電圧の√3倍でバッテリ13に充電できる。
第2の3相巻線は、第2の3相巻線U相出力端子82、V相出力端子83、およびW相出力端子84より、リアクトル5および直流側が直列に接続される第1、第2、第3の倍電圧整流回路71、72、73を経てバッテリ13に出力される。
The AC output of the first three-phase winding is output to the battery 13 via the first three-phase winding output terminal 81, the reactor 4, and the three-phase full-wave rectifier circuit 61, as in the conventional example. Here, since the three-phase full-wave rectifier circuit 61 is used, the first three-phase winding can charge the battery 13 with √3 times the phase voltage.
The second three-phase winding includes first and second reactors 5 and DC connected in series from the second three-phase winding U-phase output terminal 82, V-phase output terminal 83, and W-phase output terminal 84. 2 and output to the battery 13 through the third voltage doubler rectifier circuits 71, 72 and 73.

第1の倍電圧整流回路71は、第1のダイオード17のアノード側と第2のダイオード18のカソード側が直列に接続される直列ダイオード回路19と、コンデンサが直列に接続される直列コンデンサ回路16が並列に接続されて整流回路を構成する。直列ダイオード回路19の中点に第2の3相巻線U相出力端子82の一方からリアクトル5を経て接続され、直列コンデンサ16の中点には第2の3相巻線U相出力端子82の他方が接続される。直列コンデンサ16の各コンデンサには相電圧の+側、またはー側において交互に充電されるので、第1の倍電圧整流回路71は相電圧の倍で充電される。
ここで、第1のコンデンサ14と第2のコンデンサ15のそれぞれの直流電圧は、コンデンサ容量の大小によって電圧脈動の小大があるが、バッテリ13の電圧の半分に充電される。さらに、特に図示しないが、本発明の第2の3相巻線には、従来例と異なり平衡した電流が流れる。
The first voltage doubler rectifier circuit 71 includes a series diode circuit 19 in which the anode side of the first diode 17 and the cathode side of the second diode 18 are connected in series, and a series capacitor circuit 16 in which capacitors are connected in series. Connected in parallel to form a rectifier circuit. The middle point of the series diode circuit 19 is connected from one of the second three-phase winding U-phase output terminals 82 via the reactor 5, and the middle point of the series capacitor 16 is connected to the second three-phase winding U-phase output terminal 82. Are connected to each other. Since each capacitor of the series capacitor 16 is charged alternately on the + side or the − side of the phase voltage, the first voltage doubler rectifier circuit 71 is charged at twice the phase voltage.
Here, the DC voltage of each of the first capacitor 14 and the second capacitor 15 has a small voltage pulsation due to the size of the capacitor capacity, but is charged to half the voltage of the battery 13. Further, although not particularly shown, unlike the conventional example, a balanced current flows through the second three-phase winding of the present invention.

第2の倍電圧整流回路72、第3の倍電圧整流回路73も同様に構成される。第1、第2、第3の倍電圧整流回路71、72、73が直列に接続されることにより、第2の3相巻線は合計で各相誘起電圧の6倍の電圧を発生することと等価になる。従って、例えば第1の3相巻線と第2の3相巻線の各相巻数と等しい場合は、第2の3相巻線からの出力は第1の3相巻線と比べて風車回転数N1の1/(2√3)の回転数からバッテリ13に充電を開始することになる。   The second voltage rectifier circuit 72 and the third voltage rectifier circuit 73 are similarly configured. By connecting the first, second, and third voltage doubler rectifier circuits 71, 72, and 73 in series, the second three-phase winding generates a voltage that is six times the induced voltage in each phase in total. Is equivalent to Therefore, for example, when the number of turns of each phase of the first three-phase winding and the second three-phase winding is equal, the output from the second three-phase winding is rotated by the wind turbine as compared with the first three-phase winding. The charging of the battery 13 is started from the rotational speed of 1 / (2√3) of the number N1.

さらに第2の巻線の巻数が、第1の巻線の巻数の1/√3倍の場合は、1/(2√3)×√3=1/2となり、図2における風車回転数N2が風車回転数N1の1/2で充電可能な電圧となり、この分散電源用発電装置は図3における風車回転数N1の1/2でバッテリ13に充電を開始することになる。そして第2の巻線の絶縁耐圧は第1の巻線の1/√3倍に抑えることができる。   Further, when the number of turns of the second winding is 1 / √3 times the number of turns of the first winding, 1 / (2√3) × √3 = 1/2, and the wind turbine rotational speed N2 in FIG. Becomes a voltage that can be charged at 1/2 of the wind turbine rotation speed N1, and this distributed power generator starts charging the battery 13 at 1/2 of the wind turbine rotation speed N1 in FIG. The dielectric strength of the second winding can be suppressed to 1 / √3 times that of the first winding.

図1の本発明の実施例では、永久磁石型発電機3の巻線が2種類の場合で説明したが、3種類の巻線として、低い風車回転数から充電を開始する巻線に倍電圧整流回路を接続する方法も可能である。
このように構成することにより、分散電源用発電装置2のバッテリ13等の定電圧源への出力を、2巻線の場合よりも風車の最大出力曲線Ptに近づけることができるので、風からより多くのエネルギーを取得できる。
In the embodiment of the present invention shown in FIG. 1, the case of two types of windings of the permanent magnet generator 3 has been described. However, as the three types of windings, a double voltage is applied to the windings that start charging from a low wind turbine speed. A method of connecting a rectifier circuit is also possible.
With this configuration, the output to the constant voltage source such as the battery 13 of the distributed power generation device 2 can be made closer to the maximum output curve Pt of the windmill than in the case of two windings. A lot of energy can be acquired.

また、本発明で用いるリアクトルは、飽和リアクトルとしたり、タップ付きとすることで、風車出力特性により一致するような微調整が可能である。
さらに、図1におけるリアクトル4は、永久磁石型発電機3内のインダクタンスが設計段階で把握できれば、省略することも可能である。
In addition, the reactor used in the present invention can be finely adjusted to match the wind turbine output characteristics by being a saturated reactor or tapped.
Furthermore, the reactor 4 in FIG. 1 can be omitted if the inductance in the permanent magnet generator 3 can be grasped at the design stage.

本発明の分散電源用発電装置の整流回路によれば、永久磁石型発電機内の低い風車回転数から充電を開始する巻線の絶縁耐圧を、高い風車回転数から充電を開始する巻線の絶縁耐圧の半分以下にすることができるので、安価な分散電源用発電装置の整流回路を提供できる。   According to the rectifier circuit of the power generator for a distributed power source of the present invention, the insulation withstand voltage of the winding that starts charging from a low windmill speed in the permanent magnet generator is insulated, and the insulation of the winding that starts charging from a high windmill speed. Since it can be reduced to half or less of the withstand voltage, an inexpensive rectifier circuit for a distributed power generator can be provided.

本発明の実施例であり、分散電源用発電装置の整流回路を説明するための図である。It is an Example of the present invention and is a diagram for explaining a rectifier circuit of a power generator for a distributed power source. 先願出願の分散電源用発電装置の永久磁石型発電機の第2の3相巻線に、流れる電流を説明するための図である。It is a figure for demonstrating the electric current which flows into the 2nd 3 phase coil | winding of the permanent magnet type generator of the power generator for distributed power supplies of a prior application. 先願出願が対象とする分散電源用発電装置の風車回転数対風車出力特性図である。It is a windmill rotation speed versus windmill output characteristic figure of the power generator for distributed power supplies which a prior application applies to. 風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明する図である。It is a figure explaining the outline | summary of a windmill rotation speed versus windmill output characteristic when a wind speed is made into a parameter. 先願出願の分散電源用発電装置の主回路結線図である。It is the main circuit connection diagram of the power generator for distributed power supplies of a prior application.

符号の説明Explanation of symbols

1 風車
2 分散電源用発電装置
3 永久磁石型発電機
4 第1のリアクトル
5 第2のリアクトル
61 3相全波整流回路
62 単相全波整流回路
71 第1の倍電圧整流回路
72 第2の倍電圧整流回路
73 第3の倍電圧整流回路
74 2倍昇圧回路
81 第1の3相巻線出力端子
82 第2の3相巻線U相出力端子
83 第2の3相巻線V相出力端子
84 第2の3相巻線W相出力端子
85 第2の3相巻線出力端子
11 正側出力端子
12 負側出力端子
13 バッテリ
14 第1のコンデンサ
15 第2のコンデンサ
16 直列コンデンサ回路
17 第1のダイオード
18 第2のダイオード
19 直列ダイオード回路
DESCRIPTION OF SYMBOLS 1 Windmill 2 Power generation apparatus for distributed power sources 3 Permanent magnet type generator 4 1st reactor 5 2nd reactor 61 3 phase full wave rectifier circuit 62 Single phase full wave rectifier circuit 71 1st voltage doubler rectifier circuit 72 2nd Voltage doubler rectifier circuit 73 Third voltage doubler rectifier circuit 74 Double voltage booster circuit 81 First three phase winding output terminal 82 Second three phase winding U phase output terminal 83 Second three phase winding V phase output Terminal 84 Second three-phase winding W-phase output terminal 85 Second three-phase winding output terminal 11 Positive output terminal 12 Negative output terminal 13 Battery 14 First capacitor 15 Second capacitor 16 Series capacitor circuit 17 First diode 18 Second diode 19 Series diode circuit

Claims (1)

風車又は水車により駆動される永久磁石型発電機の相互に絶縁された第1および第2の3相巻線の出力端子にリアクトルを接続し、それぞれの交流より得られる直流出力を並列接続して外部に出力する分散電源用発電装置において、第1の3相巻線は該リアクトルを経て全波整流回路に接続し、第2の3相巻線は各相毎に前記リアクトルを経て各相倍電圧整流回路に接続し、該各相倍電圧整流回路の直流出力端子を直列に接続して該全波整流回路に並列接続し、該第2の3相巻線は各相絶縁された巻線で構成し、該各相倍電圧整流回路は、ダイオードのアノード側とカソード側が直列に接続される直列ダイオードと、コンデンサが直列に接続される直列コンデンサが並列に接続されて該各相倍電圧整流回路を構成し、該直列ダイオードの中点に該各相絶縁された巻線の一方から該リアクトルを経て接続され、該直列コンデンサの中点には前記各相絶縁された巻線の他方が接続されることを特徴とする分散電源用発電装置の整流回路。

A reactor is connected to the output terminals of the first and second three-phase windings insulated from each other of a permanent magnet generator driven by a wind turbine or a water turbine, and DC outputs obtained from the respective AC are connected in parallel. In the distributed power generator for output to the outside, the first three-phase winding is connected to the full-wave rectifier circuit via the reactor, and the second three-phase winding is phase-multiplied for each phase via the reactor. Connected to the voltage rectifier circuit, connected in series to the full-wave rectifier circuit of the DC output terminals of the phase doubled voltage rectifier circuits, and the second three-phase windings are insulated from each other. Each phase doubled voltage rectifier circuit comprises a series diode in which the anode side and the cathode side of the diode are connected in series, and a series capacitor in which a capacitor is connected in series, which are connected in parallel to each phase double voltage rectifier. The middle point of the series diode Is connected through the reactor from one of the respective phases insulated windings, the phase insulated winding the other connected thereto that the power generation device for a distributed power supply, wherein of the midpoint of the series capacitor Rectifier circuit.

JP2008289876A 2008-11-12 2008-11-12 Rectifier circuit for power generator for distributed power supply Expired - Fee Related JP5300427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289876A JP5300427B2 (en) 2008-11-12 2008-11-12 Rectifier circuit for power generator for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289876A JP5300427B2 (en) 2008-11-12 2008-11-12 Rectifier circuit for power generator for distributed power supply

Publications (2)

Publication Number Publication Date
JP2010119194A JP2010119194A (en) 2010-05-27
JP5300427B2 true JP5300427B2 (en) 2013-09-25

Family

ID=42306472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289876A Expired - Fee Related JP5300427B2 (en) 2008-11-12 2008-11-12 Rectifier circuit for power generator for distributed power supply

Country Status (1)

Country Link
JP (1) JP5300427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761711B2 (en) * 2011-07-13 2015-08-12 東洋電機製造株式会社 Rectifier circuit for power generator for distributed power supply
JP5761712B2 (en) * 2011-07-29 2015-08-12 東洋電機製造株式会社 Over-rotation prevention circuit for power generator for distributed power supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763220B2 (en) * 1988-05-18 1995-07-05 三洋電機株式会社 Power converter
JP2003284397A (en) * 2002-03-26 2003-10-03 Yamaha Motor Co Ltd Inverter-controlled generator
JP4245369B2 (en) * 2003-02-13 2009-03-25 東洋電機製造株式会社 Rectifier circuit for power generator for distributed power supply
JP4354780B2 (en) * 2003-10-31 2009-10-28 株式会社中山製鋼所 Wind power generator
JP4601348B2 (en) * 2004-07-20 2010-12-22 東洋電機製造株式会社 Power generator for distributed power supply
JP4641823B2 (en) * 2005-02-23 2011-03-02 東洋電機製造株式会社 Rectifier circuit for power generator for distributed power supply
JP2007110789A (en) * 2005-10-12 2007-04-26 Kazuichi Seki Method of connecting generator with rectifier in power plant for distributed power source

Also Published As

Publication number Publication date
JP2010119194A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4641823B2 (en) Rectifier circuit for power generator for distributed power supply
JP4145317B2 (en) Main circuit of power generator for distributed power supply
JP2014087141A (en) Rotary machine and drive system therefor
CN104253569A (en) Generator excitation apparatus and power conversion system
CN101527469A (en) Automobile Lundell motor AC-generator
JP4544855B2 (en) Structure of permanent magnet generator for distributed power supply
JP5300427B2 (en) Rectifier circuit for power generator for distributed power supply
CN100583596C (en) Double Y moving ten degree commutating generator
JP5761711B2 (en) Rectifier circuit for power generator for distributed power supply
JP5147339B2 (en) Power generator for distributed power supply
CN108768119A (en) Magneto alternator and permanent magnetism synchronous wind generating system
JP4245369B2 (en) Rectifier circuit for power generator for distributed power supply
Chakraborty et al. A new series of brushless and permanent magnetless synchronous machines
JP2009136106A (en) Rectifier circuit for wind power generator
JP2008187855A (en) Output circuit for distributed power supply generator
JP2014011835A (en) Rectifier circuit for power generation system for distributed power sources
JP2007110789A (en) Method of connecting generator with rectifier in power plant for distributed power source
CN103795209B (en) Increase the Fielding-winding doubly salient generator of the double Exciting Windings for Transverse Differential Protection compound excitation of magnetic boosting
JP2011254603A (en) Rectification circuit of power generator for dispersed power
JP5349258B2 (en) Power generator for distributed power supply
Kumar et al. Switched Inductor Quasi-z-source Inverter for PMSG based Wind Energy Conversion System
RU2673566C1 (en) Asynchronous welding generator
CN200959561Y (en) 2-polar convex-polar rectifying generator without casing
JP2011004558A (en) Wind power generation apparatus
Zhang et al. Study on novel twelve-phase synchronous generator rectifier system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees