JP4142788B2 - Sludge treatment system - Google Patents

Sludge treatment system Download PDF

Info

Publication number
JP4142788B2
JP4142788B2 JP01081899A JP1081899A JP4142788B2 JP 4142788 B2 JP4142788 B2 JP 4142788B2 JP 01081899 A JP01081899 A JP 01081899A JP 1081899 A JP1081899 A JP 1081899A JP 4142788 B2 JP4142788 B2 JP 4142788B2
Authority
JP
Japan
Prior art keywords
moisture content
sludge
dehydrator
self
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01081899A
Other languages
Japanese (ja)
Other versions
JP2000202495A (en
Inventor
内 恭 三 河
手 勝 記 井
村 恵二朗 安
藤 信 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01081899A priority Critical patent/JP4142788B2/en
Publication of JP2000202495A publication Critical patent/JP2000202495A/en
Application granted granted Critical
Publication of JP4142788B2 publication Critical patent/JP4142788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は下水処理施設、浄化槽施設等の排水の生物処理施設で発生する汚泥を処理する汚泥処理システムに係り、特に脱水装置と焼却炉とを有する汚泥処理システムに関する。
【0002】
【従来の技術】
従来の汚泥処理システムの一例を図11に示す。図11において、生物処理施設で発生する汚泥が濃縮槽1内で沈降濃縮され、濃縮槽1の濃縮汚泥は脱水装置2で機械脱水され、その後脱水汚泥は焼却炉3で焼却される。図11に示す汚泥処理脱水システムでは、脱水装置2からの脱水汚泥の含水率は80%前後であり、焼却炉3で自燃することはない。このため焼却炉3において多量の補助燃料を必要とし、また焼却炉3内の温度が不安定になり排ガス処理が複雑になる。
【0003】
【発明が解決しようとする課題】
上述のように、焼却炉3内では汚泥が自燃することはなく、このため多量の補助燃料を必要とし、かつ焼却炉3内の温度が不安定となる。
【0004】
本発明はこのような点を考慮してなされたものであり、焼却炉において脱水汚泥を確実に自燃することができる汚泥処理システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、汚泥を脱水する脱水装置と、脱水装置により脱水された汚泥を焼却する焼却炉と、脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥の自燃含水率を求める自燃含水率演算装置と、自燃含水率演算装置で求めた自燃含水率に基づいて脱水装置を制御する制御装置と、を備えたことを特徴とする汚泥処理システム、
汚泥を脱水する機械脱水装置と、機械脱水装置の出口側に設けられた加熱脱水装置と、加熱脱水装置により脱水された汚泥を焼却する焼却炉と、機械脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥自燃含水率を求める自燃含水率演算装置と、自燃含水率演算装置で求めた自燃含水率に基づいて機械脱水装置と加熱脱水装置の合計脱水コストを最小とする機械脱水装置出口側の中間含水率を求める中間含水率演算装置と、自燃含水率演算装置で求めた自燃含水率に基づいて加熱脱水装置を制御する第1制御装置と、中間含水率演算装置で求めた中間含水率に基づいて機械脱水装置を制御する第2制御装置と、を備えたことを特徴とする汚泥処理システム、および
汚泥を脱水する機械脱水装置と、機械脱水装置の出口側に設けられた加熱脱水装置と、加熱脱水装置により脱水された汚泥を焼却する焼却炉と、加熱脱水装置の入口側と出口側とを接続するバイパスラインと、バイパスラインへのバイパス流量を調整するバイパス調整装置と、機械脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥自燃含水率を求める自燃含水率演算装置と、機械脱水装置の出口側および加熱脱水装置の出口側に各々設けられた第1含水率計および第2含水率計と、自燃含水率演算装置で求めた自燃含水率と、第1含水率計で求めた機械脱水装置の出口側の含水率と、第2含水率計で求めた加熱脱水装置の出口側の含水率とに基づいてバイパスラインへバイパスするバイパス流量比を求めるとともに、このバイパス流量比に基づいてバイパス調整装置を制御するバイパス制御装置と、を備えたことを特徴とする汚泥処理システムである。
【0006】
本発明によれば、機械脱水装置の入口側に設けられた検出器により固形分濃度と有機物濃度を測定し、この固形分濃度と有機物濃度に基づいて自燃含水率演算装置により汚泥の自燃含水率を求める。脱水装置からの脱水汚泥の含水率が自燃含水率に基づいて調整されるため、焼却炉において汚泥を適切に焼却することができる。
【0007】
【発明の実施の形態】
第1の実施の形態
以下、図面を参照して本発明の実施の形態について説明する。図1および図2は本発明の第1の実施の形態を示す図である。
【0008】
図1および図2において、汚泥処理システムは濃縮汚泥を貯留する貯留槽1と、貯留槽1に配管8を介して接続され貯留槽1により貯留された濃縮汚泥を脱水する脱水装置7と、脱水装置7に配管9を介して接続され脱水装置7からの脱水汚泥を焼却する焼却炉3とを備えている。
【0009】
また脱水装置7の入口側の配管8には、汚泥中の固形物濃度(TS)と有機物濃度(VS)を測定するTS・VS検出器10が設けられている。さらにこのTS・VS検出器10には有機物比率(有機物濃度(VS)/固形物(TS))を求めるとともに、このVS/TS比率から汚泥の自燃含水率(As)を求める自燃含水率演算装置5が接続されている。
【0010】
また自燃含水率演算装置5には、自燃含水率(As)に基づいて脱水装置7を制御する制御装置6が接続されている。
【0011】
なお、図1において、脱水装置7と、自燃含水率演算装置5と、制御装置6とにより脱水システム4が構成されており、脱水装置7で脱水された脱水汚泥は焼却炉3に供給されて焼却される。また配管9には含水率(Ap)を測定する含水率計11が設けられており、この含水率計11は制御装置6に接続されている。
次にこのような構成からなる本実施の形態の作用について説明する。
【0012】
一般に、脱水汚泥9の有機物比率(VS/TS)と自燃含水率の関係は、図2のようになる。同一の有機物比率(VS/TS)でも、自燃含水率は焼却炉3の種類、規模によっても異なるため、あらかじめ焼却炉3のVS/TSと自燃含水率(As)との関係を求めておき、配管9内の脱水汚泥の含水率(Ap)を自燃含水率(As)に保つよう制御装置6で脱水装置7を制御する。
【0013】
脱水汚泥のVS/TSは排水の種類、雨水混入の有無等で変化するが通常60〜80%の範囲であり、自燃含水率は通常50〜75%程度である。熱効率の良い焼却炉(焼却炉(イ))では高い含水率で自燃し、熱効率の悪い焼却炉(焼却炉(ロ))では自燃含水率は低くなる。
【0014】
本件発明者は、通常の脱水装置、例えば遠心脱水装置、ベルトプレス脱水装置、加熱脱水装置では配管8内の濃縮汚泥のVS/TSと、配管9内の脱水汚泥のVS/TSがほぼ等しい事を見いだした。このため配管8内の濃縮汚泥を直接または採取してTS・VS検出器10により固形物濃度(TS)と有機物濃度(VS)を測定する。
【0015】
次に自燃含水率演算装置5により濃縮汚泥のVS/TSを求め、これを脱水汚泥9のVS/TSとして使用する。配管8内の濃縮汚泥の含水率は通常95%程度であり、配管9内の脱水汚泥に比べて採取、測定が容易であり、迅速にVS/TSを求めることができる。次に自燃含水率演算装置5は汚泥のVS/TSから図2に示すVS/TSと自燃含水率との関係を用いて自燃含水率(As)を求め、制御装置6により含水率計11からの含水率(Ap)が自燃含水率(As)となるよう脱水装置7を制御する。
【0016】
焼却炉3は窒素酸化物発生の抑制、ダイオキシン派生の抑制、の観点から800℃程度で運転されて、脱水汚泥を焼却する。また焼却炉3の寿命低下防止の観点から温度変化のない安定運転が必要であるが、脱水装置7からの脱水汚泥を自燃含水率(As)に保つことで、焼却炉3の温度上昇が抑制され、かつ燃焼不良が抑制される。このため焼却炉3の安定燃焼が可能になり、運転管理が極めて容易になる。
【0017】
本実施の形態によれば、焼却炉3の安定燃焼が可能になり、運転管理が極めて容易になる。また自燃含水率演算装置5によりAsを迅速に求めることができるので、制御装置6による脱水装置7の制御周期の短縮が可能になり、脱水汚泥9の含水率の安定化が可能になる。
第2の実施の形態
次に図3および図4により本発明の第2の実施の形態について説明する。図3および図4に示す第2の実施の形態において、図1および図2に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0018】
図3および図4において、貯留槽1と焼却炉3との間に、機械脱水装置21と加熱脱水装置22とからなる脱水装置が配置されている。
【0019】
この場合、機械脱水装置21の出口側に、加熱脱水装置22が配置されており、機械脱水装置21と加熱脱水装置22とは配管25により接続され、また配管25には含水率計26が設けられている。
【0020】
また図3および図4に示すように、自燃含水率演算装置5には、自燃含水率(As)に基づいて、機械脱水装置21と加熱脱水装置22の合計運転コストを最小にするような機械脱水装置21の出口側汚泥の中間含水率(配管25内の汚泥の含水率Als)を求める中間含水率演算装置24が接続されている。
【0021】
また自燃含水率演算装置5には第1制御装置6が接続され、この第1制御装置6は自燃含水率(As)と含水率計11からの測定値(Ap)に基づいて、加熱脱水装置22の出口側の含水率をAsに保つよう加熱脱水装置22を制御するようになっている。
【0022】
また中間含水率演算装置24には第2制御装置23が接続され、この第2制御装置23は中間含水率(Als)と含水率計26からの測定値(Alp)に基づいて、機械脱水装置21の出口側の中間含水率をAlsに保つよう機械脱水装置21を制御するようになっている。
【0023】
図3において、機械脱水装置21、加熱脱水装置22、第1制御装置6a、第2制御装置23、自燃含水率演算装置5、中間含水率演算装置24により脱水システム20が構成される。
【0024】
図3および図4において、まずTS・VS検出器10によりTSおよびVSが測定され、自燃含水率演算装置5において有機物比率(VA/TA)と、脱水汚泥中の自燃含水率(As)が算出される。次に第1制御装置6aは、配管9中の脱水汚泥の含水率(Ap)がAsとなるよう加熱脱水装置22の運転を制御する。
【0025】
同時に中間含水率演算装置24には脱水汚泥の含水率目標値Asと、機械脱水装置21の運転コストパラメータと、加熱脱水装置22の運転コストパラメータとが入力され、この中間含水率演算装置24により、機械脱水装置21出口側の配管25内の汚泥の目標含水率(中間目標含水率:A1s)が算出される。
【0026】
次に第2制御装置23により、A1sを目標値、含水率計26による脱水汚泥の含水率(A1p)をプロセス値とし、機械脱水装置21の運転を制御する。
【0027】
ここで図4により、配管8内の濃縮汚泥を脱水し脱水汚泥(目標含水率AS)として配管9内に送る際の中間含水率A1をパラメータとした機械脱水装置21と加熱脱水装置22の各々の脱水コストを示す。図4において、機械脱水コストは機械脱水装置21で配管8内の汚泥を中間含水率A1まで脱水する際のコストであり、内訳は凝集剤の添加量、機械エネルギー等からなる。また加熱脱水コストは加熱脱水装置22により含水率A1の配管25内の脱水汚泥を目標含水率Asまで脱水する際のコストであり、内訳は蒸気量、機械エネルギー等からなる。このため脱水システム20の脱水コスト(Y円/kg)は機械脱水コストと加熱脱水コストとの和で表せる。
【0028】
本件発明者が脱水システム20の脱水コストを合計脱水コストとした求めたところ、図4に示すように中間含水率がA1sのとき極小値をもつ曲線になった。このことから中間目標含水率をA1sに設定することにより合計脱水コストが最小となることが可能となる。
【0029】
本発明はこの知見に基づくもので、中間含水率演算装置24で配管25内の脱水汚泥の目標値(中間含水率目標値:A1s)を算出し、次にこのA1sを設定値とし、含水率計26による配管25内の脱水汚泥の含水率(A1p)をプロセス値として各々第2制御装置23に入力する。第2制御装置23では、公知の手法で機械脱水装置21を操作し、配管25内の汚泥の含水率をA1sとなるよう制御する。
【0030】
以上のように、本実施の形態によれば焼却炉3での汚泥の安定燃焼が可能になり、同時に脱水コストの最小化が可能になる。この場合、脱水コストの低減は、凝集剤、機械エネルギー、蒸気等の最小化につながるため、環境負荷の抑制に大きく寄与する。
第3の実施の形態
次に図5乃至図8により本発明の第3の実施の形態について説明する。図5乃至図8に示す第3の実施の形態は、機械脱水装置21として遠心脱水装置30を用い、加熱脱水装置22として薄膜式加熱脱水装置40を用いたものであり、他は図3および図4に示す第2の実施の形態と略同一である。図5乃至図8に示す第3の実施の形態において、図3および図4に示す第2の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0031】
図5に示すように、機械脱水装置21は遠心脱水機30と、凝集剤タンク31と、凝集剤演算器32と、凝集剤ポンプ34と、濃縮汚泥流量計33を有し、濃縮汚泥槽1からの配管8中の濃縮汚泥を脱水し、含水率85%前後(78〜90%程度)の脱水汚泥を得て配管25へ送るものである。配管25中の脱水汚泥の含水率は単位固形分(kg)当たりの凝集剤の注入量(kg)、すなわち凝集剤添加率Bに大きく依存する。このため凝集剤演算器32では添加率B、凝集剤濃度C1、濃縮汚泥濃度C2、流量q2を入力し次式で注入量q1を算出し、ポンプ34の注入量を設定する。
【0032】
q1×C1=B×q2×C2
図6に示すように、配管25内の脱水汚泥の含水率(中間含水率:A1)は凝集剤の添加率に大きく依存し、中間含水率(A1)を下げるためには添加率Bを上げる必要がある。通常使用されている高分子凝集剤の場合、適正中間含水率(A1s)を得る注入率は0.5%前後である。
【0033】
中間含水率に影響する要因としては添加率の他に遠心脱水機30の遠心加速度、遠心脱水機内での固形物滞留時間等があるが、いずれもコストに概略比例する。
【0034】
ところで含水率85%前後の脱水汚泥は、自由水の一部が残存しており、スラリー状態となっている。このため配管25内の脱水汚泥を次工程へ移送するためにはポンプ圧送方式が可能になる。ポンプ圧送は脱水汚泥の定量供給が可能になり、臭気の漏洩防止等作業環境改善効果が大きくなる。
【0035】
次に図7により縦型薄膜式加熱脱水装置の構成を示し、図8により縦型薄膜式加熱脱水装置の脱水コストの特性を示す。加熱脱水装置23は縦型薄膜式加熱脱水装置40からなっている。この縦型薄膜式加熱脱水装置40は蒸気ジャケット40aを持つ円筒形の伝熱胴41と、ブレード42を装着した回転軸43と、モータ44とを有し、蒸気ジャケット40aに蒸気45を供給するようになっている。配管25内の脱水汚泥はブレード42により伝熱胴41の内面に引延ばされて薄膜を形成し、加熱脱水後伝熱胴41に沿って落下し、含水率60%前後(50〜70%程度)の加熱脱水汚泥46として自然排出される。薄膜式加熱脱水装置40は短時間に多量の脱水が可能となり、脱水の能力は回転軸の回転数(厳密にはブレード42先端の周速度)に大きく依存する。このため配管25内の脱水汚泥の含水率(中間含水率A1)が小さい場合、回転数を大きくし脱水の能力を高める必要がある。
【0036】
中間含水率A1とブレード42の回転数との関係は、図8に示すとおりである。適正な中間含水率(A1s)を与えるブレード42の先端の周速度は10m/s程度であり、この際、汚泥に加わる遠心加速度は数十G(50〜100G程度)である。周速度は動力コストに概略比例する。
【0037】
ところで縦型薄膜式加熱脱水装置40において、伝熱胴41内での汚泥の滞留時間が数分と短くなっている(薄膜方式以外の加熱脱水設備では滞留時間は数時間である)。このため制御の際の応答が早く、また縦型のため加熱脱水汚泥46は自然排出され、装置停止の際に伝熱胴41内に残留しない。このため装置の停止ならびにスタートが容易である。さらに高速回転のブレード42による汚泥への遠心加速度ならびに掻き取り作用により、加熱脱水汚泥46はチップ状もしくは粒状となり、均質な形状を持ち、かつ含水率が均質になる。このため団塊あるいは粉末が生じることはなく、次工程の焼却炉3への移送および焼却炉3への投入の際の成形が容易である。
【0038】
本実施の形態によれば、機械脱水装置21および加熱脱水装置22の停止ならびにスタートが容易となる。また加熱脱水汚泥46はチップ状もしくは粒状となり、均質な形状を持つので含水率が均質になる。このため団塊あるいは粉末が生じることはなく、次工程の焼却炉3への移送および焼却炉3への投入の際の成形が容易となる。
第4の実施の形態
次に図9および図10により、本発明による第4の実施の形態について説明する。第4の実施の形態は、加熱脱水装置22の入口側と出口側とをバイパスライン50で接続し、機械脱水装置21の出口側と加熱脱水装置22の出口側に各々、含水率計(第1含水率計)55と、含水率計(第2含水率計)55aを設けたものである。
【0039】
また含水率計55,55aはバイパス制御装置53に接続され、このバイパス制御装置53において自燃含水率演算装置5からの自燃含水率と含水率計55,55aからの含水率に基づいてバイパスライン50へバイパスするバイパス流量比を求められる。またバイパス制御装置53により、バイパスライン50に取付けられたポンプ56と配管25に取付けられたポンプ57とを制御するようになっている。この場合、ポンプ56,57はバイパス調整装置を構成する。またバイパスライン50の出口側には混練機51が設けられている。
【0040】
第4の実施の形態において、図3および図4に示す第2の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0041】
図9に示すように機械脱水装置21と、加熱脱水装置22と、バイパスライン50と、混練機51と、バイパス制御装置53とにより脱水システム52が構成される。またバイパスライン50中の脱水汚泥と、加熱脱水装置22からの脱水汚泥が混練機51で混練され、脱水汚泥9として焼却炉3に供給される。
【0042】
ところで機械脱水装置21の出口側に流量計54が設けられ、この流量計54により配管25内の機械脱水汚泥の流量(Q)が測定される。このような流量計54としては電磁波応用の電磁流量計が用いられるが、電磁流量計では含水率75%程度のスラリーの流量測定が可能である。また含水率計55としては、マイクロ波の位相差を利用するマイクロ波濃度計が用いられる。マイクロ波濃度計では上記含水率範囲のスラリーの含水率を正確にかつオンラインで測定することが可能である。
【0043】
バイパス制御装置53に、配管25内の機械脱水汚泥の流量(Q)および含水率(A1)と、配管9内の加熱脱水汚泥の含水率(A2)と、自燃含水率演算装置5からの自燃目標含水率(As)とがパラメータとして入力される。このバイパス制御装置53において、バイパスライン50への流量比(r1)と、加熱脱水装置22への供給比(r2)と、バイパスライン50への流量(Q1)と、加熱脱水装置22への供給量(Q2)とが下式により各々演算され、ポンプ56,57の流量を定める。
【0044】
Q1=Q×r1
Q2=Q×r2
r1+r2=1
配管25内の脱水汚泥中の固形分量は、加熱脱水装置22およびバイパスライン50中で減少または増加することはないので、脱水汚泥中の固形分量は加熱脱水装置22からの汚泥中の固形分量とバイパスライン50内の汚泥中の固形分量の和である。このため配管25内の脱水汚泥の流量(Q)および含水率(A1)と、加熱脱水装置22からの汚泥の含水率(A2)と、自燃含水率(AS)とをパラメータとして、バイパス制御装置53において次式によりr1(バイパスライン50への流量比)と、r2(加熱脱水設備への供給比)とが算出される。
【0045】

Figure 0004142788
図10に自燃含水率(AS:0.60、0.65、0.70の3種)に対するr1、r2の計算例を示す。簡単のため配管25内の脱水汚泥の含水率を0.80(80%)、加熱脱水装置22からの含水率を0.40(40%)とした。
【0046】
加熱脱水装置22からの汚泥の含水率(A2)が焼却炉3への自燃含水率(As)に比べて大幅に低いような場合、焼却炉3の温度上昇トラブルが生じるが、本実施の形態によれば自燃含水率の維持が可能になる。また加熱脱水装置22の応答に比して、バイパスライン50のポンプ56の応答は極めて早いので、自燃含水率(As)の制御性を向上させることができる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、脱水汚泥の含水率を広範囲に調整可能とすることができ、かつ脱水汚泥の含水率を焼却炉での燃焼に最適な値となるように効果的に制御することができる。
【図面の簡単な説明】
【図1】本発明による汚泥処理システムの第1の実施の形態を示す構成図。
【図2】VS/TSと自燃含水率との関係を示す図。
【図3】本発明による汚泥処理システムの第2の実施の形態を示す構成図。
【図4】中間含水率と脱水コストとの関係を示す図。
【図5】本発明による汚泥処理システムの第3の実施の形態を示す遠心脱水装置の構成図。
【図6】遠心脱水装置の特性図。
【図7】薄膜式加熱脱水装置の構成図。
【図8】薄膜式加熱脱水装置の特性図。
【図9】本発明による汚泥処理システムの第4の実施の形態を示す構成図。
【図10】図9に示す汚泥処理システムの特性表を示す図。
【図11】従来の汚泥処理システムを示す図。
【符号の説明】
1 貯留槽
3 焼却炉
5 自燃含水率演算装置
6 制御装置
6a 第1の制御装置
7 脱水装置
10 TS・VS検出器
11,26 含水率計
21 機械脱水装置
22 加熱脱水装置
23 第2の制御装置
24 中間含水率演算装置
30 遠心脱水装置
40 縦型薄膜式加熱脱水装置
50 バイパスライン
53 バイパス制御装置
55,55a 含水率計
56,57 ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge treatment system for treating sludge generated in biological wastewater treatment facilities such as sewage treatment facilities and septic tank facilities, and more particularly to a sludge treatment system having a dehydrator and an incinerator.
[0002]
[Prior art]
An example of a conventional sludge treatment system is shown in FIG. In FIG. 11, sludge generated in the biological treatment facility is settled and concentrated in the concentration tank 1, the concentrated sludge in the concentration tank 1 is mechanically dehydrated by the dehydrator 2, and then the dehydrated sludge is incinerated in the incinerator 3. In the sludge treatment / dehydration system shown in FIG. 11, the moisture content of the dewatered sludge from the dewatering device 2 is around 80%, and the incinerator 3 does not burn by itself. For this reason, a large amount of auxiliary fuel is required in the incinerator 3, the temperature in the incinerator 3 becomes unstable, and the exhaust gas treatment becomes complicated.
[0003]
[Problems to be solved by the invention]
As described above, the sludge does not self-combust in the incinerator 3, so that a large amount of auxiliary fuel is required, and the temperature in the incinerator 3 becomes unstable.
[0004]
The present invention has been made in view of the above points, and an object thereof is to provide a sludge treatment system capable of reliably burning dehydrated sludge in an incinerator.
[0005]
[Means for Solving the Problems]
The present invention includes a dewatering device for dewatering sludge, an incinerator for incinerating sludge dewatered by the dewatering device, a detector that is provided on the inlet side of the dewatering device and measures the solid content concentration and the organic matter concentration in the sludge. Based on the measured value from this detector, the ratio of organic matter concentration / solid content concentration is obtained, and the self-combustion moisture content calculating device for obtaining the self-combustion moisture content of sludge from this ratio, and the self-combustion moisture content obtained by the self-combustion moisture content calculating device A sludge treatment system characterized by comprising a control device for controlling the dehydrating device based on
A mechanical dehydrator for dewatering sludge, a heating dehydrator provided on the outlet side of the mechanical dehydrator, an incinerator for incinerating sludge dehydrated by the heat dehydrator, and an inlet side of the mechanical dehydrator Detector for measuring the solid content concentration and organic matter concentration in the inside, and the ratio of the organic matter concentration / solid content concentration based on the measured value from this detector, and the self-combustion moisture content calculating device for obtaining the sludge self-combustion moisture content from this ratio An intermediate moisture content calculating device for determining an intermediate moisture content on the outlet side of the mechanical dehydrator that minimizes the total dehydration cost of the mechanical dehydrator and the heating dehydrator based on the self-burning moisture content obtained by the self-burning moisture content calculating device, A first controller that controls the heating and dehydrating device based on the self-combustion moisture content determined by the moisture content calculating device; and a second control device that controls the mechanical dehydrating device based on the intermediate moisture content determined by the intermediate moisture content calculating device. The A sludge treatment system characterized by the above, a mechanical dehydration device for dewatering sludge, a heating dehydration device provided on the outlet side of the mechanical dehydration device, an incinerator for incinerating sludge dehydrated by the heating dehydration device, A bypass line that connects the inlet side and outlet side of the heating dehydrator, a bypass adjuster that adjusts the bypass flow rate to the bypass line, and a solid content concentration and organic matter concentration in the sludge provided on the inlet side of the mechanical dehydrator , A ratio of organic substance concentration / solid content concentration based on the measured value from the detector, a self-combustion moisture content calculating device for obtaining a sludge self-combustion moisture content from the ratio, and an outlet side of the mechanical dehydrator And the first moisture content meter and the second moisture content meter provided on the outlet side of the heating and dehydrating device, the self-combustion moisture content obtained by the self-combustion moisture content calculating device, and the mechanical dehydration device obtained by the first moisture content meter. The bypass flow ratio to be bypassed to the bypass line is determined based on the moisture content on the outlet side of the water and the moisture content on the outlet side of the heating and dehydrating device determined by the second moisture meter, and the bypass adjustment is performed based on the bypass flow ratio. A sludge treatment system comprising a bypass control device for controlling the device.
[0006]
According to the present invention, the solid content concentration and the organic matter concentration are measured by the detector provided on the inlet side of the mechanical dehydrator, and the self-combustion moisture content of the sludge is determined by the self-combustion moisture content calculation device based on the solid content concentration and the organic matter concentration. Ask for. Since the moisture content of the dewatered sludge from the dehydrator is adjusted based on the self-burning moisture content, the sludge can be appropriately incinerated in the incinerator.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are views showing a first embodiment of the present invention.
[0008]
1 and 2, the sludge treatment system includes a storage tank 1 that stores concentrated sludge, a dehydrator 7 that is connected to the storage tank 1 via a pipe 8 and dehydrates the concentrated sludge stored in the storage tank 1, and a dehydration system. An incinerator 3 is connected to the apparatus 7 via a pipe 9 and incinerates the dewatered sludge from the dewatering apparatus 7.
[0009]
A pipe 8 on the inlet side of the dehydrator 7 is provided with a TS / VS detector 10 for measuring the solid matter concentration (TS) and the organic matter concentration (VS) in the sludge. Further, the TS / VS detector 10 obtains the organic matter ratio (organic concentration (VS) / solid matter (TS)) and the self-combustion moisture content calculating device for obtaining the self-combustion moisture content (As) of the sludge from the VS / TS ratio. 5 is connected.
[0010]
The self-combustion moisture content calculating device 5 is connected to a control device 6 that controls the dehydration device 7 based on the self-combustion water content (As).
[0011]
In FIG. 1, the dehydrating device 7, the self-combustion moisture content calculating device 5, and the control device 6 constitute a dehydrating system 4. The dehydrated sludge dehydrated by the dehydrating device 7 is supplied to the incinerator 3. Incinerated. The pipe 9 is provided with a moisture content meter 11 for measuring the moisture content (Ap). The moisture content meter 11 is connected to the control device 6.
Next, the operation of the present embodiment having such a configuration will be described.
[0012]
In general, the relationship between the organic matter ratio (VS / TS) of the dehydrated sludge 9 and the self-combustion moisture content is as shown in FIG. Even with the same organic matter ratio (VS / TS), the self-combustion water content varies depending on the type and scale of the incinerator 3, so the relationship between the VS / TS of the incinerator 3 and the self-combustion water content (As) is obtained in advance. The dehydrator 7 is controlled by the controller 6 so that the moisture content (Ap) of the dewatered sludge in the pipe 9 is kept at the self-burning moisture content (As).
[0013]
The VS / TS of dewatered sludge varies depending on the type of drainage, the presence or absence of rainwater, etc., but is usually in the range of 60 to 80%, and the self-combustion moisture content is usually about 50 to 75%. An incinerator with good thermal efficiency (incinerator (b)) self-combusts at a high water content, and an incinerator with low thermal efficiency (incinerator (b)) has a low self-combustion water content.
[0014]
The present inventor has found that the VS / TS of the concentrated sludge in the pipe 8 and the VS / TS of the dewatered sludge in the pipe 9 are almost equal in a normal dewatering apparatus such as a centrifugal dewatering apparatus, a belt press dewatering apparatus, or a heating dehydrating apparatus. I found. For this reason, the concentrated sludge in the pipe 8 is directly or collected and the solids concentration (TS) and the organic matter concentration (VS) are measured by the TS / VS detector 10.
[0015]
Next, the VS / TS of the concentrated sludge is obtained by the self-combustion moisture content calculating device 5 and used as the VS / TS of the dewatered sludge 9. The moisture content of the concentrated sludge in the pipe 8 is usually about 95%, and it is easier to collect and measure than the dehydrated sludge in the pipe 9, and the VS / TS can be obtained quickly. Next, the self-combustion moisture content calculating device 5 obtains the self-combustion water content (As) from the VS / TS of the sludge using the relationship between the VS / TS and the self-combustion water content shown in FIG. The dehydrator 7 is controlled so that the water content (Ap) of the fuel becomes the self-combustion water content (As).
[0016]
The incinerator 3 is operated at about 800 ° C. from the viewpoint of suppressing generation of nitrogen oxides and suppressing dioxin derivation, and incinerates dehydrated sludge. In addition, stable operation without temperature change is necessary from the viewpoint of preventing the life of the incinerator 3 from decreasing, but by keeping the dehydrated sludge from the dehydrator 7 at a self-burning moisture content (As), the temperature rise of the incinerator 3 is suppressed. And combustion failure is suppressed. For this reason, stable combustion of the incinerator 3 becomes possible, and operation management becomes extremely easy.
[0017]
According to this embodiment, stable combustion of the incinerator 3 becomes possible, and operation management becomes extremely easy. Further, As can be obtained quickly by the self-combustion moisture content calculating device 5, the control cycle of the dewatering device 7 by the control device 6 can be shortened, and the moisture content of the dewatered sludge 9 can be stabilized.
Second embodiment Next, a second embodiment of the present invention will be described with reference to Figs. In the second embodiment shown in FIG. 3 and FIG. 4, the same parts as those in the first embodiment shown in FIG. 1 and FIG.
[0018]
In FIG. 3 and FIG. 4, a dehydrating device including a mechanical dehydrating device 21 and a heating dehydrating device 22 is disposed between the storage tank 1 and the incinerator 3.
[0019]
In this case, a heating and dehydrating device 22 is disposed on the outlet side of the mechanical dehydrating device 21, the mechanical dehydrating device 21 and the heating and dehydrating device 22 are connected by a pipe 25, and a moisture content meter 26 is provided in the pipe 25. It has been.
[0020]
As shown in FIGS. 3 and 4, the self-combustion water content calculating device 5 includes a machine that minimizes the total operation cost of the mechanical dehydration device 21 and the heating dehydration device 22 based on the self-combustion water content (As). An intermediate moisture content calculating device 24 for determining the intermediate moisture content of the outlet side sludge of the dehydrator 21 (the moisture content Als of the sludge in the pipe 25) is connected.
[0021]
The first control device 6 is connected to the self-combustion moisture content calculating device 5, and the first control device 6 is based on the self-combustion water content (As) and the measured value (Ap) from the water content meter 11. The heating and dehydrating apparatus 22 is controlled so as to keep the moisture content on the outlet side of 22 at As.
[0022]
Further, a second control device 23 is connected to the intermediate moisture content calculating device 24, and the second control device 23 is a mechanical dehydrator based on the intermediate moisture content (Als) and the measured value (Alp) from the moisture content meter 26. The mechanical dehydrator 21 is controlled so as to keep the intermediate moisture content at the outlet side of 21 at Als.
[0023]
In FIG. 3, a dehydration system 20 is configured by a mechanical dehydrator 21, a heating dehydrator 22, a first controller 6 a, a second controller 23, a self-combustion moisture content calculator 5, and an intermediate moisture content calculator 24.
[0024]
3 and 4, TS and VS are first measured by the TS / VS detector 10, and the organic matter ratio (VA / TA) and the self-combustion water content (As) in the dewatered sludge are calculated by the self-combustion water content calculation device 5. Is done. Next, the first control device 6a controls the operation of the heating and dehydrating device 22 so that the moisture content (Ap) of the dewatered sludge in the pipe 9 becomes As.
[0025]
At the same time, the intermediate moisture content calculation device 24 receives the moisture content target value As of the dewatered sludge, the operation cost parameter of the mechanical dehydration device 21, and the operation cost parameter of the heating dehydration device 22. Then, the target moisture content (intermediate target moisture content: A1s) of the sludge in the pipe 25 on the outlet side of the mechanical dehydrator 21 is calculated.
[0026]
Next, the operation of the mechanical dehydrator 21 is controlled by the second controller 23 with A1s as a target value and the moisture content (A1p) of the dewatered sludge by the moisture meter 26 as a process value.
[0027]
Here, according to FIG. 4, each of the mechanical dehydrator 21 and the heating dehydrator 22 using the intermediate moisture content A1 as a parameter when dewatering the concentrated sludge in the pipe 8 and sending it to the pipe 9 as dehydrated sludge (target moisture content AS). The dehydration cost is shown. In FIG. 4, the mechanical dehydration cost is a cost when the sludge in the pipe 8 is dehydrated to the intermediate water content A1 by the mechanical dehydrator 21, and the breakdown includes the amount of flocculant added, mechanical energy, and the like. The heating and dehydrating cost is a cost when the dewatering sludge in the pipe 25 having the moisture content A1 is dehydrated to the target moisture content As by the heating and dehydrating device 22, and the breakdown includes the amount of steam, mechanical energy, and the like. Therefore, the dehydration cost (Y yen / kg) of the dehydration system 20 can be expressed as the sum of the mechanical dehydration cost and the heating dehydration cost.
[0028]
When the present inventor calculated the dehydration cost of the dehydration system 20 as the total dehydration cost, a curve having a minimum value was obtained when the intermediate water content was A1s as shown in FIG. Therefore, the total dewatering cost can be minimized by setting the intermediate target moisture content to A1s.
[0029]
The present invention is based on this knowledge, and the intermediate moisture content calculation device 24 calculates the target value of the dewatered sludge in the pipe 25 (intermediate moisture content target value: A1s), and then uses this A1s as a set value to determine the moisture content. The water content (A1p) of the dewatered sludge in the pipe 25 by the total 26 is input to the second control device 23 as a process value. In the 2nd control apparatus 23, the mechanical dehydration apparatus 21 is operated with a well-known method, and it controls so that the moisture content of the sludge in the piping 25 may be set to A1s.
[0030]
As described above, according to this embodiment, sludge can be stably burned in the incinerator 3, and at the same time, the cost of dehydration can be minimized. In this case, the reduction of the dehydration cost leads to the minimization of the flocculant, mechanical energy, steam, etc., and thus greatly contributes to the suppression of the environmental load.
Third embodiment Next, a third embodiment of the present invention will be described with reference to Figs. The third embodiment shown in FIGS. 5 to 8 uses a centrifugal dehydrator 30 as the mechanical dehydrator 21, and a thin-film heat dehydrator 40 as the heat dehydrator 22, and the others are shown in FIG. This is substantially the same as the second embodiment shown in FIG. In the third embodiment shown in FIGS. 5 to 8, the same parts as those in the second embodiment shown in FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0031]
As shown in FIG. 5, the mechanical dehydrator 21 includes a centrifugal dehydrator 30, a flocculant tank 31, a flocculant calculator 32, a flocculant pump 34, and a concentrated sludge flow meter 33, and the concentrated sludge tank 1. The concentrated sludge in the pipe 8 is dehydrated to obtain a dehydrated sludge having a water content of about 85% (about 78 to 90%) and sent to the pipe 25. The moisture content of the dewatered sludge in the pipe 25 largely depends on the injection amount (kg) of the flocculant per unit solid content (kg), that is, the flocculant addition rate B. Therefore, the flocculant calculator 32 inputs the addition rate B, the flocculant concentration C1, the concentrated sludge concentration C2, and the flow rate q2, calculates the injection amount q1 by the following equation, and sets the injection amount of the pump 34.
[0032]
q1 * C1 = B * q2 * C2
As shown in FIG. 6, the moisture content of the dewatered sludge in the pipe 25 (intermediate moisture content: A1) greatly depends on the addition rate of the flocculant, and the addition rate B is increased to reduce the intermediate moisture content (A1). There is a need. In the case of a commonly used polymer flocculant, the injection rate for obtaining an appropriate intermediate water content (A1s) is around 0.5%.
[0033]
Factors affecting the intermediate moisture content include the centrifugal acceleration of the centrifugal dehydrator 30 and the solids residence time in the centrifugal dehydrator in addition to the addition rate, all of which are roughly proportional to the cost.
[0034]
By the way, a part of free water remains in the dewatered sludge having a water content of about 85% and is in a slurry state. For this reason, in order to transfer the dewatered sludge in the pipe 25 to the next process, a pumping system is possible. Pumping pump makes it possible to supply a fixed amount of dehydrated sludge, which increases the work environment improvement effect such as prevention of odor leakage.
[0035]
Next, FIG. 7 shows the configuration of the vertical thin film heating and dehydrating apparatus, and FIG. 8 shows the characteristics of the dehydrating cost of the vertical thin film heating and dehydrating apparatus. The heating and dehydrating device 23 includes a vertical thin film heating and dehydrating device 40. The vertical thin film heating and dehydrating apparatus 40 includes a cylindrical heat transfer drum 41 having a steam jacket 40a, a rotating shaft 43 on which a blade 42 is mounted, and a motor 44, and supplies the steam 45 to the steam jacket 40a. It is like that. The dewatered sludge in the pipe 25 is stretched on the inner surface of the heat transfer drum 41 by the blade 42 to form a thin film, falls after the heat dehydration along the heat transfer drum 41, and has a moisture content of around 60% (50 to 70%). It is naturally discharged as heated dehydrated sludge 46. The thin film heating and dehydrating apparatus 40 can perform a large amount of dehydration in a short time, and the dehydrating ability greatly depends on the rotational speed of the rotating shaft (strictly, the peripheral speed at the tip of the blade 42). For this reason, when the moisture content (intermediate moisture content A1) of the dewatered sludge in the pipe 25 is small, it is necessary to increase the rotational speed and enhance the dewatering ability.
[0036]
The relationship between the intermediate moisture content A1 and the rotational speed of the blade 42 is as shown in FIG. The peripheral speed at the tip of the blade 42 giving an appropriate intermediate water content (A1s) is about 10 m / s, and the centrifugal acceleration applied to the sludge is several tens of G (about 50 to 100 G). The peripheral speed is roughly proportional to the power cost.
[0037]
By the way, in the vertical thin film heating and dehydrating apparatus 40, the sludge residence time in the heat transfer drum 41 is as short as several minutes (the residence time is several hours in heating and dehydration equipment other than the thin film type). For this reason, the response at the time of control is quick, and because of the vertical type, the heated dehydrated sludge 46 is naturally discharged and does not remain in the heat transfer drum 41 when the apparatus is stopped. Therefore, it is easy to stop and start the apparatus. Further, due to the centrifugal acceleration and the scraping action on the sludge by the blade 42 rotating at a high speed, the heated dehydrated sludge 46 becomes chip-shaped or granular, has a uniform shape, and has a uniform moisture content. For this reason, no baby boom or powder is generated, and the molding to the transfer to the incinerator 3 and the charging to the incinerator 3 in the next step is easy.
[0038]
According to the present embodiment, the mechanical dehydrator 21 and the heating dehydrator 22 can be easily stopped and started. The heat-dehydrated sludge 46 is chip-shaped or granular and has a uniform shape, so that the water content is uniform. For this reason, no baby boom or powder is produced, and the transfer to the incinerator 3 in the next step and the molding at the time of charging into the incinerator 3 are facilitated.
Fourth embodiment Next, a fourth embodiment according to the present invention will be described with reference to Figs. 9 and 10. In the fourth embodiment, the inlet side and the outlet side of the heating and dehydrating device 22 are connected by a bypass line 50, and the moisture content meter (the first one) is respectively connected to the outlet side of the mechanical dehydrating device 21 and the outlet side of the heating and dehydrating device 22. 1 moisture content meter) 55 and a moisture content meter (second moisture content meter) 55a are provided.
[0039]
The moisture content meters 55 and 55a are connected to the bypass control device 53. In the bypass control device 53, the bypass line 50 is based on the self-combustion moisture content from the self-combustion moisture content calculating device 5 and the moisture content from the moisture content meters 55 and 55a. The bypass flow ratio for bypassing is required. Further, the bypass controller 53 controls the pump 56 attached to the bypass line 50 and the pump 57 attached to the pipe 25. In this case, the pumps 56 and 57 constitute a bypass adjusting device. A kneader 51 is provided on the outlet side of the bypass line 50.
[0040]
In the fourth embodiment, the same parts as those of the second embodiment shown in FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0041]
As shown in FIG. 9, a mechanical dehydration device 21, a heating dehydration device 22, a bypass line 50, a kneader 51, and a bypass control device 53 constitute a dehydration system 52. Further, the dewatered sludge in the bypass line 50 and the dewatered sludge from the heating dehydrator 22 are kneaded by the kneader 51 and supplied to the incinerator 3 as the dewatered sludge 9.
[0042]
Incidentally, a flow meter 54 is provided on the outlet side of the mechanical dehydrator 21, and the flow rate (Q) of the mechanical dehydrated sludge in the pipe 25 is measured by the flow meter 54. As such a flow meter 54, an electromagnetic flow meter using electromagnetic waves is used, and the electromagnetic flow meter can measure the flow rate of slurry having a moisture content of about 75%. As the moisture content meter 55, a microwave densitometer using a phase difference of microwaves is used. The microwave densitometer can accurately and online measure the water content of the slurry in the above water content range.
[0043]
In the bypass control device 53, the flow rate (Q) and moisture content (A1) of the machine dehydrated sludge in the pipe 25, the moisture content (A2) of the heated dehydrated sludge in the pipe 9, and the self-combustion from the self-combustion water content calculating device 5 The target moisture content (As) is input as a parameter. In this bypass control device 53, the flow rate ratio (r 1) to the bypass line 50, the supply ratio (r 2) to the heating dehydrator 22, the flow rate (Q 1) to the bypass line 50, and the supply to the heating dehydrator 22 The amount (Q2) is calculated by the following equations to determine the flow rates of the pumps 56 and 57.
[0044]
Q1 = Q × r1
Q2 = Q × r2
r1 + r2 = 1
Since the solid content in the dewatered sludge in the pipe 25 does not decrease or increase in the heating dehydrator 22 and the bypass line 50, the solid content in the dehydrated sludge is equal to the solid content in the sludge from the heat dehydrator 22. This is the sum of the solid content in the sludge in the bypass line 50. Therefore, the bypass control device using the flow rate (Q) and water content (A1) of the dewatered sludge in the pipe 25, the water content (A2) of the sludge from the heating dehydrator 22, and the self-combustion water content (AS) as parameters. In 53, r1 (flow rate ratio to the bypass line 50) and r2 (supply ratio to the heating dehydration facility) are calculated by the following equations.
[0045]
Figure 0004142788
FIG. 10 shows calculation examples of r1 and r2 with respect to the self-combustion moisture content (AS: three types of 0.60, 0.65, and 0.70). For simplicity, the moisture content of the dewatered sludge in the pipe 25 was set to 0.80 (80%), and the moisture content from the heating dehydrator 22 was set to 0.40 (40%).
[0046]
If the moisture content (A2) of the sludge from the heating and dehydrating device 22 is significantly lower than the moisture content (As) of the self-combustion to the incinerator 3, a temperature rise trouble of the incinerator 3 occurs. According to this, it is possible to maintain the self-combustion moisture content. Further, since the response of the pump 56 of the bypass line 50 is very fast compared to the response of the heating and dehydrating device 22, the controllability of the self-combustion water content (As) can be improved.
[0047]
【The invention's effect】
As described above, according to the present invention, the water content of the dewatered sludge can be adjusted over a wide range, and the water content of the dewatered sludge is effectively set to an optimum value for combustion in the incinerator. Can be controlled.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a sludge treatment system according to the present invention.
FIG. 2 is a graph showing the relationship between VS / TS and moisture content of self-combustion.
FIG. 3 is a configuration diagram showing a second embodiment of a sludge treatment system according to the present invention.
FIG. 4 is a diagram showing the relationship between the intermediate moisture content and the dehydration cost.
FIG. 5 is a configuration diagram of a centrifugal dewatering device showing a third embodiment of a sludge treatment system according to the present invention.
FIG. 6 is a characteristic diagram of a centrifugal dehydrator.
FIG. 7 is a configuration diagram of a thin film heating and dehydrating apparatus.
FIG. 8 is a characteristic diagram of a thin film heating and dehydrating apparatus.
FIG. 9 is a configuration diagram showing a fourth embodiment of a sludge treatment system according to the present invention.
FIG. 10 is a diagram showing a characteristic table of the sludge treatment system shown in FIG. 9;
FIG. 11 is a diagram showing a conventional sludge treatment system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage tank 3 Incinerator 5 Self-combustion moisture content calculating apparatus 6 Control apparatus 6a 1st control apparatus 7 Dehydration apparatus 10 TS * VS detector 11, 26 Moisture content meter 21 Mechanical dehydration apparatus 22 Heating dehydration apparatus 23 2nd control apparatus 24 Intermediate moisture content calculating device 30 Centrifugal dehydrator 40 Vertical thin film heating dehydrator 50 Bypass line 53 Bypass controller 55, 55a Moisture meter 56, 57 Pump

Claims (4)

汚泥を脱水する脱水装置と、
脱水装置により脱水された汚泥を焼却する焼却炉と、
脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、
この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥の自燃含水率を求める自燃含水率演算装置と、
自燃含水率演算装置で求めた自燃含水率に基づいて脱水装置を制御する制御装置と、を備えたことを特徴とする汚泥処理システム。
A dehydrator for dewatering sludge;
An incinerator for incinerating sludge dehydrated by a dehydrator;
A detector that is provided on the inlet side of the dehydrator and measures the solid content concentration and the organic matter concentration in the sludge;
Based on the measured value from this detector, the ratio of organic substance concentration / solid content concentration is obtained, and the self-combustion moisture content calculating device for obtaining the self-combustion moisture content of sludge from this ratio;
A sludge treatment system comprising: a control device that controls the dehydration device based on the self-combustion water content calculated by the self-combustion water content calculation device.
汚泥を脱水する機械脱水装置と、
機械脱水装置の出口側に設けられた加熱脱水装置と、
加熱脱水装置により脱水された汚泥を焼却する焼却炉と、
機械脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、
この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥自燃含水率を求める自燃含水率演算装置と、
自燃含水率演算装置で求めた自燃含水率に基づいて機械脱水装置と加熱脱水装置の合計脱水コストを最小とする機械脱水装置出口側の中間含水率を求める中間含水率演算装置と、
自燃含水率演算装置で求めた自燃含水率に基づいて加熱脱水装置を制御する第1制御装置と、
中間含水率演算装置で求めた中間含水率に基づいて機械脱水装置を制御する第2制御装置と、を備えたことを特徴とする汚泥処理システム。
A mechanical dehydrator for dewatering sludge;
A heating and dehydrating device provided on the outlet side of the mechanical dehydrating device;
An incinerator for incinerating sludge dehydrated by a heating dehydrator;
A detector that is provided on the inlet side of the mechanical dehydrator and measures the solid content concentration and the organic matter concentration in the sludge;
Based on the measured value from this detector, the ratio of organic substance concentration / solid content concentration is obtained, and the self-combustion moisture content calculating device for obtaining the sludge self-combustion moisture content from this ratio;
An intermediate moisture content calculating device for determining an intermediate moisture content at the outlet side of the mechanical dehydrator that minimizes the total dehydration cost of the mechanical dehydrator and the heating dehydrator based on the self-burning moisture content determined by the self-burning moisture content calculator;
A first control device for controlling the heating and dehydrating device based on the self-combustion water content determined by the self-combustion water content calculating device;
A sludge treatment system comprising: a second control device that controls a mechanical dehydration device based on an intermediate moisture content obtained by an intermediate moisture content calculation device.
機械脱水装置は遠心脱水装置を有し、加熱脱水装置は薄膜式加熱脱水装置を有することを特徴とする請求項2記載の汚泥処理システム。3. The sludge treatment system according to claim 2, wherein the mechanical dehydrator has a centrifugal dehydrator, and the heat dehydrator has a thin film heat dehydrator. 汚泥を脱水する機械脱水装置と、
機械脱水装置の出口側に設けられた加熱脱水装置と、
加熱脱水装置により脱水された汚泥を焼却する焼却炉と、
加熱脱水装置の入口側と出口側とを接続するバイパスラインと、
バイパスラインへのバイパス流量を調整するバイパス調整装置と、
機械脱水装置の入口側に設けられ、汚泥中の固形分濃度と有機物濃度を測定する検出器と、
この検出器からの測定値に基づいて有機物濃度/固形分濃度の比率を求め、この比率から汚泥自燃含水率を求める自燃含水率演算装置と、
機械脱水装置の出口側および加熱脱水装置の出口側に各々設けられた第1含水率計および第2含水率計と、
自燃含水率演算装置で求めた自燃含水率と、第1含水率計で求めた機械脱水装置の出口側の含水率と、第2含水率計で求めた加熱脱水装置の出口側の含水率とに基づいてバイパスラインへバイパスするバイパス流量比を求めるとともに、このバイパス流量比に基づいてバイパス調整装置を制御するバイパス制御装置と、を備えたことを特徴とする汚泥処理システム。
A mechanical dehydrator for dewatering sludge;
A heating and dehydrating device provided on the outlet side of the mechanical dehydrating device;
An incinerator for incinerating sludge dehydrated by a heating dehydrator;
A bypass line connecting the inlet side and the outlet side of the heating dehydrator,
A bypass adjusting device for adjusting a bypass flow rate to the bypass line;
A detector that is provided on the inlet side of the mechanical dehydrator and measures the solid content concentration and the organic matter concentration in the sludge;
Based on the measured value from this detector, the ratio of organic substance concentration / solid content concentration is obtained, and the self-combustion moisture content calculating device for obtaining the sludge self-combustion moisture content from this ratio;
A first moisture content meter and a second moisture content meter respectively provided on the outlet side of the mechanical dehydrator and the outlet side of the heating dehydrator;
The self-combustion moisture content determined by the self-combustion moisture content calculation device, the moisture content on the outlet side of the mechanical dehydration device determined by the first moisture content meter, and the moisture content on the exit side of the heating dehydration device determined by the second moisture content meter A sludge treatment system comprising: a bypass control device that obtains a bypass flow ratio for bypassing to the bypass line based on the control and controls the bypass adjustment device based on the bypass flow ratio.
JP01081899A 1999-01-19 1999-01-19 Sludge treatment system Expired - Fee Related JP4142788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01081899A JP4142788B2 (en) 1999-01-19 1999-01-19 Sludge treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01081899A JP4142788B2 (en) 1999-01-19 1999-01-19 Sludge treatment system

Publications (2)

Publication Number Publication Date
JP2000202495A JP2000202495A (en) 2000-07-25
JP4142788B2 true JP4142788B2 (en) 2008-09-03

Family

ID=11760946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01081899A Expired - Fee Related JP4142788B2 (en) 1999-01-19 1999-01-19 Sludge treatment system

Country Status (1)

Country Link
JP (1) JP4142788B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273495A (en) * 2001-03-22 2002-09-24 Tokyoto Gesuido Service Kk Equipment and method for dehydrating sludge
JP4942505B2 (en) * 2007-02-07 2012-05-30 中国電力株式会社 Evaluation system for sludge use
JP4849380B2 (en) * 2007-03-09 2012-01-11 株式会社石垣 Screw press cake moisture content constant control method
EP2832703B1 (en) 2012-03-30 2021-03-24 Metawater Co., Ltd. Method for processing and device for processing organic waste, and control device
JP5220949B1 (en) * 2012-10-24 2013-06-26 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP5118262B1 (en) * 2012-07-03 2013-01-16 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
CA2818503A1 (en) 2012-07-03 2014-01-03 Tomoe Engineering Co., Ltd. Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
JP5192609B1 (en) * 2012-12-21 2013-05-08 巴工業株式会社 Sludge treatment system, sludge treatment system operation control program
JP6170799B2 (en) * 2013-10-02 2017-07-26 メタウォーター株式会社 Organic waste energy estimation method and apparatus
JP6170800B2 (en) * 2013-10-02 2017-07-26 メタウォーター株式会社 Organic waste processing apparatus, processing method and control apparatus
JP6696020B1 (en) * 2019-02-25 2020-05-20 月島機械株式会社 Heat dehydration system and heat dehydration method
WO2021251580A1 (en) * 2020-06-08 2021-12-16 (주)한국워터테크놀로지 Electro-osmotic sludge treatment system using machine learning, and control method therefor

Also Published As

Publication number Publication date
JP2000202495A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP4142788B2 (en) Sludge treatment system
EP2504649B1 (en) Method and facility for drying slurry-like materials, in particular sludge from wastewater treatment plants
KR101878996B1 (en) Sludge processing system
WO2017043232A1 (en) Dehydration device, dehydration system, and dehydration method
JP6639330B2 (en) Dehydration system and dehydration method
JP5192609B1 (en) Sludge treatment system, sludge treatment system operation control program
NL8020118A (en) METHOD FOR EXTRACTING HEAT FROM MANURE, SEWER AND OTHER WET WASTE FROM COMBUSTION.
RU2469241C2 (en) Device and methods for combustion of waste water mud in furnace
JP6718400B2 (en) Dewatering device, dewatering system, and dewatering method
JP3457058B2 (en) Batch vacuum drying method and batch vacuum drying device for high moisture content substances
JP3832587B2 (en) Material conversion processing system, material conversion processing method, and exothermic molded body molded from processed material
JP2006002945A (en) Sludge incineration equipment
JP2002273495A (en) Equipment and method for dehydrating sludge
KR100613663B1 (en) Control method of food garbage treating apparatus using temperature property variation
RU2198141C1 (en) System of sewage water sludge utilization
JP2017225958A (en) Water content controlling method of dry sludge and carbonization treatment facility of sludge
JP2023006327A (en) Control device, heat dewatering system, control method and program
JPH11319899A (en) Sludge treating system
JP6170799B2 (en) Organic waste energy estimation method and apparatus
JP2002102834A (en) System for treating waste and method for operating the same
JP6170800B2 (en) Organic waste processing apparatus, processing method and control apparatus
CN220485521U (en) Energy-saving full-automatic sludge drying treatment system
JP6696020B1 (en) Heat dehydration system and heat dehydration method
JPH11337039A (en) Sludge incineration plant
JPS6064117A (en) Sludge disposer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees