JP3835938B2 - Sludge sample supply control method - Google Patents

Sludge sample supply control method Download PDF

Info

Publication number
JP3835938B2
JP3835938B2 JP29594498A JP29594498A JP3835938B2 JP 3835938 B2 JP3835938 B2 JP 3835938B2 JP 29594498 A JP29594498 A JP 29594498A JP 29594498 A JP29594498 A JP 29594498A JP 3835938 B2 JP3835938 B2 JP 3835938B2
Authority
JP
Japan
Prior art keywords
sludge
sample supply
weight
sludge sample
operation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29594498A
Other languages
Japanese (ja)
Other versions
JP2000117295A (en
Inventor
正 矢野
寛通 安東
和男 長▲濱▼
誠 黒田
洽 清水
光雄 田崎
智規 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP29594498A priority Critical patent/JP3835938B2/en
Publication of JP2000117295A publication Critical patent/JP2000117295A/en
Application granted granted Critical
Publication of JP3835938B2 publication Critical patent/JP3835938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥の含水率や強熱減量を計測するに際の汚泥試料供給量制御方法に関する。
【0002】
【従来の技術】
下水汚泥広域処理場などの汚泥処理場に搬入される汚泥の性状は変動し易く、焼却、溶融処理プラントの安定運転に影響を及ぼすため、燃焼に必要な理論空気量を事前に算出し、焼却、溶融の安定化を図る目的で、汚泥の含水率、強熱減量を計測するようにしている。
【0003】
この種の計測に一般に用いられている下水試験法(日本下水道協会により定められた試験方法に基づく手分析手法)では、含水率は、一定量採取した下水汚泥を重量計測し、105〜110℃で2時間乾燥して放冷後に再び重量計測することにより算出され、強熱減量は、含水率計測後の汚泥を600±25℃で1時間強熱灰化して放冷後に重量を計測することにより算出される。
【0004】
【発明が解決しようとする課題】
一定量の下水汚泥を採取する際には通常、定量ポンプを一定時間作動させるようにしているが、定量ポンプの運転時間を固定すると、汚泥性状(水分、粘性等)の変動によって、供給される汚泥の重量にばらつきが生じ、それらより算出される含水率や強熱減量の計測値の精度が低いものとなり、焼却、溶融の安定化に影響を及ぼすという問題があった。
【0005】
本発明は上記問題を解決するもので、汚泥性状が変動しても一定重量の汚泥試料を供給できる汚泥試料供給量制御方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記問題を解決するために本発明は、汚泥の含水率や強熱減量を計測するに際して、汚泥重量計測手段に逐次供給される汚泥試料の供給量を、汚泥試料供給管に介装された定量ポンプにより制御する汚泥試料供給量制御方法であって、各回の計測サイクルにおいて、定量ポンプの設定運転時間T(s)における汚泥重量W(g)の計測値と設定目標汚泥重量Wr (g)とを比較し、以下の式
N =T−(W−Wr )×C (Cは補正係数である)
に基いて、次回の計測サイクルにおける定量ポンプの設定運転時間TN を算出するようにした汚泥試料供給量制御方法を提供する。
【0007】
上記した構成によれば、汚泥重量の計測値と設定目標汚泥重量との偏差に基き、その都度定量ポンプの設定運転時間を調整するので、逐次搬入される汚泥の性状変化に追随して汚泥試料の供給容量を変えることになり、汚泥試料を一定重量で供給できる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1に示した脱水汚泥含水率・強熱減量自動計測装置は、汚泥焼却、溶融処理プラントへの汚泥搬送路(図示せず)に付設されたものであり、計測装置本体1と制御盤2とで構成されている。
【0009】
制御盤2はPLC(Programmable logic controller)3および加熱ランプコントローラ3aを備えていて、連続自動計測プログラムを動作させて、計測装置本体1へ汚泥を供給する汚泥試料供給ポンプ4の運転や、計測装置本体1において汚泥を搬送するハンド5の制御、加熱温度パターンを自動設定した温度制御などを行なう。
【0010】
以下、含水率および強熱減量の計測の手順を説明する。
一定速度で回転する汚泥試料供給ポンプ4により、汚泥搬送路を搬送される脱水汚泥が汚泥試料供給管6を通じて一定量だけ採取され、汚泥採取室7に圧送されて試料皿8に供給される。試料皿8上の脱水汚泥はハンド5により加熱計量室9へ搬送され、電子天秤10で重量計測された後、ハロゲンランプ11と熱電対12とにより、予め設定された加熱温度パターンに基いて乾燥および強熱灰化されるとともに、各工程後に電子天秤10で重量計測される。そして、各計測値から、含水率・強熱減量が算出される。各工程で発生した排ガスは排ガス処理装置13を経て系外へ排出され、重量計測を終えた強熱残留物はハンド5により汚泥採取室7へ再搬送されて、廃棄室14へ回収される。
【0011】
上記した脱水汚泥の供給の手順を詳細に説明する。
図2の要部拡大図に示したように、汚泥試料供給管6は、一端部において汚泥搬送路の汚泥溜り15に連通し、他端部に、試料皿8の上方で開口した汚泥供給ノズル16を有しており、この汚泥試料供給管6に汚泥試料供給ポンプ4が介装されている。汚泥試料供給ポンプ4と電子天秤10とにはコントローラ3が接続しており、このコントローラ3は、目標汚泥重量Wr (g)と、汚泥溜り15の脱水汚泥を汚泥試料供給管6の内部に取り込んで充満させる一定の汚泥試料供給ポンプ4の運転時間T0 と、目標汚泥重量Wr (g)にほぼ相応する脱水汚泥を試料皿8に供給可能な汚泥試料供給ポンプ4の運転時間T(s)とを記憶している。
【0012】
上記したような構成により、初回の計測サイクルでは、一定の運転時間T0 だけ汚泥試料供給ポンプ4が運転されて、汚泥溜り15の脱水汚泥19が汚泥試料供給管6の内部に充満される。次いで、運転時間T(s)だけ汚泥試料供給ポンプ4が運転されて、目標重量にほぼ相応する量の脱水汚泥19が汚泥溜り15より汚泥試料供給管6に取り込まれ、それと同量の脱水汚泥19が管内を送り出されて、ノズル16を通じて試料皿8に供給される。そして、この脱水汚泥19が電子天秤10で計測されて、汚泥重量W(g)の計測値がコントローラ3に記憶される。
【0013】
そして、コントローラ3において、汚泥試料供給ポンプ4の運転時間T(s)と、脱水汚泥19の汚泥重量W(g)と、目標汚泥重量Wr (g)とより、以下の式
N =T−(W−Wr )×C (Cは補正係数である)
に基いて、次回の計測サイクルにおける汚泥試料供給ポンプ4の運転時間TNが算出される。
【0014】
次回の計測サイクルでは、一定の運転時間T0 だけ汚泥試料供給ポンプ4が運転されて、汚泥溜り15の脱水汚泥19が取り込まれ、汚泥試料供給管6の内部の脱水汚泥が全て入れ替えられた後に、上記のようにして算出された運転時間TN (s)だけ汚泥試料供給ポンプ4が運転される。
【0015】
このようにして順次、運転時間T(s)と汚泥重量W(g)と目標汚泥重量Wr (g)とより、次回の計測サイクルにおける汚泥試料供給ポンプ4の運転時間TN が算出され、次回の計測サイクルで、算出された運転時間TN だけ汚泥試料供給ポンプ4が駆動されるため、脱水汚泥19は性状変動にかかわらずほぼ一定重量で供給される。
【0016】
なお、予め、目標汚泥重量Wr (g)を中心とした汚泥採取最小量Wl (g)と汚泥採取最大量WH (g)とが決められていて、汚泥重量W<Wl の時には汚泥試料供給ポンプ4がさらに運転時間(W−Wr )×C(s)だけ運転されて脱水汚泥19が追加採取され、汚泥重量W>WH の時には供給された脱水汚泥19は強制的に強熱灰化されて廃棄されただちに次回の計測サイクルへ移る。このように、脱水汚泥19の性状変動が非常に大きい時には、汚泥の採取をやり直すなどの対策がとられる。
【0017】
汚泥強熱減量計測に際しての計測時間短縮および計測精度確保という両側面からは、目標汚泥重量Wr を5g程度とするのが適当である。補正係数Cはポンプの供給特性により事前に決めるが、0.2程度が適当である。
【0018】
【発明の効果】
以上のように、本発明によれば、逐次供給される汚泥試料の重量を評価し、その都度汚泥試料供給ポンプの運転時間を調整するようにしたことにより、汚泥試料をその性状変動に関わらず一定重量で供給することができ、含水率、強熱減量の計測精度を高め、焼却、溶融を安定化することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態における汚泥試料供給量制御方法が行われる脱水汚泥含水率・強熱減量自動計測装置の概略全体構成を示した説明図である。
【図2】図1に示した脱水汚泥含水率・強熱減量自動計測装置の要部拡大図である。
【符号の説明】
4 汚泥試料供給ポンプ
6 汚泥試料供給管
10 電子天秤
19 脱水汚泥
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the amount of sludge sample supplied when measuring the moisture content and loss on ignition of sludge.
[0002]
[Prior art]
The properties of sludge carried into sludge treatment plants such as a sewage sludge wide-area treatment plant are subject to fluctuations and affect the stable operation of incineration and melting plants. Therefore, the theoretical air volume required for combustion is calculated in advance and incinerated. In order to stabilize the melting, the moisture content of the sludge and the loss on ignition are measured.
[0003]
In the sewage test method generally used for this type of measurement (manual analysis method based on the test method defined by the Japan Sewerage Association), the moisture content is measured by weighing a certain amount of sewage sludge and 105-110 ° C. The weight loss after ignition is calculated by measuring the moisture content by ashing at 600 ± 25 ° C for 1 hour, and measuring the weight after cooling. Is calculated by
[0004]
[Problems to be solved by the invention]
When collecting a certain amount of sewage sludge, the metering pump is usually operated for a certain period of time, but if the operation time of the metering pump is fixed, it will be supplied due to fluctuations in sludge properties (water, viscosity, etc.) There was a problem in that the weight of the sludge varies and the accuracy of the measured moisture content and loss on ignition is low, which affects the stabilization of incineration and melting.
[0005]
The present invention solves the above problems, and an object of the present invention is to provide a sludge sample supply amount control method capable of supplying a sludge sample having a constant weight even if the sludge properties fluctuate.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method for determining the amount of sludge sample that is sequentially supplied to the sludge weight measuring means when measuring the moisture content and loss on ignition of sludge. A method for controlling a sludge sample supply amount controlled by a pump, and in each measurement cycle, a measured value of a sludge weight W (g) and a set target sludge weight W r (g) at a set operation time T (s) of the metering pump. And the following formula T N = T− (W−W r ) × C (C is a correction coefficient)
In accordance with the present invention, a sludge sample supply amount control method is provided in which the set operation time TN of the metering pump in the next measurement cycle is calculated.
[0007]
According to the above configuration, the set operation time of the metering pump is adjusted each time based on the deviation between the measured value of the sludge weight and the set target sludge weight, so that the sludge sample follows the change in the properties of the sludge that is sequentially carried in. Thus, the sludge sample can be supplied at a constant weight.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The dewatered sludge moisture content / ignition loss automatic measuring device shown in FIG. 1 is attached to a sludge conveyance path (not shown) to a sludge incineration and melting treatment plant, and includes a measuring device main body 1 and a control panel 2. It consists of and.
[0009]
The control panel 2 includes a PLC (Programmable Logic Controller) 3 and a heating lamp controller 3a. The control panel 2 operates a continuous automatic measurement program to operate the sludge sample supply pump 4 for supplying sludge to the measuring device body 1 and the measuring device. The main body 1 performs control of the hand 5 that transports sludge, temperature control that automatically sets the heating temperature pattern, and the like.
[0010]
Hereinafter, procedures for measuring the moisture content and ignition loss will be described.
A fixed amount of dewatered sludge conveyed through the sludge conveyance path is collected by a sludge sample supply pump 4 rotating at a constant speed, and is pumped to the sludge collection chamber 7 and supplied to the sample tray 8. The dewatered sludge on the sample pan 8 is conveyed to the heating and weighing chamber 9 by the hand 5 and is weighed by the electronic balance 10 and then dried by the halogen lamp 11 and the thermocouple 12 based on a preset heating temperature pattern. In addition, the ash is ignited and the weight is measured by the electronic balance 10 after each step. Then, the moisture content and ignition loss are calculated from each measured value. The exhaust gas generated in each process is discharged outside the system through the exhaust gas treatment device 13, and the ignition residue after the weight measurement is transported again to the sludge collection chamber 7 by the hand 5 and collected in the disposal chamber 14.
[0011]
The procedure for supplying the above dewatered sludge will be described in detail.
As shown in the enlarged view of the main part of FIG. 2, the sludge sample supply pipe 6 communicates with the sludge reservoir 15 of the sludge conveyance path at one end, and the sludge supply nozzle opened above the sample dish 8 at the other end. The sludge sample supply pump 4 is interposed in the sludge sample supply pipe 6. A controller 3 is connected to the sludge sample supply pump 4 and the electronic balance 10. The controller 3 supplies the target sludge weight W r (g) and the dewatered sludge in the sludge reservoir 15 into the sludge sample supply pipe 6. The operation time T 0 of the fixed sludge sample supply pump 4 to be taken in and filled, and the operation time T of the sludge sample supply pump 4 capable of supplying dehydrated sludge substantially corresponding to the target sludge weight W r (g) to the sample dish 8 s).
[0012]
With the above-described configuration, in the first measurement cycle, the sludge sample supply pump 4 is operated for a certain operation time T 0 , and the dewatered sludge 19 in the sludge reservoir 15 is filled in the sludge sample supply pipe 6. Next, the sludge sample supply pump 4 is operated for the operation time T (s), and an amount of dewatered sludge 19 substantially corresponding to the target weight is taken into the sludge sample supply pipe 6 from the sludge reservoir 15, and the same amount of dewatered sludge is obtained. 19 is fed out of the tube and supplied to the sample pan 8 through the nozzle 16. The dewatered sludge 19 is measured by the electronic balance 10, and the measured value of the sludge weight W (g) is stored in the controller 3.
[0013]
In the controller 3, the following formula T N = T is calculated from the operation time T (s) of the sludge sample supply pump 4, the sludge weight W (g) of the dewatered sludge 19, and the target sludge weight W r (g). − (W−W r ) × C (C is a correction coefficient)
Based on this, the operating time TN of the sludge sample supply pump 4 in the next measurement cycle is calculated.
[0014]
In the next measurement cycle, the sludge sample supply pump 4 is operated for a certain operation time T 0 , the dewatered sludge 19 in the sludge reservoir 15 is taken in, and all the dewatered sludge inside the sludge sample supply pipe 6 is replaced. The sludge sample supply pump 4 is operated for the operation time T N (s) calculated as described above.
[0015]
In this way, the operation time T N of the sludge sample supply pump 4 in the next measurement cycle is sequentially calculated from the operation time T (s), the sludge weight W (g), and the target sludge weight W r (g). In the next measurement cycle, since the sludge sample supply pump 4 is driven for the calculated operation time T N , the dewatered sludge 19 is supplied at a substantially constant weight regardless of the property change.
[0016]
The sludge collection minimum amount W l (g) and the sludge collection maximum amount W H (g) centered on the target sludge weight W r (g) are determined in advance, and when the sludge weight W <W l sludge sample supply pump 4 is further operating time (W-W r) × C (s) only being operated dewatered sludge 19 is added harvested, dehydrated sludge 19 which is supplied at the time of the sludge weight W> W H is forced Immediately after ashing and discarding, move to the next measurement cycle. In this way, when the property variation of the dewatered sludge 19 is very large, measures such as re-collecting the sludge are taken.
[0017]
From both sides of shortening the measurement time and ensuring measurement accuracy when measuring sludge ignition loss, it is appropriate to set the target sludge weight Wr to about 5 g. The correction coefficient C is determined in advance according to the supply characteristics of the pump, but about 0.2 is appropriate.
[0018]
【The invention's effect】
As described above, according to the present invention, the weight of the sludge sample that is sequentially supplied is evaluated, and the operation time of the sludge sample supply pump is adjusted each time. It can be supplied at a constant weight, and the measurement accuracy of moisture content and ignition loss can be improved, and incineration and melting can be stabilized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic overall configuration of a dewatered sludge moisture content / ignition loss automatic measuring device in which a sludge sample supply amount control method according to an embodiment of the present invention is performed.
2 is an enlarged view of a main part of the dewatered sludge moisture content / ignition loss automatic measuring device shown in FIG. 1. FIG.
[Explanation of symbols]
4 Sludge sample supply pump 6 Sludge sample supply pipe
10 Electronic balance
19 Dewatered sludge

Claims (1)

汚泥の含水率や強熱減量を計測するに際して、汚泥重量計測手段に逐次供給される汚泥試料の供給量を、汚泥試料供給管に介装された定量ポンプにより制御する汚泥試料供給量制御方法であって、各回の計測サイクルにおいて、定量ポンプの設定運転時間T(s)における汚泥重量W(g)の計測値と設定目標汚泥重量Wr (g)とを比較し、以下の式
N =T−(W−Wr )×C (Cは補正係数である)
に基いて、次回の計測サイクルにおける定量ポンプの設定運転時間TN を算出することを特徴とする汚泥試料供給量制御方法。
When measuring the sludge moisture content and loss on ignition, a sludge sample supply control method is used to control the amount of sludge sample supplied to the sludge weight measuring means by means of a metering pump installed in the sludge sample supply pipe. In each measurement cycle, the measured value of the sludge weight W (g) at the set operation time T (s) of the metering pump is compared with the set target sludge weight W r (g), and the following formula T N = T− (W−W r ) × C (C is a correction coefficient)
A method for controlling the amount of sludge sample supply, characterized in that the set operation time TN of the metering pump in the next measurement cycle is calculated based on the above.
JP29594498A 1998-10-19 1998-10-19 Sludge sample supply control method Expired - Fee Related JP3835938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29594498A JP3835938B2 (en) 1998-10-19 1998-10-19 Sludge sample supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29594498A JP3835938B2 (en) 1998-10-19 1998-10-19 Sludge sample supply control method

Publications (2)

Publication Number Publication Date
JP2000117295A JP2000117295A (en) 2000-04-25
JP3835938B2 true JP3835938B2 (en) 2006-10-18

Family

ID=17827138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29594498A Expired - Fee Related JP3835938B2 (en) 1998-10-19 1998-10-19 Sludge sample supply control method

Country Status (1)

Country Link
JP (1) JP3835938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523127B2 (en) * 2000-07-24 2010-08-11 三井造船株式会社 Sludge monitoring system, sludge control system, water treatment system and sludge treatment system

Also Published As

Publication number Publication date
JP2000117295A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3835938B2 (en) Sludge sample supply control method
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP4142788B2 (en) Sludge treatment system
JP2002273495A (en) Equipment and method for dehydrating sludge
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3611022B2 (en) Measurement method for loss of ignition of sludge
JP3835939B2 (en) Sludge ashing temperature control method
JP2006055743A (en) Control method for water content in dried sludge from sludge drying furnace
JP3580708B2 (en) Sludge sample molding method
JP2006002945A (en) Sludge incineration equipment
JP3969900B2 (en) Sludge sample supply method and sludge sample supply apparatus
JP2000121512A (en) Sludge sample-sampling device
JPH06300238A (en) Controller of mixed sludge incinerator
JP4091879B2 (en) Waste disposal furnace control method and apparatus
JPH06159640A (en) Basicity adjusting apparatus and adjusting method therefor
JP3063874B2 (en) Dewatering cake supply device for sewage sludge incineration equipment and its operation method
KR20020043700A (en) The auto-heat correting controller and method of coal moisture dryer
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP4150434B2 (en) Burner combustion control method for asphalt plant
JP3625698B2 (en) Sample sludge weight measurement method
JP2006064261A (en) Drying method and drying equipment
JP2000121417A (en) Method for measuring weight of sample
JP2001021410A (en) Ignition loss measuring method
JPH10141658A (en) Combustion control method for burner for asphalt plant
SU1079982A1 (en) Method of automatic adjusting of loose material drying process

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 19981019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees