JP3838831B2 - Hot rolling mill setup method - Google Patents

Hot rolling mill setup method Download PDF

Info

Publication number
JP3838831B2
JP3838831B2 JP32484299A JP32484299A JP3838831B2 JP 3838831 B2 JP3838831 B2 JP 3838831B2 JP 32484299 A JP32484299 A JP 32484299A JP 32484299 A JP32484299 A JP 32484299A JP 3838831 B2 JP3838831 B2 JP 3838831B2
Authority
JP
Japan
Prior art keywords
temperature
plate thickness
rolled
value
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32484299A
Other languages
Japanese (ja)
Other versions
JP2001137918A (en
Inventor
都 西野
章 北村
憲一 大江
禎夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32484299A priority Critical patent/JP3838831B2/en
Publication of JP2001137918A publication Critical patent/JP2001137918A/en
Application granted granted Critical
Publication of JP3838831B2 publication Critical patent/JP3838831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,熱間圧延機のセットアップ方法に係り,詳しくは,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法に関するものである。
【0002】
【従来の技術】
熱間圧延機の板厚制御では,一般に通板前にロール速度と圧下位置を設定するセットアップ制御と通板後に採取されたデータに基づいて圧下位置を調整するフィードバック制御(AGC)とが行われる。
しかしながら,通板直後の板厚は,フィードバック制御では間に合わない。そのため先端部の板厚精度を向上させるにはセットアップ制御を高精度に実施する必要がある。
セットアップの方法には,大きく分けて2つの方法がある。一つは,長手方向の一点の板温度をもとに計算する方法(瞬時値セッティング)であり,他の一つは,長手方向(あるいは定常部長手方向)の平均温度をもとに計算する(平均値セッティング)である。
しかし,加熱炉の燃料コスト削減のために在炉時間を短縮したり加熱炉の制約等により十分に加熱できない場合,長手方向に温度勾配が生じる(特に先端部では勾配が大きくなる)。この場合,瞬時値セッティングでは,板厚を大きく劣化させる可能性があり,高応答のAGCやミル直近の板厚計が必要となる。
平均値セッティングでは,高い板厚精度は補償できないものの,このように先端部に温度勾配がある場合にも板厚を大きく劣化させることはない。
平均値セッティングにおける,温度勾配の対応方法としては,例えば特開平6−142741号公報(以下,参照公報1という)に記載された熱間圧延装置の板厚制御方法,特開平8−155524号公報(以下,参照公報2という)に記載された熱間圧延における鋼板先端部の温度予測方法などがある。
上記参照公報1に記載の熱間圧延装置の板厚制御方法では,圧延機入側に設置された温度計により採取された先端部温度と定常部温度との差から圧下位置が修正される。
また,上記参照公報2に記載の熱間圧延における鋼板先端部の温度予測方法では,鋼板の厚さ方向の位置と長手方向の位置とを独立変数とする熱伝導方程式と境界条件,初期条件に基づいて,先端部の温度が計算される。
【0003】
【発明が解決しようとする課題】
上記参照公報1に記載の熱間圧延装置の板厚制御方法では,温度計を用いて板温度を計測する必要があるが,動く板の端部の温度を正確に計測することは非常に難しい。また,たとえ温度計で材料の表面温度を正確に計測できたとしても,鋼板の場合は,板厚方向の温度勾配が大きいため,先端部の圧下位置修正量を正確に計算することは困難である。
また,上記参照公報2に記載の熱間圧延における鋼板先端部の温度予測方法においても,初期値を決定するためには温度計の情報が必要となり,上記参照公報1に記載の熱間圧延装置の板厚制御方法と同様の問題を生じる。
本発明は,このような従来の技術における課題を解決するために,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことにより,被圧延材の長手方向に温度勾配がある場合でも,温度計を用いることなく,被圧延材の先端部の板厚を高精度に制御することが可能な熱間圧延機のセットアップ方法を提供することを目的とするものである。
なお,この明細書において,ロールギャップとは,上側ワークロールの下端位置と下側ワークロールの上端位置の差,すなわち出口板厚をいい,後記する圧下位置,或いはロール隙間,圧下スクリュー位置,そのほかロール開度,圧下量,圧下率と同義である。
【0004】
【課題を解決するための手段】
上記目的を達成するために,請求項1に係る発明は,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことを特徴とする熱間圧延機のセットアップ方法として構成されている。
また,請求項2に係る発明は,上記請求項1に記載の熱間圧延機のセットアップ方法において,上記実績圧延情報が,荷重,及び出側板厚を少なくとも含むものであり,上記荷重,及び出側板厚の長手方向分布に基づいて,上記温度対応量である塑性係数の長手方向分布を予測し,該予測した塑性係数の長手方向分布に含まれる被圧延材先端部の塑性係数と定常部の塑性係数とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなることをその要旨とする。
また,請求項に係る発明は,上記請求項1に記載の熱間圧延機のセットアップ方法において,上記実績圧延情報が,荷重,入側板厚,及び出側板厚を少なくとも含むものであり,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,被圧延材の温度の長手方向分布を予測し,該予測した被圧延材の温度の長手方向分布に含まれる被圧延材先端部の温度と定常部の温度とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなることをその要旨とする。
また,請求項4に係る発明は,上記請求項1に記載の熱間圧延機のセットアップ方法において,上記実績圧延情報が,荷重,入側板厚,及び出側板厚を少なくとも含むものであり,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,上記温度対応量である被圧延材の変形抵抗の長手方向分布を予測し,該予測した変形抵抗の長手方向分布に含まれる被圧延材先端部の変形抵抗と定常部の変形抵抗とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなることをその要旨とする。
上記請求項1〜のいずれかに記載の熱間圧延機のセットアップ方法によれば,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことにより,被圧延材の長手方向に温度勾配がある場合でも,温度計を用いることなく,被圧延材の先端部から板厚を高精度に制御することができる。また,その結果,高価な高応答AGC等を設ける必要もなくなる。
しかも,塑性係数の長手方向分布を求める場合には,温度勾配だけでなく,板厚やその他の外乱の分布をも考慮することができる。
【0005】
【発明の実施の形態】
以下,添付図面を参照して,本発明の実施の形態につき説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明の具体的な例であって,本発明の技術的範囲を限定するものではない。
本発明の実施の形態に係る熱間圧延機のセットアップ方法は,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う点で従来方法と同様である。
被圧延材先端部では,その長手方向に温度勾配が生じるため,板厚に対する高い制御精度を得るために,従来方法では,実際に温度を検出する必要があったが,正確な温度測定が難しいため,適正にセットアップ値を修正できない場合があった。
一方,本発明の実施の形態に係る熱間圧延機のセットアップ方法が,従来方法と相違するのは,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行う点である。
そして,本発明の実施の形態に係る熱間圧延機のセットアップ方法と従来方法との相違点をより具体的にした,第1の熱間圧延機のセットアップ方法は,本発明の請求項に係る発明に対応するものであって,上記実績圧延情報に,荷重,入側板厚,及び出側板厚を少なくとも含み,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,板温度の長手方向分布を予測し,該予測した板温度の長手方向分布に含まれる,被圧延材先端部の板温度と定常部との板温度の差からギャップ修正量を算出し,前パス圧延時に用いた上記セットアップ値を修正するものである。
ここで,図1は上記第1の熱間圧延機のセットアップ方法を実施するのに適当な熱間圧延機のセットアップ装置1を説明するための図である。
上記セットアップ装置1は,例えば,粗圧延機100による粗圧延が終了した後の,被圧延材(以下,板という)2の仕上げ圧延を行う可逆式の仕上圧延機101を対象とするものであり,通板前に圧下装置3に指令を与えて圧下位置Sを設定し,上下ワークロール4a,4b間のロールギャップを調整したり,ロール速度を設定する。
上ワークロール4aを支承するバックアップロール41aの上方には,ロードセル5,位置計6が設けられており,それぞれから圧延荷重P,及び上記ロールギャップ(圧下位置Sと対応)が,上記セットアップ装置1へ供給される。
上記セットアップ装置1には,この他,板2の出側板厚hを検出するための板厚検出器7,板2の入側板厚Hを検出するための板厚検出器8が接続されている。
【0006】
以下,上記セットアップ装置1の第1の動作,即ち本発明の実施の形態に係る第1の熱間圧延機のセットアップ方法について説明する。
仕上圧延機101のはじめの圧下位置Sは,従来方法と同様に通板前にセットアップされる。即ち,予め板の先端から定常部までに相当する位置で,温度等が計測され,板の長手方向の平均温度などに基づいて,上記圧下装置3に対する圧下位置Sの平均セットアップ値が計算される。尚,通板後は図示しないAGCによりフィードバック制御が行われる。
上記したはじめの圧下位置Sの平均セットアップ値を用いて,上記仕上圧延機101により板2に対して2パスの圧延が行われる。この2パスの圧延中に,ロードセル5,板厚検出器7により,圧延荷重P,出側板厚hの長手方向分布がそれぞれ計測される。
そして,採取された圧延荷重P,出側板厚hのデータについて,データの先後端が特定され,圧延中の部分が切り出される。ノイズ除去のため所定のフィルタリングが施された後,これら圧延荷重データと出側板厚データのデータ長が異なる場合には,マルチレート信号処理の手法を用いてデータ長が揃えられる。また,入側板厚Hが,2パスのうちのはじめのパスの出側板厚から定められる。
次に,これら3つの時系列データを用い,例えば次式(1)に従って,板温度Tの長手方向分布が計算される。
【数1】

Figure 0003838831
ただし,Rdは偏平ロール半径,Bは板幅,Kpは変形抵抗,Qpは圧下力関数,Tは温度,Rはロール半径,添字iは時間あるいは長手方向位置の順番を表し,A1 ,A2 ,c,m,nは係数である。
図2に上式(1)に従って計算した板温度の長手方向分布の一例を示す。図2の縦軸が板温度であり,横軸が長手方向の位置である。
次に,求められた板温度Tの分布から定常部の温度Tmと先端部の温度Ttとが求められる。加熱炉内のスキッド配置や板の絶対長等によって変わるが,この定常部の温度Tmと先端部の温度Ttとは,例えば板全長を7分割し,先端の2区画の平均を上記温度Ttとし,中央部3区画の平均を上記温度Tmとして求めることができる。
次に,上式(1)の温度Tに,上記温度Tt,Tmが,また上式(1)の入側板厚H,出側板厚h,板幅Bに,1パス目に採取された出側板厚hの平均値あるいは先端部での値,次パス目出側板厚目標値,次パス板幅がそれぞれ代入され,定常部予測荷重Pmと先端部予測荷重Ptとが計算される。
そして,次式(2)に従って,3パス目の圧下位置Sに関する平均セットアップ値に対して圧下位置修正量dSが算出され,圧下位置Sに関する修正セットアップ値S+dSが求められる。
【数2】
Figure 0003838831
ただし,Gはゲイン,Mはミル定数を表す。
このような手順で,各パス圧延時にデータが採取され,それに基づき計算が行われ,圧下位置に関する上記平均セットアップ値が順次修正される。
【0007】
次に,本発明の実施の形態に係る熱間圧延機のセットアップ方法と従来方法との相違点をより具体的にした,第2の熱間圧延機のセットアップ方法は,本発明の請求項2に係る発明に対応するものであって,上記実績圧延情報が,荷重,及び出側板厚を少なくとも含むものであり,上記荷重,及び出側板厚の長手方向分布に基づいて,塑性係数の長手方向分布を予測し,該予測した塑性係数の長手方向分布に含まれる被圧延材先端部の塑性係数と定常部の塑性係数とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正するものである。
以下,上記セットアップ装置1の第2の動作,即ち本発明の実施の形態に係る第2の熱間圧延機のセットアップ方法について説明する。
仕上圧延機101のはじめの圧下位置Sに,上記平均セットアップ値が用いられるのは,上記した各例と同様である。
このはじめの圧下位置Sの平均セットアップ値を用いて,上記仕上圧延機101により板2に対して1パスの圧延が行われる点は,上記第1の熱間圧延機のセットアップ方法と異なる。上記1パスの圧延中には,ロードセル5,板厚検出器7により,圧延荷重P,出側板厚hの長手方向分布がそれぞれ計測される。平均セットアップ値を用いて2パスの圧延が行われず,1パスのみの圧延ですむのは,上記圧下位置修正量dSを求めるのに,上記第2の熱間圧延機のセットアップ方法では,入側板厚Hを用いないからである。
そして,採取された圧延荷重P,出側板厚hのデータについて,データの先後端が特定され,圧延中の部分が切り出される。ノイズ除去のため所定のフィルタリングが施された後,これら圧延荷重データ,圧下位置データ,出側板厚データのデータ長が異なる場合には,マルチレート信号処理の手法を用いてデータ長が揃えられる。
次に,これら2つの時系列データを用い,例えば次式(3)に従って,塑性係数(温度対応量)Qの長手方向分布が計算される。
【数3】
Figure 0003838831
次に,求められた塑性係数Qの分布から定常部の塑性係数Qmと先端部の塑性係数Qtとが求められる。塑性係数Qについても,上記温度Tと同様に,例えば板全長を7分割し,先端の2区画の平均を上記塑性係数Qtとし,中央部3区画の平均を上記塑性係数Qmとして求めることができる。
そして,次式(4)に従って,2パス目の圧下位置Sに関する平均セットアップ値に対して圧下位置修正量dSが算出され,圧下位置Sに関する修正セットアップ値S+dSが求められる。
【数4】
Figure 0003838831
このような手順で,各パス圧延時にデータが採取され,それに基づき計算が行われ,圧下位置Sに関する上記平均セットアップ値が順次修正される。
【0008】
次に,本発明の実施の形態に係る熱間圧延機のセットアップ方法と従来方法との相違点をより具体的にした,第の熱間圧延機のセットアップ方法は,本発明の請求項に係る発明に対応するものであって,上記実績圧延情報が,荷重,入側板厚,及び出側板厚を少なくとも含むものであり,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,被圧延材の変形抵抗の長手方向分布を予測し,該予測した変形抵抗の長手方向分布に含まれる被圧延材先端部の変形抵抗と定常部の変形抵抗とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正するものである。
以下,上記セットアップ装置1の第の動作,即ち本発明の実施の形態に係る第の熱間圧延機のセットアップ方法について説明する。
仕上圧延機101のはじめの圧下位置Sに,上記平均セットアップ値が用いられるのは,上記した各例と同様である。
このはじめの圧下位置Sの平均セットアップ値を用いて,上記第1の熱間圧延機のセットアップ方法と同様,上記仕上圧延機101により板2に対して2パスの圧延が行われる。この2パスの圧延中に,ロードセル5,板厚検出器7により,圧延荷重P,出側板厚hの長手方向分布がそれぞれ計測される。
そして,採取された圧延荷重P,出側板厚hのデータについて,データの先後端が特定され,圧延中の部分が切り出される。ノイズ除去のため所定のフィルタリングが施された後,これら圧延荷重データ,出側板厚データのデータ長が異なる場合には,マルチレート信号処理の手法を用いてデータ長が揃えられる。また,入側板厚Hは,2パスのうちのはじめのパスの出側板厚hから定められる。
次に,これら3つの時系列データを用い,例えば次式()に従って,変形抵抗(温度対応量)Kpの長手方向分布が計算される。
【数
Figure 0003838831
に上式()に従って計算した変形抵抗の長手方向分布の一例を示す。図3の縦軸が変形抵抗であり,横軸が長手方向の位置である。
次に,求められた変形抵抗Kpの分布から定常部の変形抵抗Kpmと先端部の変形抵抗Kptとが求められる。変形抵抗Kについても,上記温度Tや塑性係数Qと同様に,例えば板全長を7分割し,先端の2区画の平均を上記変形抵抗Kptとし,中央部3区画の平均を上記変形抵抗Kpmとしてそれぞれ求めることができる。
次に,上式()の変形抵抗Kpに,上記変形抵抗Kpt,Kpmが,また上式()の入側板厚H,出側板厚h,板幅Bに,1パス目に採取された出側板厚hの平均値あるいは先端部での値,次パス目出側板厚目標値,次パス板幅がそれぞれ代入され,定常部予測荷重Pmと先端部予測荷重Ptとが計算される。
そして,上記第1の熱間圧延機のセットアップ方法と同様に,上式(2)に従って,3パス目の圧下位置Sに関する平均セットアップ値に対して圧下位置修正量dSが算出され,圧下位置Sに関する修正セットアップ値S+dSが求められる。
このような手順で,各パス圧延時にデータが採取され,それに基づき計算が行われ,圧下位置に関する上記平均セットアップ値が順次修正される。
【0009
上記のような本発明の実施の形態に係る熱間圧延機のセットアップ方法により,平均セットアップ値に対して修正を行っていない場合と修正を行った場合の出側板厚hの推移の実験例を図に示す。
に示される通り,本発明の実施の形態に係る熱間圧延機のセットアップ方法により修正を行っていない場合(図(a)参照)には,制御開始から0.6秒程度まで出側板厚hが安定していないが,修正を行っている場合(図(b)参照)には,制御開始直後から,出側板厚hが安定している。
このように,本発明の実施の形態に係る熱間圧延機のセットアップ方法によれば,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップ又はこれに対応した値を含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことにより,被圧延材の長手方向に温度勾配がある場合でも,温度計を用いることなく,被圧延材の先端部から板厚を高精度に制御することができる。また,その結果,高価な高応答AGC等を設ける必要もなくなる。
しかも,塑性係数の長手方向分布を求める場合には,温度勾配だけでなく,板厚やその他の外乱の分布をも考慮することができる。
【001
【発明の効果】
以上説明した通り,上記請求項1〜のいずれかに記載の熱間圧延機のセットアップ方法によれば,予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことにより,被圧延材の長手方向に温度勾配がある場合でも,温度計を用いることなく,被圧延材の先端部から板厚を高精度に制御することができる。また,その結果,高価な高応答AGC等を設ける必要もなくなる。
しかも,塑性係数の長手方向分布を求める場合には,温度勾配だけでなく,板厚やその他の外乱の分布をも考慮することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る熱間圧延機のセットアップ方法を実施するのに適当なセットアップ装置を説明するための図。
【図2】 本発明の第1の実施の形態に係る熱間圧延機のセットアップ方法で求められる板温度の長手方向分布の一例を示す図。
【図3】 本発明の第の実施の形態に係る熱間圧延機のセットアップ方法で求められる変形抵抗の長手方向分布の一例を示す図。
【図】 平均セットアップ値に本発明の実施の形態に係る熱間圧延機のセットアップ方法による修正を行う場合と行わない場合を比較する図。
【符号の説明】
1…セットアップ装置
2…被圧延材
3…圧下装置
4…ワークロール
5…ロードセル
6…位置計
7…板厚検出器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot rolling mill set-up method, and more specifically, based on an average temperature in the longitudinal direction of the material to be rolled collected in advance, the roll gap of the hot rolling mill is set before passing the material to be rolled. The present invention relates to a hot rolling mill setup method in which an average setup value is obtained and the hot rolling mill is set using the average setup value.
[0002]
[Prior art]
In the thickness control of a hot rolling mill, generally, setup control for setting a roll speed and a rolling position before feeding and feedback control (AGC) for adjusting the rolling position based on data collected after feeding are performed.
However, the plate thickness immediately after passing is not in time for feedback control. Therefore, in order to improve the thickness accuracy of the tip portion, it is necessary to perform setup control with high accuracy.
There are two types of setup methods. One is a calculation method based on the plate temperature at one point in the longitudinal direction (instantaneous value setting), and the other is based on the average temperature in the longitudinal direction (or the longitudinal direction of the stationary part). (Average value setting).
However, if the in-furnace time is shortened to reduce the fuel cost of the heating furnace or if it cannot be heated sufficiently due to restrictions on the heating furnace, etc., a temperature gradient occurs in the longitudinal direction (especially the gradient increases at the tip). In this case, in the instantaneous value setting, there is a possibility that the plate thickness is greatly deteriorated, and a high response AGC or a plate thickness meter closest to the mill is required.
With the average value setting, high plate thickness accuracy cannot be compensated for, but even when there is a temperature gradient at the tip, the plate thickness is not greatly degraded.
As a method for dealing with the temperature gradient in the average value setting, for example, a method for controlling the thickness of a hot rolling apparatus described in Japanese Patent Laid-Open No. 6-142741 (hereinafter referred to as Reference 1), Japanese Patent Laid-Open No. 8-155524. (Hereinafter referred to as Reference Publication 2), there is a method for predicting the temperature of the tip of a steel plate in hot rolling.
In the sheet thickness control method of the hot rolling apparatus described in the above-mentioned reference publication 1, the reduction position is corrected from the difference between the tip portion temperature and the steady portion temperature collected by a thermometer installed on the entrance side of the rolling mill.
In addition, in the method for predicting the temperature at the tip of a steel plate in hot rolling described in the above-mentioned reference publication 2, the heat conduction equation with the position in the thickness direction and the position in the longitudinal direction of the steel plate as independent variables, boundary conditions, and initial conditions are used. Based on this, the tip temperature is calculated.
[0003]
[Problems to be solved by the invention]
In the plate thickness control method of the hot rolling apparatus described in the above-mentioned reference publication 1, it is necessary to measure the plate temperature using a thermometer, but it is very difficult to accurately measure the temperature of the end of the moving plate. . Even if the surface temperature of the material can be accurately measured with a thermometer, the temperature gradient in the thickness direction is large in the case of a steel plate, so it is difficult to accurately calculate the amount of correction at the tip end. is there.
In addition, in the method for predicting the temperature of the steel sheet tip in hot rolling described in the above-mentioned reference publication 2, information on a thermometer is required to determine the initial value, and the hot rolling apparatus described in the above-mentioned reference publication 1 This causes the same problem as the plate thickness control method.
In order to solve the problems in the conventional technology, the present invention is based on the average temperature in the longitudinal direction of the material to be rolled that has been collected in advance, and before passing the material to be rolled, the roll gap of the hot rolling mill In the hot rolling mill setup method for setting the hot rolling mill using the average setup value, a temperature corresponding amount corresponding to the temperature of the material to be rolled during the previous pass rolling Based on the distribution in the longitudinal direction of the predetermined actual rolling information that can be predicted, a corrected setup value obtained by correcting the average setup value for the pass rolling is calculated, and the hot rolling mill during the pass rolling is calculated based on the corrected setup value. Therefore, even when there is a temperature gradient in the longitudinal direction of the material to be rolled, the thickness of the tip of the material to be rolled can be controlled with high accuracy without using a thermometer. It is an object to provide a set-up method capable of hot rolling mill.
In this specification, the roll gap means the difference between the lower end position of the upper work roll and the upper end position of the lower work roll, that is, the outlet plate thickness. The roll position, roll gap, roll screw position, etc. It is synonymous with roll opening, reduction amount, and reduction rate.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes a roll gap of a hot rolling mill before passing the material to be rolled based on the average temperature in the longitudinal direction of the material to be rolled previously collected. In a hot rolling mill setup method for obtaining an average setup value and setting the hot rolling mill using the average setup value, a temperature-corresponding amount corresponding to the temperature of the material to be rolled during the previous pass rolling is predicted. Based on the longitudinal distribution of possible predetermined actual rolling information, a corrected setup value obtained by correcting the average setup value for the pass rolling is calculated, and the hot rolling mill setting during the pass rolling is calculated based on the corrected setup value. It is comprised as a setup method of the hot rolling mill characterized by performing.
The invention according to claim 2 is the hot rolling mill set-up method according to claim 1, wherein the actual rolling information includes at least a load and an exit side plate thickness. Based on the longitudinal distribution of the side plate thickness, the longitudinal distribution of the plasticity coefficient corresponding to the above temperature is predicted, and the plasticity coefficient at the tip of the rolled material included in the longitudinal distribution of the predicted plasticity coefficient and the steady portion based on the plasticity coefficient, it calculates the gap correction value shall be the gist that obtained by correcting the average setup value for that path rolled by the gap correction amount.
The invention according to claim 3 is the hot rolling mill set-up method according to claim 1, wherein the actual rolling information includes at least a load, an entry side plate thickness, and an exit side plate thickness. A longitudinal distribution of the temperature of the material to be rolled is predicted based on the longitudinal distribution of the load, the entry side thickness, and the exit side plate thickness, and the tip of the material to be rolled included in the predicted longitudinal distribution of the temperature of the material to be rolled The gist is that the gap correction amount is calculated based on the temperature of the part and the temperature of the steady part, and the average setup value for the pass rolling is corrected by the gap correction amount.
The invention according to claim 4 is the hot rolling mill set-up method according to claim 1, wherein the actual rolling information includes at least a load, an entry side plate thickness, and an exit side plate thickness, Based on the longitudinal direction distribution of the load, the entry side plate thickness, and the exit side plate thickness, the longitudinal distribution of the deformation resistance of the material to be rolled, which is the above-mentioned temperature-corresponding amount, is predicted, and is included in the predicted longitudinal distribution of the deformation resistance The gist of the present invention is that the gap correction amount is calculated based on the deformation resistance at the tip of the material to be rolled and the deformation resistance of the steady portion, and the average set-up value for the pass rolling is corrected by the gap correction amount. .
According to the hot rolling mill set-up method according to any one of claims 1 to 4 , based on the pre-collected average temperature in the longitudinal direction of the material to be rolled, In a hot rolling mill set-up method in which an average set-up value including a roll gap of the rolling mill is determined and the hot rolling mill is set using the average set-up value, the temperature of the material to be rolled during the previous pass rolling is set. Based on the longitudinal distribution of the predetermined actual rolling information for which the corresponding temperature correspondence amount can be predicted, a corrected setup value obtained by correcting the average setup value for the pass rolling is calculated, and the corrected setup value is used for the pass rolling. By setting the above hot rolling mill, even if there is a temperature gradient in the longitudinal direction of the material to be rolled, the plate thickness can be increased from the tip of the material to be rolled without using a thermometer. Can be controlled at a time. As a result, there is no need to provide an expensive high response AGC or the like.
In addition, when obtaining the longitudinal distribution of the plastic coefficient, not only the temperature gradient but also the thickness and other disturbance distributions can be considered.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiments are specific examples of the present invention, and do not limit the technical scope of the present invention.
The hot rolling mill set-up method according to the embodiment of the present invention is based on the previously collected average temperature in the longitudinal direction of the material to be rolled. It is the same as the conventional method in that the average set-up value is obtained and the hot rolling mill is set using the average set-up value.
At the tip of the material to be rolled, a temperature gradient occurs in the longitudinal direction. Therefore, in order to obtain high control accuracy for the plate thickness, it was necessary to actually detect the temperature with the conventional method, but accurate temperature measurement was difficult. For this reason, the setup value could not be corrected properly.
On the other hand, the hot rolling mill set-up method according to the embodiment of the present invention is different from the conventional method in that the temperature corresponding amount corresponding to the temperature of the material to be rolled during the previous pass rolling can be predicted. Based on the longitudinal distribution of the actual rolling information, a corrected setup value obtained by correcting the average setup value for the pass rolling is calculated, and the hot rolling mill is set at the pass rolling by the corrected setup value. is there.
And the setup method of the 1st hot rolling mill which made the difference with the setup method of the hot rolling mill which concerns on embodiment of this invention, and the conventional method more concrete is Claim 3 of this invention. The actual rolling information includes at least a load, an entry side plate thickness, and an exit side plate thickness. Based on the longitudinal distribution of the load, the entry side plate thickness, and the exit side plate thickness, Predict the longitudinal distribution of temperature, calculate the gap correction amount from the difference between the plate temperature at the tip of the material to be rolled and the plate temperature included in the predicted longitudinal distribution of the plate temperature, It corrects the setup values used at times.
Here, FIG. 1 is a diagram for explaining a hot rolling mill setup apparatus 1 suitable for carrying out the first hot rolling mill setup method.
The set-up device 1 is intended for a reversible finish rolling mill 101 that performs finish rolling of a material to be rolled (hereinafter referred to as a plate) 2 after the rough rolling by the rough rolling mill 100 is completed, for example. , A command is given to the reduction device 3 before passing the plate, the reduction position S is set, the roll gap between the upper and lower work rolls 4a and 4b is adjusted, and the roll speed is set.
A load cell 5 and a position meter 6 are provided above the backup roll 41a that supports the upper work roll 4a, and the rolling load P and the roll gap (corresponding to the rolling position S) are respectively provided in the setup device 1. Supplied to.
In addition, a plate thickness detector 7 for detecting the outlet side thickness h of the plate 2 and a plate thickness detector 8 for detecting the inlet side thickness H of the plate 2 are connected to the set-up device 1. .
[0006]
Hereinafter, the first operation of the setup apparatus 1, that is, the setup method of the first hot rolling mill according to the embodiment of the present invention will be described.
The first reduction position S of the finish rolling mill 101 is set up before threading as in the conventional method. That is, the temperature or the like is measured in advance at a position corresponding to the front end of the plate to the steady portion, and the average set-up value of the reduction position S for the reduction device 3 is calculated based on the average temperature in the longitudinal direction of the plate. . In addition, after passing, feedback control is performed by AGC (not shown).
Using the average set-up value at the first rolling reduction position S described above, the finish rolling mill 101 performs two-pass rolling on the plate 2. During the two-pass rolling, the load cell 5 and the plate thickness detector 7 measure the longitudinal load distribution of the rolling load P and the outlet plate thickness h.
Then, for the data of the collected rolling load P and outlet thickness h, the front and rear ends of the data are specified, and the part being rolled is cut out. After the predetermined filtering for noise removal, if the data lengths of the rolling load data and the outgoing side plate thickness data are different, the data lengths are aligned by using a multi-rate signal processing method. Further, the entry side plate thickness H is determined from the exit side plate thickness of the first pass of the two passes.
Next, using these three time series data, the longitudinal distribution of the plate temperature T is calculated, for example, according to the following equation (1).
[Expression 1]
Figure 0003838831
Where Rd is the flat roll radius, B is the plate width, Kp is the deformation resistance, Qp is the rolling force function, T is the temperature, R is the roll radius, the suffix i is the time or the longitudinal position, and A 1 , A 2 , c, m and n are coefficients.
FIG. 2 shows an example of the longitudinal distribution of the plate temperature calculated according to the above equation (1). The vertical axis in FIG. 2 is the plate temperature, and the horizontal axis is the position in the longitudinal direction.
Next, the temperature Tm of the stationary part and the temperature Tt of the tip part are obtained from the distribution of the obtained plate temperature T. Depending on the skid arrangement in the heating furnace and the absolute length of the plate, etc., the temperature Tm of the steady portion and the temperature Tt of the tip portion are, for example, divided into seven overall plate lengths, and the average of the two sections at the tip is the temperature Tt. The average of the three sections in the center can be obtained as the temperature Tm.
Next, the temperature Tt and Tm described above at the temperature T in the above equation (1), and the outlet plate thickness H, the outlet plate thickness h, and the plate width B in the above equation (1) are collected in the first pass. The average value of the side plate thickness h or the value at the tip, the next pass index side plate thickness target value, and the next pass plate width are respectively substituted, and the steady portion predicted load Pm and the tip predicted load Pt are calculated.
Then, according to the following equation (2), a reduction position correction amount dS is calculated for the average setup value related to the reduction position S in the third pass, and a corrected setup value S + dS related to the reduction position S is obtained.
[Expression 2]
Figure 0003838831
However, G represents a gain and M represents a mill constant.
According to such a procedure, data is collected at each pass rolling, calculation is performed based on the data, and the average set-up value regarding the rolling position is sequentially corrected.
[0007]
Next, a second hot rolling mill setup method that more specifically points out the differences between the hot rolling mill setup method according to the embodiment of the present invention and the conventional method is claimed in claim 2 of the present invention. The actual rolling information includes at least a load and a delivery side plate thickness, and the longitudinal direction of the plasticity coefficient is based on the longitudinal distribution of the load and the delivery side plate thickness. The distribution correction is predicted, and the gap correction amount is calculated based on the plastic coefficient at the tip of the material to be rolled and the plastic coefficient of the steady part included in the longitudinal distribution of the predicted plasticity coefficient. The average set-up value for rolling is corrected.
Hereinafter, the second operation of the setup device 1, that is, the setup method of the second hot rolling mill according to the embodiment of the present invention will be described.
The average set-up value is used for the first rolling reduction position S of the finish rolling mill 101 as in the above examples.
It differs from the setup method of the said 1st hot rolling mill that the 1st rolling is performed with respect to the plate 2 by the said finishing mill 101 using the average setup value of this first rolling reduction position S. FIG. During the one-pass rolling, the load cell 5 and the sheet thickness detector 7 measure the longitudinal load distribution of the rolling load P and the outlet sheet thickness h, respectively. The average set-up value is not used to perform two-pass rolling, and only one-pass rolling is required. In order to obtain the reduction position correction amount dS, in the second hot rolling mill setup method, the inlet side thickness H This is because is not used.
Then, for the data of the collected rolling load P and outlet thickness h, the front and rear ends of the data are specified, and the part being rolled is cut out. After the predetermined filtering for noise removal, if the data lengths of the rolling load data, the rolling position data, and the delivery side plate thickness data are different, the data lengths are aligned using a multirate signal processing technique.
Next, using these two time series data, for example, according to the following equation (3), the longitudinal distribution of the plastic coefficient (temperature corresponding amount) Q is calculated.
[Equation 3]
Figure 0003838831
Next, the plastic coefficient Qm of the stationary part and the plastic coefficient Qt of the tip part are obtained from the distribution of the obtained plastic coefficient Q. Similarly to the temperature T, the plastic coefficient Q can be obtained, for example, by dividing the overall length of the plate into seven parts, the average of the two sections at the tip as the plastic coefficient Qt, and the average of the three central sections as the plastic coefficient Qm. .
Then, according to the following equation (4), a reduction position correction amount dS is calculated with respect to the average setup value for the reduction position S in the second pass, and a correction setup value S + dS for the reduction position S is obtained.
[Expression 4]
Figure 0003838831
In such a procedure, the respective pass rolling during data collection, based on the calculation is performed it, the average setup values Ru are sequentially fixes for pressing position S.
[0008]
Next, a third method for setting up a hot rolling mill, which is more specifically the difference between the method for setting up a hot rolling mill according to an embodiment of the present invention and the conventional method, is claimed in claim 4 of the present invention. The actual rolling information includes at least the load, the entry side plate thickness, and the exit side plate thickness, and the longitudinal distribution of the load, entry side plate thickness, and exit side plate thickness is the same. Based on the deformation resistance of the rolled material, the longitudinal distribution of deformation resistance of the rolled material is predicted, and the gap correction is performed based on the deformation resistance of the rolling material tip and the deformation resistance of the steady portion included in the predicted longitudinal distribution of deformation resistance. The amount is calculated, and the average set-up value for the pass rolling is corrected by the gap correction amount.
Hereinafter, the third operation of the setup apparatus 1, that is, the setup method of the third hot rolling mill according to the embodiment of the present invention will be described.
The average set-up value is used for the first rolling reduction position S of the finish rolling mill 101 as in the above examples.
Using the average set-up value at the first rolling reduction position S, the finishing mill 101 performs two-pass rolling on the plate 2 as in the first hot rolling mill setup method. During the two-pass rolling, the load cell 5 and the plate thickness detector 7 measure the longitudinal load distribution of the rolling load P and the outlet plate thickness h.
Then, for the data of the collected rolling load P and outlet thickness h, the front and rear ends of the data are specified, and the part being rolled is cut out. After the predetermined filtering for noise removal, if the data lengths of the rolling load data and the outgoing side plate thickness data are different, the data lengths are aligned using a multirate signal processing technique. Further, the entry side thickness H is determined from the exit side thickness h of the first pass of the two passes.
Next, using these three time series data, for example, according to the following equation ( 5 ), the longitudinal distribution of the deformation resistance (temperature corresponding amount) Kp is calculated.
[Equation 5 ]
Figure 0003838831
FIG. 3 shows an example of the longitudinal distribution of deformation resistance calculated according to the above equation ( 5 ). The vertical axis in FIG. 3 is the deformation resistance, and the horizontal axis is the position in the longitudinal direction.
Next, the deformation resistance Kpm of the stationary part and the deformation resistance Kpt of the tip part are obtained from the distribution of the obtained deformation resistance Kp. As for the deformation resistance K, similarly to the temperature T and the plasticity coefficient Q, for example, the total length of the plate is divided into seven, the average of the two sections at the tip is the deformation resistance Kpt, and the average of the three central sections is the deformation resistance Kpm. Each can be requested.
Next, the deformation resistance Kpt of the above equation ( 5 ), the above deformation resistances Kpt, Kpm, and the input side plate thickness H, the output side plate thickness h, and the plate width B of the above equation ( 5 ) are sampled in the first pass. The average value of the exit side plate thickness h or the value at the tip, the next pass exit side plate thickness target value, and the next pass plate width are respectively substituted, and the steady portion predicted load Pm and the tip predicted load Pt are calculated.
Then, in the same manner as the first hot rolling mill setup method, the reduction position correction amount dS is calculated with respect to the average setup value related to the reduction position S in the third pass according to the above equation (2). A modified setup value S + dS for is obtained.
According to such a procedure, data is collected at each pass rolling, calculation is performed based on the data, and the average set-up value regarding the rolling position is sequentially corrected.
[00 09 ]
Experimental examples of transition of the exit side sheet thickness h when the average setup value is not corrected and when the average setup value is corrected by the hot rolling mill setup method according to the embodiment of the present invention as described above. 4.
As shown in FIG. 4, when correction is not performed by the hot rolling mill set-up method according to the embodiment of the present invention (see FIG. 4 (a)), the process takes about 0.6 seconds from the start of control. Although delivery thickness h is not stable, the If the product has been modified (see FIG. 4 (b)), immediately after the start of control, delivery side thickness h is stable.
Thus, according to the hot rolling mill setup method according to the embodiment of the present invention, based on the average temperature in the longitudinal direction of the rolled material collected in advance, the hot rolled material is allowed to pass through before being passed. An average set-up value including a roll gap of a rolling mill or a value corresponding to the roll gap is obtained, and the hot rolling mill set-up method is performed using the average set-up value to set the hot rolling mill. Based on the longitudinal distribution of predetermined actual rolling information in which the temperature corresponding amount corresponding to the temperature of the material to be rolled can be predicted, a corrected setup value is calculated by correcting the average setup value for the pass rolling, and the corrected setup value is calculated. Even if there is a temperature gradient in the longitudinal direction of the material to be rolled, the material to be rolled can be obtained without using a thermometer. It is possible to control the thickness with high accuracy from the tip. As a result, there is no need to provide an expensive high response AGC or the like.
In addition, when obtaining the longitudinal distribution of the plastic coefficient, not only the temperature gradient but also the thickness and other disturbance distributions can be considered.
[001 0 ]
【The invention's effect】
As described above, according to the hot rolling mill set-up method according to any one of claims 1 to 4 described above, the material passes through the material to be rolled based on the average temperature in the longitudinal direction of the material to be rolled collected in advance. In the hot rolling mill setup method, the average set-up value including the roll gap of the hot rolling mill is determined and the hot rolling mill is set using the average set-up value. Based on the distribution in the longitudinal direction of predetermined actual rolling information for which a temperature-corresponding amount corresponding to the temperature of the rolled material can be predicted, a corrected setup value obtained by correcting the average setup value for the pass rolling is calculated. By setting the hot rolling mill at the time of the pass rolling, even if there is a temperature gradient in the longitudinal direction of the rolled material, the tip of the rolled material can be used without using a thermometer. The plate thickness can be controlled with high accuracy from the end. As a result, there is no need to provide an expensive high response AGC or the like.
In addition, when obtaining the longitudinal distribution of the plastic coefficient, not only the temperature gradient but also the thickness and other disturbance distributions can be considered.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a setup apparatus suitable for carrying out a hot rolling mill setup method according to a first embodiment of the present invention.
FIG. 2 is a view showing an example of a longitudinal distribution of plate temperature obtained by the hot rolling mill setup method according to the first embodiment of the present invention .
FIG. 3 is a view showing an example of a longitudinal distribution of deformation resistance obtained by a hot rolling mill setup method according to a third embodiment of the present invention.
FIG. 4 is a diagram comparing the case where the average setup value is corrected by the hot rolling mill setup method according to the embodiment of the present invention with the case where the average setup value is not changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Setup apparatus 2 ... Rolled material 3 ... Rolling-down apparatus 4 ... Work roll 5 ... Load cell 6 ... Position meter 7 ... Plate thickness detector

Claims (4)

予め採取された被圧延材の長手方向の平均温度に基づいて,被圧延材を通過させる前に熱間圧延機のロールギャップを含む平均セットアップ値を求め,該平均セットアップ値を用いて上記熱間圧延機の設定を行う熱間圧延機のセットアップ方法において,
前パス圧延時の上記被圧延材の温度に対応する温度対応量が予測可能な所定の実績圧延情報の長手方向分布に基づいて,当該パス圧延に対する上記平均セットアップ値を修正した修正セットアップ値を算出し,該修正セットアップ値により当該パス圧延時の上記熱間圧延機の設定を行うことを特徴とする熱間圧延機のセットアップ方法。
Based on the average temperature in the longitudinal direction of the material to be rolled collected in advance, an average set-up value including a roll gap of a hot rolling mill is obtained before passing the material to be rolled, and the hot set-up value is calculated using the average set-up value. In the hot rolling mill setup method for setting the rolling mill,
Based on the longitudinal distribution of predetermined actual rolling information that can predict the temperature corresponding to the temperature of the material to be rolled during the previous pass rolling, a corrected setup value is calculated by correcting the average setup value for the pass rolling. And setting the hot rolling mill at the time of the pass rolling according to the corrected setup value.
上記実績圧延情報が,荷重,及び出側板厚を少なくとも含むものであり,上記荷重,及び出側板厚の長手方向分布に基づいて,上記温度対応量である塑性係数の長手方向分布を予測し,該予測した塑性係数の長手方向分布に含まれる被圧延材先端部の塑性係数と定常部の塑性係数とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなる請求項1に記載の熱間圧延機のセットアップ方法。  The actual rolling information includes at least the load and the outlet plate thickness, and based on the longitudinal distribution of the load and the outlet plate thickness, predicts the longitudinal distribution of the plasticity coefficient corresponding to the temperature, A gap correction amount is calculated based on the plastic coefficient at the tip of the material to be rolled and the plastic coefficient of the steady portion included in the longitudinal distribution of the predicted plastic coefficient, and the average setup for the pass rolling is performed based on the gap correction amount. The hot rolling mill set-up method according to claim 1, wherein the value is corrected. 上記実績圧延情報が,荷重,入側板厚,及び出側板厚を少なくとも含むものであり,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,被圧延材の温度の長手方向分布を予測し,該予測した被圧延材の温度の長手方向分布に含まれる被圧延材先端部の温度と定常部の温度とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなる請求項1に記載の熱間圧延機のセットアップ方法。  The actual rolling information includes at least the load, the entry side plate thickness, and the exit side plate thickness, and the longitudinal direction of the temperature of the material to be rolled based on the longitudinal distribution of the load, entry side plate thickness, and exit side plate thickness. Predicting the distribution, calculating a gap correction amount based on the temperature of the rolled material tip and the steady portion temperature included in the longitudinal distribution of the predicted temperature of the rolled material, and calculating the gap correction amount based on the gap correction amount. The hot rolling mill setup method according to claim 1, wherein the average setup value for pass rolling is corrected. 上記実績圧延情報が,荷重,入側板厚,及び出側板厚を少なくとも含むものであり,上記荷重,入側板厚,及び出側板厚の長手方向分布に基づいて,上記温度対応量である被圧延材の変形抵抗の長手方向分布を予測し,該予測した変形抵抗の長手方向分布に含まれる被圧延材先端部の変形抵抗と定常部の変形抵抗とに基づいて,ギャップ修正量を算出し,該ギャップ修正量により当該パス圧延に対する上記平均セットアップ値を修正してなる請求項1に記載の熱間圧延機のセットアップ方法。  The above-mentioned actual rolling information includes at least a load, an entry side plate thickness, and an exit side plate thickness. Based on the longitudinal distribution of the load, the entry side plate thickness, and the exit side plate thickness, the rolled material corresponding to the temperature. Predicting the longitudinal distribution of deformation resistance of the material, and calculating the amount of gap correction based on the deformation resistance at the tip of the material to be rolled and the deformation resistance of the steady portion included in the predicted longitudinal distribution of deformation resistance, The hot rolling mill setup method according to claim 1, wherein the average setup value for the pass rolling is corrected by the gap correction amount.
JP32484299A 1999-11-16 1999-11-16 Hot rolling mill setup method Expired - Lifetime JP3838831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32484299A JP3838831B2 (en) 1999-11-16 1999-11-16 Hot rolling mill setup method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32484299A JP3838831B2 (en) 1999-11-16 1999-11-16 Hot rolling mill setup method

Publications (2)

Publication Number Publication Date
JP2001137918A JP2001137918A (en) 2001-05-22
JP3838831B2 true JP3838831B2 (en) 2006-10-25

Family

ID=18170289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32484299A Expired - Lifetime JP3838831B2 (en) 1999-11-16 1999-11-16 Hot rolling mill setup method

Country Status (1)

Country Link
JP (1) JP3838831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506404A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Method for controlling roll gap during finish rolling of strip steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102896156A (en) * 2012-09-29 2013-01-30 鞍钢股份有限公司 Optimization method for hot rolled strip steel roll gap model
CN107433288B (en) * 2016-05-25 2019-02-05 宝山钢铁股份有限公司 It is a kind of based on advancing slip milling train Convenient stable criterion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506404A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Method for controlling roll gap during finish rolling of strip steel

Also Published As

Publication number Publication date
JP2001137918A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP3495909B2 (en) Roll roll profile control device
JPS6121729B2 (en)
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
JP3838831B2 (en) Hot rolling mill setup method
JP5293405B2 (en) Roll gap setup method in reverse rolling
JP3521081B2 (en) Strip width control method in hot finishing mill
JP3767832B2 (en) Thickness control method in hot rolling
JP2803573B2 (en) Manufacturing method of tapered steel plate
JP2002336906A (en) Method and apparatus for controlling rolling mill
JP3646546B2 (en) Steel rolling method
JP3351368B2 (en) Steel rolling method
JPS6111124B2 (en)
JP3403330B2 (en) Strip width control method in hot rolling
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP2692544B2 (en) Method and device for controlling temperature of hot rolling mill
JP5631233B2 (en) Thickness control method of rolling mill
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JP2002346616A (en) Method for controlling sheet thickness
JPH0763747B2 (en) Thickness control method during strip running in hot continuous rolling mill
JPS60240322A (en) Controlling method of rolling dimension of metallic rod material
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH08300024A (en) Method for controlling plate width in hot rolling
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPH03151109A (en) Method for controlling plate thickness in hot continuous rolling mill when plate is passing through

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Ref document number: 3838831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term