WO2017043232A1 - Dehydration device, dehydration system, and dehydration method - Google Patents

Dehydration device, dehydration system, and dehydration method Download PDF

Info

Publication number
WO2017043232A1
WO2017043232A1 PCT/JP2016/073133 JP2016073133W WO2017043232A1 WO 2017043232 A1 WO2017043232 A1 WO 2017043232A1 JP 2016073133 W JP2016073133 W JP 2016073133W WO 2017043232 A1 WO2017043232 A1 WO 2017043232A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
heating
sludge
cylinder screen
screw shaft
Prior art date
Application number
PCT/JP2016/073133
Other languages
French (fr)
Japanese (ja)
Inventor
築井 良治
昌次郎 渡邊
榮一 大久保
入山 守生
倫也 板山
典男 有城
賢 小宮山
喜義 渋江
石田 健一
萩野 隆生
Original Assignee
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水ing株式会社 filed Critical 水ing株式会社
Priority to JP2017539067A priority Critical patent/JP6672318B2/en
Publication of WO2017043232A1 publication Critical patent/WO2017043232A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • B01D29/17Supported filter elements arranged for inward flow filtration open-ended the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/23Supported filter elements arranged for outward flow filtration
    • B01D29/25Supported filter elements arranged for outward flow filtration open-ended the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the heating surface may be formed in a belt shape and may be arranged in parallel to the axial direction of the screw shaft, or may be formed in an annular shape surrounding the outer cylinder screen in the circumferential direction. Good. Moreover, there may be a plurality of the heating surfaces, and each heating surface may be formed only on a part of the circumferential direction of the outer cylinder screen. The heating surface may be formed in a semi-cylindrical shape that covers a part of the outer cylinder screen in the circumferential direction.
  • FIG. 1 is a block diagram showing a configuration of a dehydration system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the dehydrating apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the structure of the concentrator according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a heat medium flow path of the dehydrating apparatus according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a heat medium flow path of the dehydrating apparatus according to the embodiment of the present invention.
  • FIG. 6 is a view showing a modification of the heating jacket according to the embodiment of the present invention.
  • FIG. 7 is a view showing a modification of the heating jacket according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a dehydration system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the dehydrating apparatus according to the embodiment of the present invention.
  • One or more pressure plates 33A may be provided, and the pressure plate 33A may be provided such that the installation angle is fixed, or the installation angle can be changed as needed. Further, it can be pivotally supported so as to be swingable up and down. By changing the angle of the pressure plate 33A and the size of the gap with the belt 36, the pressure applied to the coagulated sludge can be adjusted, and the concentration efficiency can be adjusted. Further, instead of the pressure plate 33A, for example, a roller can be installed.
  • the water collecting means 34 is provided below the sludge moving means 32 so that water falling from the sludge moving means 32 can be collected and discharged from the waste water outlet.
  • the concentrated sludge thrown into the outer cylinder screen 12 is compressed while being conveyed toward the dropping path 28 by the screw blades 15 spirally provided around the rotating screw shaft 13, and the water separated by this compression. Is discharged to the outside through a small hole 14 provided in the peripheral wall of the outer cylinder screen 12. Further, the dewatered sludge (dehydrated sludge) is discharged from the dropping path 28 to the outside of the dehydrator 4.
  • the screw shaft 13 and the screw blade 15 are formed hollow, and the heat medium (hot water) heated by the heat medium heater 6 is introduced into the screw shaft 13 and the screw blade 15.
  • the internal space of the screw shaft 13 and the internal space of the screw blade 15 communicate with each other at the sludge supply side end of the screw blade 15 (the internal space of the screw shaft 13 and the internal space of the screw blade 15 form a series. ing).
  • the screw shaft 13 and the screw blade 15 are rotating, in order to allow the heat medium to flow into the screw blade 15, the heat medium is injected into the screw shaft 13 at the center of rotation through a rotary joint (rotary joint), It is necessary to flow to the screw blade 15 via the screw shaft 13.
  • the internal space of the screw shaft 13 and the internal space of the screw blade 15 are made into a series so that the heat medium flows inside the screw shaft 13 and the screw blade in the screw shaft 13. Therefore, it is not necessary to distribute the heat to the heating medium in a fixed amount, and a complicated structure is not required.
  • the scale adheres to the heated surface due to the scale component in the filtrate.
  • the heat transfer rate for heating decreases, and the heating effect does not appear, or the scale grows, changing the behavior of sludge in the dehydrator and reducing the dewaterability.
  • an inorganic flocculant is added to the concentrated sludge, the concentrated sludge becomes acidic, the scale components in the sludge are easily dissolved in the dehydrated filtrate, and the amount of scale generated increases remarkably.
  • the heating medium supplied to the screw shaft 13 on the left side of the partition plate 132 and the heating medium supplied to the screw blades 15 from the right side of the partition plate 132 are distributed into a predetermined amount inside the screw shaft 13. There is no need for a complicated structure.
  • the dehydration process includes a separation step of separating water from sludge (squeezing the filtrate from the sludge) and a discharge step of discharging the filtrate out of the outer cylinder screen 12, and the amount of the filtrate in each step is the same.
  • the time for the filtrate to process (squeeze / discharge) differs in each process, and the separation process becomes longer. Therefore, since time can be afforded in the discharging process, even if the filtration area by the small holes 14 formed in the outer cylinder screen 12 is reduced, the dehydrating process is not affected. In other words, in the discharge step, even if the filtration area is small, the water separated from the sludge in the separation step can be sufficiently discharged.
  • heating jackets 51 are provided at intervals in the sludge transport direction (axial direction of the screw shaft 13).
  • the outer peripheral surface of the outer cylinder screen 12 is a filtration surface (a surface where the small holes 14 are exposed) in the conveyance direction.
  • heating surfaces are alternately and repeatedly disposed, and sludge is conveyed while repeating heating and filtration.
  • the heat medium is supplied from the same heat medium heater 6 to the plurality of heating jackets 51.
  • the plurality of heating jackets 51 are respectively connected to the heating medium heater 6 by piping, and the heating medium may be supplied from the heating medium heater 6 to the plurality of heating jackets 51 in parallel.
  • the machine 6 and the plurality of heating jackets 51 may be connected in series (in series) by piping so that the heat medium is supplied to the plurality of heating jackets 51 in order.
  • a heat transfer surface for heating sludge can be sufficiently secured. Even when a low-temperature heating medium such as hot water obtained using waste heat is used, the sludge can be sufficiently heated and dehydrated.
  • the sludge when the sludge is dehydrated while being heated by the screw shaft 13, the screw blades 15 and the heating jacket 15, as described above, the viscosity of the sludge is reduced, and the water retention capacity of the sludge is reduced by thermal denaturation.
  • the filtrate is easily separated. In this way, the water content of the dewatered sludge can be reduced, and the energy required for incineration of the sludge in the incinerator 5 can be suppressed.
  • the filtrate that can be separated is separated promptly after heating, and it is possible to prevent the use of extra energy by not separating the filtrate.
  • the temperature of the sludge is 45 ° C. or more and less than 100 ° C. on average, and preferably 55 ° C. or more and less than 100 ° C., and is suppressed to a temperature at which water contained in the sludge does not boil.
  • FIG. 6 shows an example in which the heating jacket 51 is provided on the outer periphery of the outer cylinder screen 12 in a lattice shape.
  • the outer cylinder screen 12 can secure a filtration part and can be heated uniformly by the heating jacket 51.
  • the support of the outer cylinder screen 12 may be used as the heating jacket 51.
  • the heating jacket 51 is provided in the middle of the outer cylinder screen 12 in the conveying direction.
  • the heating jacket 51 has a cylindrical shape surrounding the outer periphery of the outer cylinder screen 12. The sludge is filtered again with respect to the sludge from which moisture has been removed to some extent before reaching the heating section where the heating jacket 51 is provided, is sufficiently heated by the heating section, and the subsequent moisture is easily separated.
  • the heating jacket 51 is divided vertically.
  • a plurality of arc-shaped heating jackets 51 are spaced apart from each other on the upper side of the outer cylinder screen 12, and a plurality of arc-shaped heating jackets 51 are also spaced apart from each other on the lower side of the outer cylinder screen 12.
  • Each of the heating jackets 51 has a semicircular shape that covers only a part of the outer cylinder screen 12 in the circumferential direction.
  • the plurality of upper heating jackets 51 and the plurality of lower heating jackets 51 are shifted from each other in the transport direction, and the upper heating jacket 51 and the lower heating jacket 51 alternate in the transport direction. Placed in. It should be noted that the position to be divided vertically does not have to be the center of the height of the outer cylinder screen 12.
  • a plurality of annular heating jackets 51 are arranged apart from each other in the transport direction.
  • the width of each heating jacket 51 in the transport direction is narrow, and the interval between them is also narrow, and more heating jackets 51 are arranged.
  • the heating jacket 51 is provided so as to cover the upper part of the outer cylinder screen 12 over the conveying direction of the outer cylinder screen 12.
  • the heating jacket 51 has a semi-cylindrical shape.
  • a heating surface is formed on the upper side of the outer cylinder screen 12, and a filtration surface is formed on the lower side.
  • the number of divisions of the jacket can be reduced, the control of the heat medium is easy, and the manufacturing cost can be reduced.
  • the screw press method since the sludge is conveyed in the discharge direction while rotating in the outer cylinder screen 12, even the heating jacket parallel to the conveyance direction can uniformly apply heat to the sludge.
  • Example 2 Using the digested sludge generated at the sewage treatment plant, a dehydration test was performed using the dehydration system 100 of the present embodiment.
  • the amount of sludge treated is 10 kg-DS / h in terms of solids
  • the screw press method is used as the dewatering method
  • hot water is injected into the screw shaft 13 and the heating jacket 51 as a heat medium while dewatering.
  • the sludge was heated.
  • the temperature of the sludge thrown into the dehydrator 4 was 20 ° C., the amount thereof was 100 kg / h, and the flow rate of hot water as a heating medium was 1.5 m 3 / h.
  • polyferric sulfate and polymer were added in the coagulation tank 2 and coagulated, and then concentrated to about 10% with the concentrator 3. The polymer was added again to the concentrated sludge. The polymer addition rate was 1.2 to 1.5%, and the addition rate of polyferric sulfate was 10 to 15%.
  • the ultimate temperature and moisture content of the dewatered sludge were measured, and the amount of heat necessary for the dehydrator 4 was calculated from the measurement results.
  • the dehydration system 100 is a system that dehydrates organic sludge such as sewage, human waste, and garbage digested sludge while heating.
  • hot water heated using digestion gas, incineration waste heat, and power generation waste heat is used as a heat medium.
  • hot water has a low heat exchange rate due to its low temperature, and the usage destination is limited.
  • the heating medium is also supplied, so the temperature of the heating medium may be relatively low (45 ° C. or more and less than 100 ° C.), and hot water is used. it can. Therefore, energy saving and energy creation can be further promoted by using hot water that is limited in use and may be discarded.
  • the dehydration method includes a concentration step in which sludge is concentrated to produce concentrated sludge, and the concentrated sludge generated in the concentration step is used as dewatered sludge, and the dewatered sludge is indirectly heated.
  • the indirect heating method refers to a method of heating in a state where the non-heated material and the heating medium are not mixed, and the heated object is present on one side of a shield such as a plate or cloth, and the heating medium is present on the other side. Is a heating method in which heat is transferred from a heating medium to an object to be heated through a shield.
  • the sludge is dehydrated while being heated in the dehydration step, the viscosity of the sludge is decreased, and the water retention capacity of the sludge is decreased due to thermal denaturation, and the filtrate is easily separated.
  • the water content of dewatered sludge) can be reduced.
  • most of the dehydrated filtrate can be promptly separated from the sludge at the stage where heating is not completed, it is possible to prevent the use of excess heat energy in the dehydrated filtrate.
  • the concentration of sludge is increased in the concentration step and the amount of sludge to be heated is reduced before heating, the temperature of the sludge in the dehydration step is heated to a desired temperature when dehydrating while heating in the dehydration step. Therefore, the heat energy (heating energy) can be kept low. Furthermore, since the indirect heating method is employed to heat the sludge in the dehydration step, the sludge can be heated using a heat medium such as hot water.
  • soft sludge such as excess sludge and digested sludge is prone to agglomeration by heating, but by adding an inorganic flocculant to the concentrated sludge, the sludge agglomeration power in the dewatering section can be increased again, and dehydration by heating.
  • the effect of reducing the moisture content of the target sludge can be increased.
  • by using a heat medium of less than 100 ° C. moisture evaporation on the heating surface is less likely to occur, and scale adhesion due to scale components in the filtrate generated during dehydration is less likely to occur.
  • Example Hereinafter, examples of the dehydration system 100 of the present embodiment will be described.
  • a dewatering test was performed with the dewatering system 100 using digested sludge generated in a sewage treatment plant.
  • the amount of sludge treated was 8 kg-DS / h in terms of solid matter, and the dehydrator 4 employed a screw press system, and a heating medium was injected into the screw shaft 13 and heated while dehydrating.
  • the sludge was concentrated to about 10% with the concentrator 3 after adding polymer to the sludge in the coagulation tank 2 and coagulating it.
  • a polymer and an inorganic flocculant (specifically, polyferric sulfate) were added to the concentrated sludge.
  • the addition rate of the polymer was 2.0 to 2.5%, and the addition rate of polyferric sulfate was 20 to 25%.
  • the heat medium temperature conditions in the heat medium heater 6 are 80 ° C. (warm water), 120 ° C. (steam), and no heat medium, and each time the inorganic flocculant is added to the concentrated sludge, The water content was measured. The results are shown in Table 2.
  • the moisture content of the dehydrated cake was lower when heated (heating medium temperature 80 to 120 ° C.) than when not heated, regardless of whether or not the inorganic flocculant was added. Regardless of the heat medium temperature condition, the water content of the dehydrated cake was lower in conditions 1 to 3 where the inorganic flocculant was added than in conditions 4 to 6 where the inorganic flocculant was not added. This is due to the aggregation effect of the inorganic flocculant. Furthermore, in conditions 1 to 3 to which an inorganic flocculant was added, the moisture content of the cake was higher in the case of condition 3 (76%) at 120 ° C. than in the case of condition 2 (74%) where the heating medium temperature was 80 ° C. Rose. This is because, under the condition of 120 ° C., there is much scale adhesion on the heating surface of the screw shaft, the heat transfer rate for heating is reduced, and the heating effect does not appear well.
  • digestion gas, incineration waste heat, and power generation waste heat are all used to heat the heat medium, but only a part of them may be used, or other heat sources are used. May be.
  • the polymer was added to sludge with the concentrator 3, you may add a polymer to sludge in the coagulation tank 2.
  • a dehydrating aid may be added in the aggregation tank 2.
  • the dehydrator 4 of the dehydration system 100 is a screw press type dehydrator provided with one screw shaft 13.
  • the dehydrator used in the dehydration system 100 is a screw press type provided with two screw shafts. It may be a dehydrator.
  • the contact area between the shaft and sludge increases, so that sludge can be sufficiently heated even with a low-temperature heating medium. Further, the stirring and mixing of the sludge proceeds at the portion where the biaxial blades overlap each other, the sludge can be heated evenly, and the moisture content of the dewatered sludge can be stably reduced.
  • the two screw shafts may be arranged vertically or horizontally.
  • the dehydrator may include three or more screw shafts.
  • the outer cylinder screen 12 itself may be made hollow and a heat medium may be circulated there.
  • the heating jacket 51 attached to the outer cylinder screen 12 is unnecessary, and the portion heated in the outer cylinder screen 12 becomes both a heating surface and a filtration surface.
  • a part of the outer cylinder screen 12 may be a heating surface, or the entire surface may be a heating surface.
  • the heating jacket 51 is hollow and the heat medium is circulated therein.
  • the heating jacket 51 is used as an electric heater, and the heating jacket is used. 51 itself may generate heat.
  • the heating jacket 51 may be provided with a heat insulating material or a heat insulating plate on the outer side thereof, that is, the surface opposite to the surface in contact with the outer cylinder screen. Thereby, the amount of heat released to the outside from the heating jacket 51 can be reduced, and energy saving can be realized.
  • FIG. 12 shows a dehydration system 101 in which the digestion gas utilization method and incineration waste heat utilization method of the above dehydration system 100 are different. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • digestion gas generated in the digestion tank 1 is used in the digestion gas generator 71, and electricity is effectively used in the field.
  • the waste heat generated in the digestion gas generator 71 is used for heating the digestion tank 1 and also used as a heating heat source during dehydration.
  • the waste heat from the incinerator 5 is used to raise the temperature of the hot water by heat exchange with the white smoke prevention air in the heat medium heater 6. Further, the hot water generated by the heating medium heater 6 is supplied not only to the dehydrator 4 but also to the digestion tank 1 and used for heating the digestion tank 1.
  • the present invention provides an effect that heat dehydration can be performed even when the heat medium is at a low temperature because the outer cylinder screen is provided with a heating surface and a filtration surface and the object to be dehydrated is dehydrated while being heated by the outer cylinder screen.
  • it is useful as a dehydrator for removing moisture from a dehydration target containing moisture such as sludge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

Provided is a dehydration device with which it is possible to sufficiently perform heating and dehydration even with low-temperature heating through use of waste heat or the like. A screw-press-scheme dehydration device (8) is provided with an outer cylinder screen (12) having a small hole (14) provided in the peripheral wall thereof, a screw shaft (13) provided inside the outer cylinder screen (12), and a screw blade (15) provided in a helical shape to the periphery of the screw shaft (13), wherein a heating jacket (51) is provided to part of the outer cylinder screen (12), the heating jacket (51) being configured such that a heat medium generated using waste heat is allowed to flow through the interior thereof.

Description

脱水装置、脱水システム、及び脱水方法Dehydration apparatus, dehydration system, and dehydration method
 本発明は、汚泥等の水分を含む脱水対象物から水分を除去する脱水装置、脱水システム、及び脱水方法に関するものである。 The present invention relates to a dehydration apparatus, a dehydration system, and a dehydration method for removing moisture from an object to be dehydrated containing moisture such as sludge.
 汚泥処理では、汚泥を脱水装置で脱水し、脱水汚泥(脱水ケーキともいう。)を乾燥機で乾燥し、さらに焼却炉で焼却するという処理が行われる。脱水処理における脱水効果が低く、脱水処理によって得られる脱水汚泥の含水率が高いと、その後の脱水汚泥の乾燥や焼却処理等での脱水汚泥中の水分を蒸発させるために大きなエネルギーを要し、省エネルギーや創エネルギーに不利となる。 In sludge treatment, sludge is dehydrated with a dehydrator, dehydrated sludge (also called dehydrated cake) is dried with a dryer, and further incinerated with an incinerator. If the dewatering effect in the dewatering process is low and the water content of the dewatered sludge obtained by the dewatering process is high, a large amount of energy is required to evaporate the water in the dewatered sludge in the subsequent drying or incineration process, It is disadvantageous for energy saving and creation energy.
 そこで、従来、スクリュープレス方式の脱水装置であって、スクリュー軸に熱媒を流通させて汚泥を加熱しながら脱水することで脱水汚泥の低含水率化を図った脱水装置が提案されている(例えば、特許第1211418号公報)。また、同様にスクリュープレス方式の脱水装置において、加熱のための伝熱面積を増大させるためにスクリュー羽根を中空にして、スクリュー羽根にも熱媒を供給することで伝熱面の増大を図った脱水装置も知られている(例えば、特許第1211418号公報)。 In view of this, a screw press type dewatering device has been proposed, in which a heat medium is passed through the screw shaft and the sludge is dehydrated while being heated to reduce the water content of the dewatered sludge ( For example, Japanese Patent No. 12111418). Similarly, in the screw press type dehydrator, the screw blades were made hollow to increase the heat transfer area for heating, and the heat transfer surface was increased by supplying a heat medium to the screw blades as well. A dehydrator is also known (for example, Japanese Patent No. 12111418).
 しかしながら、特許文献1の脱水装置では、加熱のために使用する熱媒が蒸気などの高温の熱媒でないと、十分に加熱効果を得られず、脱水汚泥を十分に低含水率化できないという問題があった。 However, in the dehydration apparatus of Patent Document 1, if the heating medium used for heating is not a high-temperature heating medium such as steam, a sufficient heating effect cannot be obtained, and the dehydrated sludge cannot be sufficiently reduced in water content. was there.
 本発明は、廃熱等の利用による低温加熱であっても十分に加熱脱水できる脱水装置、脱水システム、及び脱水方法を提供することを目的とする。 An object of the present invention is to provide a dehydrating apparatus, a dehydrating system, and a dehydrating method capable of sufficiently heating and dehydrating even by low-temperature heating using waste heat or the like.
 本発明の一態様の脱水装置は、周壁に小孔が形成された外筒スクリーンと、前記外筒スクリーンの内部に設けられたスクリュー軸と、前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根とを備え、前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔から排出する脱水装置であって、前記外筒スクリーンが、加熱される加熱面と、前記小孔が露出する濾過面とを有する構成を有している。この構成により、外筒スクリーンに加熱面と濾過面を設けて脱水対象物を外筒スクリーンで加熱しながら脱水するので、加熱面の加熱が低温であっても加熱脱水を行うことができる。 A dehydrating apparatus according to an aspect of the present invention includes an outer cylinder screen having a small hole formed in a peripheral wall, a screw shaft provided inside the outer cylinder screen, and a screw provided spirally around the screw shaft. The dehydration object thrown into the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft and separated from the dehydration object by rotating the screw shaft together with the screw blade. A dehydrator for discharging moisture from the small holes of the outer cylinder screen, wherein the outer cylinder screen has a heating surface to be heated and a filtration surface from which the small holes are exposed. With this configuration, the outer cylinder screen is provided with a heating surface and a filtering surface, and the object to be dehydrated is dehydrated while being heated by the outer cylinder screen. Therefore, even when the heating surface is heated at a low temperature, heat dehydration can be performed.
 上記の脱水装置は、前記外筒スクリーンの一部に取り付けられた、内部に熱媒を流通させる構成を有する加熱用ジャケットをさらに備えて、前記加熱用ジャケットが取り付けられた前記外筒スクリーンの部分が前記加熱面とされてよい。この構成により、加熱用ジャケットを用いて外筒スクリーンの加熱面を構成できる。 The dehydrating apparatus further includes a heating jacket attached to a part of the outer cylinder screen and configured to circulate a heat medium therein, and the portion of the outer cylinder screen to which the heating jacket is attached May be the heating surface. With this configuration, the heating surface of the outer cylinder screen can be configured using the heating jacket.
 上記の脱水装置において、前記加熱用ジャケットは、内部に熱媒を流通させる構成を有していてよい。この構成により、熱媒を用いて加熱用ジャケットを加熱できる。 In the above dehydrating apparatus, the heating jacket may have a configuration in which a heat medium is circulated therein. With this configuration, the heating jacket can be heated using the heat medium.
 上記の脱水装置において、前記熱媒の温度は100℃未満であってよい。この構成により、熱媒として温水を用いることができ、熱処理設備から得られる廃熱等を利用して熱媒を生成できる。従って、利用先が限られていて捨てられてしまうこともある温水を利用することで、さらに省エネルギーや創エネルギーを促進できる。 In the above dehydrator, the temperature of the heat medium may be less than 100 ° C. With this configuration, hot water can be used as the heat medium, and the heat medium can be generated using waste heat or the like obtained from heat treatment equipment. Therefore, energy saving and energy creation can be further promoted by using hot water that is limited in use and may be discarded.
 上記の脱水装置において、前記濃縮汚泥に対して無機凝集剤を添加する添加部をさらに備えていてよい。余剰汚泥や消化汚泥のような柔らかい汚泥では、加熱により凝集が崩れやすいが、無機凝集剤を加えることで、脱水部内での汚泥凝集力を再度高めることができ、加熱による脱水対象汚泥の含水率の低下の効果を大きくできる。また、100℃未満の熱媒を使用するので、加熱面での水分蒸発が生じにくくなり、脱水中に発生する濾液中のスケール成分による加熱面へのスケール付着が生じにくくなる。 The dehydrator may further include an addition unit for adding an inorganic flocculant to the concentrated sludge. Soft sludge such as excess sludge and digested sludge is prone to agglomeration by heating, but by adding an inorganic flocculant, the sludge cohesion in the dewatering section can be increased again, and the moisture content of the sludge to be dewatered by heating The effect of lowering can be increased. In addition, since a heat medium having a temperature of less than 100 ° C. is used, moisture evaporation on the heating surface hardly occurs, and scale adhesion due to scale components in the filtrate generated during dehydration hardly occurs.
 上記の脱水装置において、前記加熱面と前記濾過面とが前記スクリュー軸の軸芯方向に交互に繰り返して配置されていてよい。この構成により、脱水対象物は、搬送される過程で、加熱面で加熱されて粘度が低下し、かつ、熱変性によって保水力が低下して、脱水されやすい状態となり、その状態で濾過面で濾過されるという加熱脱水を繰り返すので、脱水効果を向上できる。 In the dehydrating apparatus, the heating surface and the filtration surface may be alternately and repeatedly arranged in the axial direction of the screw shaft. With this configuration, the object to be dehydrated is heated on the heating surface in the process of being transported, the viscosity is lowered, and the water holding power is lowered due to thermal denaturation, so that it is easily dehydrated. Since the heat dehydration of being filtered is repeated, the dehydration effect can be improved.
 上記の脱水装置において、前記加熱面は、帯状に形成され、前記スクリュー軸の軸芯方向に平行に配置されていてよく、又は、前記外筒スクリーンを周方向に囲む環状に形成されていてもよい。また、前記加熱面が複数あって、各加熱面が、前記外筒スクリーンの周方向の一部のみに形成されていてもよい。また、前記加熱面は、前記外筒スクリーンの周方向の一部を覆う半円筒形状に形成されていてよい。 In the dehydrating apparatus, the heating surface may be formed in a belt shape and may be arranged in parallel to the axial direction of the screw shaft, or may be formed in an annular shape surrounding the outer cylinder screen in the circumferential direction. Good. Moreover, there may be a plurality of the heating surfaces, and each heating surface may be formed only on a part of the circumferential direction of the outer cylinder screen. The heating surface may be formed in a semi-cylindrical shape that covers a part of the outer cylinder screen in the circumferential direction.
 上記の脱水装置において、前記スクリュー軸及び/又は前記スクリュー羽根は、内部に熱媒を流通させる中空形状を有するものであってよい。この構成により、脱水対象物を十分に加熱することができ、脱水効果を向上できる。 In the above dehydrating apparatus, the screw shaft and / or the screw blade may have a hollow shape in which a heat medium is circulated. With this configuration, the object to be dehydrated can be sufficiently heated, and the dehydration effect can be improved.
 上記の脱水装置は、前記外筒スクリーンに投入される前の前記脱水対象物を濃縮する濃縮機をさらに備えていてよい。この構成により、脱水対象物は濃縮機で濃縮されてから外筒スクリーンに投入されるので、脱水された脱水対象物の含水率を低くすることができる。 The dehydration apparatus may further include a concentrator that concentrates the dehydration object before being put into the outer cylinder screen. With this configuration, the object to be dehydrated is concentrated by the concentrator and then charged into the outer cylinder screen, so that the moisture content of the object to be dehydrated can be reduced.
 本発明の他の態様の脱水装置は、周壁に小孔が形成された外筒スクリーンと、前記外筒スクリーンの内部に設けられたスクリュー軸と、前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根とを備え、前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔から排出する脱水装置であって、前記スクリュー軸及び/又は前記スクリュー羽根は、内部に熱媒を流通させる中空形状を有する構成を有している。この構成により、スクリュー軸及び/又はスクリュー羽根の内部に熱媒を流通させることで、脱水対象物を十分に加熱することができ、脱水効果を向上できる。 The dehydrating apparatus according to another aspect of the present invention includes an outer cylinder screen having a small hole formed in a peripheral wall, a screw shaft provided inside the outer cylinder screen, and a spiral provided around the screw shaft. A screw blade, and by rotating the screw shaft together with the screw blade, the dewatered object charged in the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft, and separated from the dewatered object. In the dehydrating apparatus for discharging the moisture that has been discharged from the small hole of the outer cylinder screen, the screw shaft and / or the screw blade has a configuration in which a heat medium is circulated therein. With this configuration, the dehydration object can be sufficiently heated by circulating the heating medium inside the screw shaft and / or the screw blade, and the dehydration effect can be improved.
 本発明の一態様の脱水システムは、周壁に小孔が形成された外筒スクリーンと、前記外筒スクリーンの内部に設けられたスクリュー軸と、前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根とを備え、前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔から排出する脱水システムであって、さらに、内部に熱媒を流通させる構成を有し、前記外筒スクリーンの一部に取り付けられた加熱用ジャケットと、廃熱を利用して前記熱媒を加熱する熱媒加熱機とを備えた構成を有している。この構成により、外筒スクリーンに加熱用ジャケットを取り付けて脱水対象物を加熱しながら脱水するので、熱媒が低温であっても加熱脱水を行うことができる。 A dehydrating system according to an aspect of the present invention includes an outer cylinder screen having a small hole formed in a peripheral wall, a screw shaft provided inside the outer cylinder screen, and a screw provided spirally around the screw shaft. The dehydration object thrown into the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft and separated from the dehydration object by rotating the screw shaft together with the screw blade. A dehydrating system for discharging moisture from the small holes of the outer cylinder screen, further comprising a structure for circulating a heat medium therein, a heating jacket attached to a part of the outer cylinder screen, and a waste And a heating medium heater that heats the heating medium using heat. With this configuration, the heating jacket is attached to the outer cylinder screen and the object to be dehydrated is dehydrated while being heated, so that the heat dehydration can be performed even when the heat medium is at a low temperature.
 上記の脱水システムは、水分が離脱した前記脱水対象物を焼却し、乾燥し、又は炭化する熱処理設備をさらに備えていてよく、前記熱媒加熱機は、前記熱処理設備の廃熱を利用して前記熱媒を加熱してよい。この構成により、熱処理設備の廃熱を利用して脱水効果を向上させることができ、省エネルギーを実現できる。 The dehydration system may further include a heat treatment facility for incinerating, drying, or carbonizing the object to be dehydrated, and the heating medium heater uses waste heat of the heat treatment facility. The heating medium may be heated. With this configuration, it is possible to improve the dehydration effect by utilizing the waste heat of the heat treatment equipment, and to realize energy saving.
 上記の脱水システムは、前記外筒スクリーンに投入される前の前記脱水対象物に対して消化処理を行う消化槽をさらに備えていてよく、前記熱媒加熱機は、前記消化槽で発生する消化ガスを利用して前記熱媒を加熱してよい。この構成により、脱水対象物の消化処理をした際に発生した消化ガスを利用して熱媒を加熱するので、省エネルギーを実現できる。 The dehydration system may further include a digestion tank that performs a digestion process on the object to be dehydrated before being put into the outer cylinder screen, and the heating medium heater is a digester that is generated in the digestion tank. The heat medium may be heated using gas. With this configuration, the heating medium is heated using the digestion gas generated when the dehydration target is digested, so that energy saving can be realized.
 本発明の一態様の脱水方法は、周壁に小孔が形成された外筒スクリーンと、前記外筒スクリーンの内部に設けられたスクリュー軸と、前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根とを備えた脱水装置における脱水方法であって、前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記外筒スクリーンの加熱面で前記外筒スクリーン内を搬送される前記脱水対象物を加熱し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔が露出した濾過面から排出する構成を有している。この構成により、外筒スクリーンに加熱面と濾過面を設けて脱水対象物を外筒スクリーンで加熱しながら脱水するので、熱媒が低温であっても加熱脱水を行うことができる。 The dehydration method according to an aspect of the present invention includes an outer cylinder screen having a small hole formed in a peripheral wall, a screw shaft provided inside the outer cylinder screen, and a screw provided spirally around the screw shaft. A dehydrating method in a dehydrating apparatus comprising blades, wherein a screw shaft is rotated together with the screw blades to compress an object to be dewatered put on the outer cylinder screen while being conveyed in the axial direction of the screw shaft. Then, the object to be dewatered conveyed in the outer cylinder screen is heated by the heating surface of the outer cylinder screen, and moisture separated from the object to be dehydrated is filtered from the filtration surface where the small holes of the outer cylinder screen are exposed. It has a configuration to discharge. With this configuration, the outer cylinder screen is provided with a heating surface and a filtration surface, and the object to be dehydrated is dehydrated while being heated by the outer cylinder screen, so that heat dehydration can be performed even when the heat medium is at a low temperature.
 本発明によれば、外筒スクリーンに加熱面と濾過面を設けて脱水対象物を外筒スクリーンで加熱しながら脱水するので、低温加熱であっても加熱脱水を行うことができる。 According to the present invention, since the heating surface and the filtering surface are provided on the outer cylinder screen and the object to be dehydrated is dehydrated while being heated by the outer cylinder screen, the heat dehydration can be performed even at low temperature heating.
図1は、本発明の実施の形態に係る脱水システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a dehydration system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る脱水装置の断面図である。FIG. 2 is a cross-sectional view of the dehydrating apparatus according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る濃縮機の構造を示す図である。FIG. 3 is a diagram showing the structure of the concentrator according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る脱水装置の熱媒の流路を示す図である。FIG. 4 is a diagram showing a heat medium flow path of the dehydrating apparatus according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る脱水装置の熱媒の流路を示す図である。FIG. 5 is a diagram showing a heat medium flow path of the dehydrating apparatus according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 6 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 7 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 8 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 9 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 10 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図11は、本発明の実施の形態に係る加熱用ジャケットの変形例を示す図である。FIG. 11 is a view showing a modification of the heating jacket according to the embodiment of the present invention. 図12は、本発明の実施の形態に係る脱水システムの変形例の構成を示すブロック図である。FIG. 12 is a block diagram showing a configuration of a modified example of the dehydration system according to the embodiment of the present invention.
 以下、本発明の実施の形態の脱水システムについて、図面を参照しながら説明する。なお、以下に説明する実施の形態は、本発明を実施する場合の一例を示すものであって、本発明を以下に説明する具体的構成に限定するものではない。本発明の実施にあたっては、実施の形態に応じた具体的構成が適宜採用されてよい。 Hereinafter, a dehydration system according to an embodiment of the present invention will be described with reference to the drawings. The embodiment described below shows an example when the present invention is implemented, and the present invention is not limited to the specific configuration described below. In carrying out the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
 図1は、本発明の実施の形態に係る脱水装置を含む脱水システムの構成を示すブロック図である。図中、実線の矢印は、複数の処理を経て汚泥から焼却灰とされる処理対象物の流れを示しており、点線の矢印は、気体、液体、電気の流れを示している。 FIG. 1 is a block diagram showing a configuration of a dehydrating system including a dehydrating apparatus according to an embodiment of the present invention. In the figure, a solid line arrow indicates a flow of a processing object that is converted into incinerated ash from sludge through a plurality of processes, and a dotted line arrow indicates a flow of gas, liquid, and electricity.
 本実施の形態の脱水システム100は、し尿、下水、工場廃液等の有機性汚水、浄化槽汚泥、生活雑廃水汚泥(生活排水ピットの汚泥、ビルピット汚泥等の濃厚なSSを含有するもの)、上水汚泥等の汚泥を脱水するシステムとして有効であるが、本発明の脱水システムが脱水を行う汚泥(脱水対象汚泥)はこれらに限られない。脱水システム100は、機械的な脱水のみでは十分な脱水が困難な難脱水性の汚泥に対して有効に用いられる。以 下の実施の形態では、有機性廃棄物としての汚泥(有機汚泥)に脱水システム100が用いられる。 The dehydration system 100 according to the present embodiment includes organic sewage such as human waste, sewage, and factory effluent, septic tank sludge, and domestic wastewater sludge (contains a concentrated SS such as sludge in a domestic wastewater pit and bill pit sludge), Although effective as a system for dewatering sludge such as water sludge, the sludge (the sludge to be dehydrated) that is dehydrated by the dewatering system of the present invention is not limited thereto. The dehydration system 100 is effectively used for difficult-to-dehydrate sludge that is difficult to dehydrate sufficiently only by mechanical dehydration. In the following embodiment, the dehydration system 100 is used for sludge (organic sludge) as organic waste.
 脱水システム100は、汚泥に対して嫌気性消化処理(メタン発酵処理)を行う消化槽1と、消化槽1で得られた消化汚泥に対して凝集剤等の薬品を添加して凝集汚泥を調製する凝集槽2と、凝集槽2で得られた凝集汚泥に対して、濃縮処理及び脱水処理を行う脱水装置8と、脱水処理により得られた脱水汚泥(脱水ケーキ)を燃焼させる熱処理設備としての焼却炉5と、脱水機4に供給する熱媒を加熱する熱媒加熱機6と、焼却炉5の廃熱を利用して発電を行う発電機7とを備えている。 The dehydration system 100 prepares agglomerated sludge by adding a chemical such as a flocculant to the digestion tank 1 that performs anaerobic digestion treatment (methane fermentation process) on the sludge, and the digested sludge obtained in the digestion tank 1. As a heat treatment facility for burning the dewatering sludge (dehydrated cake) obtained by the dehydration process An incinerator 5, a heat medium heater 6 that heats the heat medium supplied to the dehydrator 4, and a generator 7 that generates power using waste heat of the incinerator 5 are provided.
 脱水装置8は、脱水処理の前に汚泥から水分を分離して流動性の低い濃縮汚泥とする濃縮機3と、濃縮機3で得られた濃縮汚泥に薬品を添加する薬品添加部9と、薬品が添加された濃縮汚泥を脱水対象汚泥として、この脱水対象汚泥に対して脱水処理を行う脱水機4を備えている。なお、熱処理設備としては、焼却炉(焼却設備)の他に、炭化設備、乾燥設備がある。また、図1の例では、凝集槽2を2段とし、無機凝集剤とポリマを添加できるようしているが、凝集槽2は、1段としても、3段以上の複数段としてもよく、また、凝集剤としてポリマだけを添加してもよい。 The dehydrator 8 includes a concentrator 3 that separates moisture from the sludge before the dehydration process to obtain a low-fluid concentrated sludge, a chemical addition unit 9 that adds chemicals to the concentrated sludge obtained by the concentrator 3, A dewatering machine 4 for dewatering the dewatered sludge is provided, with the concentrated sludge to which the chemicals are added as the dewatered sludge. In addition to the incinerator (incineration facility), the heat treatment facility includes a carbonization facility and a drying facility. In the example of FIG. 1, the coagulation tank 2 has two stages, and the inorganic coagulant and the polymer can be added. However, the coagulation tank 2 may be one stage or a plurality of stages of three or more stages. Further, only a polymer may be added as a flocculant.
 消化槽1のメタン発酵で生成されたメタンガスを含む消化ガスは、熱媒加熱機6に供給される。焼却炉5の焼却によって発生した廃熱は熱媒加熱機6及び発電機7に供給される。発電機7における廃熱は、熱媒加熱機6に供給される。熱媒加熱機6は、例えば水等の熱媒を加熱して温水にして脱水機4に供給する。熱媒加熱機6は、例えば、消化ガスを燃焼して温水を発生させる温水ボイラや、焼却炉排ガスと水の熱交換器であってよい。脱水機4は、この熱媒から得られる熱を用いて汚泥を加熱しながら脱水する。なお、焼却炉5は、脱水機4から排出される脱水汚泥のみでなく、他の場内汚泥や外部から搬入された汚泥を焼却してもよい。 Digestion gas containing methane gas generated by methane fermentation in the digestion tank 1 is supplied to the heating medium heater 6. Waste heat generated by the incineration of the incinerator 5 is supplied to the heat medium heater 6 and the generator 7. Waste heat in the generator 7 is supplied to the heat medium heater 6. The heat medium heater 6 heats a heat medium such as water, for example, to supply warm water to the dehydrator 4. The heat medium heater 6 may be, for example, a hot water boiler that burns digestion gas to generate hot water, or an incinerator exhaust gas and water heat exchanger. The dehydrator 4 dehydrates while heating the sludge using heat obtained from the heat medium. Note that the incinerator 5 may incinerate not only dewatered sludge discharged from the dehydrator 4 but also other in-house sludge and sludge carried in from the outside.
 図2は、濃縮機3と脱水機4と薬品添加部9とが一体になって構成された脱水装置8の断面図である。なお、濃縮機3と脱水機4薬品添加部9とは、図2に示すように一体的に構成されてもよいし、濃縮機3と薬品添加部9を脱水機4とは独立させて脱水機4の上部や横などに設けてもよい。 FIG. 2 is a cross-sectional view of the dehydrator 8 in which the concentrator 3, the dehydrator 4, and the chemical addition unit 9 are integrated. The concentrator 3 and the dehydrator 4 may be configured integrally as shown in FIG. 2, or the concentrator 3 and the chemical adder 9 may be dehydrated independently of the dehydrator 4. You may provide in the upper part of the machine 4, a side, etc.
 本実施の形態の脱水機4は、いわゆるスクリュープレス方式の脱水機である。脱水機4では、機台11の上に円筒形状の外筒スクリーン12が水平に設置されている。外筒スクリーン12は、サポート部材に支持されている。外筒スクリーン12の内部には、スクリュー軸13が外筒スクリーン12と同芯状に設けられている。スクリュー軸13は、汚泥の搬送方向(図2の左方向)に向かって径が次第に大きくなるテーパ形状を有しており、汚泥の排出側に大径端部を有し、汚泥の供給側に小径端部を有する。スクリュー軸13は、外筒スクリーン12に対して、回転可能かつ軸芯方向に移動可能である。 The dehydrator 4 of the present embodiment is a so-called screw press type dehydrator. In the dehydrator 4, a cylindrical outer cylinder screen 12 is horizontally installed on a machine base 11. The outer cylinder screen 12 is supported by the support member. A screw shaft 13 is provided concentrically with the outer cylinder screen 12 inside the outer cylinder screen 12. The screw shaft 13 has a tapered shape whose diameter gradually increases in the sludge conveyance direction (left direction in FIG. 2), has a large-diameter end on the sludge discharge side, and on the sludge supply side. Has a small diameter end. The screw shaft 13 is rotatable and movable in the axial direction relative to the outer cylinder screen 12.
 外筒スクリーン12には、周壁に多数の小孔14が設けられている。小孔14は、外筒スクリーン12の内部と外部とを連通する。スクリュー軸13の周囲にはスクリュー羽根15が螺旋状に巻きつけられている。機台11の上には、スクリュー軸13の軸芯方向に沿って移動可能な可動台16が設けられている。可動台16の上には、前側軸受17と後側軸受18とが設けられている。前側軸受17と後側軸受18は、外筒スクリーン12の閉鎖端板から突出したスクリュー軸13の小径端部を径方向と軸芯方向に軸受けしている。 The outer cylinder screen 12 is provided with a large number of small holes 14 on the peripheral wall. The small hole 14 communicates the inside and the outside of the outer cylinder screen 12. A screw blade 15 is spirally wound around the screw shaft 13. On the machine base 11, a movable base 16 that is movable along the axial direction of the screw shaft 13 is provided. A front bearing 17 and a rear bearing 18 are provided on the movable table 16. The front bearing 17 and the rear bearing 18 support the small diameter end portion of the screw shaft 13 protruding from the closed end plate of the outer cylinder screen 12 in the radial direction and the axial direction.
 前側軸受17及び後側軸受18の上には、減速機付きの可変速電動機19が設けられている。可変速電動機19の回転軸とスクリュー軸13の小径端部とは、連結ベルト20によって回転連結されている。可変速電動機19の回転がスクリュー軸13に伝達され、このようにして、可動台16の上に回転駆動装置が構成される。 A variable speed motor 19 with a reduction gear is provided on the front bearing 17 and the rear bearing 18. The rotating shaft of the variable speed electric motor 19 and the small diameter end of the screw shaft 13 are rotationally connected by a connecting belt 20. The rotation of the variable speed electric motor 19 is transmitted to the screw shaft 13, and thus a rotational drive device is configured on the movable table 16.
 可動台16は、図示しない駆動装置によってスクリュー軸13の軸芯方向に平行移動(前進又は後退)する。この可動台16の移動によって、前側軸受17、後側軸受18、可変速電動機19、及び連結ベルト20もスクリュー軸13の軸芯方向に移動し、さらに、スクリュー軸13もその軸芯方向に移動する。このスクリュー軸13の軸芯方向への移動によって、外筒スクリーン12に対するスクリュー軸13の軸芯方向位置が変更される。 The movable table 16 is translated (advanced or retracted) in the axial direction of the screw shaft 13 by a driving device (not shown). By the movement of the movable table 16, the front bearing 17, the rear bearing 18, the variable speed motor 19, and the connecting belt 20 also move in the axial direction of the screw shaft 13, and the screw shaft 13 also moves in the axial direction. To do. By the movement of the screw shaft 13 in the axial direction, the axial position of the screw shaft 13 with respect to the outer cylinder screen 12 is changed.
 スクリュー軸13のスクリュー羽根15の間には螺旋状の搬送圧縮通路21が形成されている。搬送圧縮通路21は外筒スクリーン12で覆われている。移送圧縮通路21の断面積は、汚泥の供給側(入口側)より排出側(出口側)のほうが小さくなっており、搬送圧縮通路21では、汚泥は、外筒スクリーン12の内周面とスクリュー羽根15とで圧縮されつつ搬送される。 A helical conveyance compression passage 21 is formed between the screw blades 15 of the screw shaft 13. The conveyance compression passage 21 is covered with the outer cylinder screen 12. The cross-sectional area of the transfer compression passage 21 is smaller on the discharge side (outlet side) than on the sludge supply side (inlet side). In the transport compression passage 21, the sludge is separated from the inner peripheral surface of the outer cylinder screen 12 and the screw. It is conveyed while being compressed by the blade 15.
 外筒スクリーン12の上部には、濃縮機3から排出される汚泥(濃縮汚泥)を外筒スクリーン12内に取り込むための投入口22が設けられている。外筒スクリーン12とスクリュー軸13のスクリュー羽根15及び大径部分の間には、移送圧縮通路21を通過した汚泥をさらに圧縮する四角形断面の円環形状ないし円筒形状の圧縮室23を形成している。圧縮室23は、移送圧縮通路21の出口を入口としている。 At the upper part of the outer cylinder screen 12, an inlet 22 is provided for taking the sludge discharged from the concentrator 3 (concentrated sludge) into the outer cylinder screen 12. Between the outer cylinder screen 12 and the screw blade 15 of the screw shaft 13 and the large diameter portion, an annular or cylindrical compression chamber 23 having a rectangular cross section for further compressing the sludge that has passed through the transfer compression passage 21 is formed. Yes. The compression chamber 23 has the outlet of the transfer compression passage 21 as an inlet.
 外筒スクリーン12の下には、外筒スクリーン12内の圧搾によって汚泥から分離して小孔14から流出する液体を集める受皿24が設けてられている。基台11の上には、軸受板25が立設されている。この軸受板25は、外筒スクリーン12の開放端から突出したスクリュー軸13の大径端部を径方向にのみ軸受けしている。 Below the outer cylinder screen 12, a tray 24 is provided that collects the liquid that is separated from the sludge by squeezing the outer cylinder screen 12 and flows out from the small holes 14. A bearing plate 25 is erected on the base 11. The bearing plate 25 supports the large-diameter end portion of the screw shaft 13 protruding from the open end of the outer cylinder screen 12 only in the radial direction.
 軸受板25には、複数の油圧シリンダ26を固定し、油圧シリンダ26のピストンロッド27を軸受板25に貫通し、ピストンロッド27の先端を排出テーパーコーン29に連結して、ピストンロッド27の前進、後退と所望位置での停止を制御する油圧回路を設けて、排出テーパーコーン29の位置をスクリュー軸13の軸芯方向へ変更させる。スクリュー軸13の大径端部と圧縮室23の出口の下には、圧縮室23の出口から流出する脱水汚泥の落下路28を設けている。 A plurality of hydraulic cylinders 26 are fixed to the bearing plate 25, the piston rod 27 of the hydraulic cylinder 26 is passed through the bearing plate 25, the tip of the piston rod 27 is connected to the discharge taper cone 29, and the piston rod 27 moves forward. Then, a hydraulic circuit that controls the backward movement and the stop at the desired position is provided to change the position of the discharge taper cone 29 in the axial direction of the screw shaft 13. Below the large-diameter end of the screw shaft 13 and the outlet of the compression chamber 23, a dewatered sludge dropping path 28 that flows out from the outlet of the compression chamber 23 is provided.
 上記のように構成された脱水機4において、可変速電動機19によって一体となったスクリュー軸13とスクリュー羽根15を回転させ、投入口22から外筒スクリーン12に汚泥を投入すると、汚泥は、スクリュー軸13の軸芯方向に搬送されつつ圧縮されて、汚泥から水分が離脱する。汚泥から分離した水分は外筒スクリーン12の小孔14から外筒スクリーンの外に排出されて、受皿24に受け入れられる。この脱水処理にて生成された脱水汚泥は、落下路28から脱水機4の外に排出される。 In the dehydrator 4 configured as described above, when the screw shaft 13 and the screw blade 15 integrated by the variable speed electric motor 19 are rotated and sludge is thrown into the outer cylinder screen 12 from the inlet 22, the sludge is screwed It is compressed while being conveyed in the axial direction of the shaft 13, and moisture is released from the sludge. The water separated from the sludge is discharged from the small hole 14 of the outer cylinder screen 12 to the outside of the outer cylinder screen and is received by the receiving tray 24. The dewatered sludge generated by this dewatering process is discharged out of the dehydrator 4 from the dropping path 28.
 この脱水機4において、所望の脱水性能を得るため、圧縮室23の入口から出口までの長さを調整する場合は、スクリュー軸13の軸芯方向位置変更装置で、スクリュー軸13を軸芯方向に移動して外筒スクリーン12に対するスクリュー軸13の軸芯方向位置を変更し、これによって圧縮室23の長さを増減させる。 In this dehydrator 4, when adjusting the length from the inlet to the outlet of the compression chamber 23 in order to obtain a desired dewatering performance, the screw shaft 13 is moved in the axial direction by the axial direction position changing device of the screw shaft 13. To change the axial direction position of the screw shaft 13 with respect to the outer cylinder screen 12, thereby increasing or decreasing the length of the compression chamber 23.
 可動台11を図示しない駆動装置によって前進させて、その前進位置に停止させ、スクリュー軸13の軸芯方向位置を圧縮室23の出口側に変更すると、外筒スクリーン12とスクリュー軸13のスクリュー羽根15ないし大径部分の嵌合長さが減少し、圧縮室23の長さが減少する。逆に、可動台11を後退させてその後退位置に停止させ、スクリュー軸13の軸芯方向位置を移送圧縮通路21の入口側に変更すると、圧縮室23の長さが増加する。 When the movable base 11 is moved forward by a drive device (not shown) and stopped at its forward position, and the axial direction position of the screw shaft 13 is changed to the outlet side of the compression chamber 23, the outer blade screen 12 and the screw blades of the screw shaft 13 The fitting length of 15 to the large diameter portion is reduced, and the length of the compression chamber 23 is reduced. Conversely, when the movable base 11 is retracted and stopped at the retracted position, and the axial direction position of the screw shaft 13 is changed to the inlet side of the transfer compression passage 21, the length of the compression chamber 23 increases.
 図3は、濃縮機3の構造を示す図である。本実施の形態の濃縮機3は、汚泥圧搾機であり、汚泥投入用ホッパー31と、汚泥移動手段32と、汚泥移動手段32の上方に設けられた加圧手段33と、汚泥移動手段32の下方に設けられた水捕集手段34とを備えている。 FIG. 3 is a diagram showing the structure of the concentrator 3. The concentrator 3 of the present embodiment is a sludge press, and includes a sludge charging hopper 31, a sludge moving means 32, a pressurizing means 33 provided above the sludge moving means 32, and a sludge moving means 32. And water collecting means 34 provided below.
 汚泥移動手段32は、濾布で形成されるベルト36とベルト駆動装置38とで構成される。ベルト駆動装置38がベルト36を駆動すると、ベルト36の上面全体(搬送面)が水平移動し、凝集汚泥を水平方向汚泥排出口側に移動させる。凝集汚泥は、ベルト36上を移動する間に濾過され、濾液は下方の水捕集手段34に落下する。 The sludge moving means 32 is composed of a belt 36 and a belt driving device 38 formed of filter cloth. When the belt driving device 38 drives the belt 36, the entire upper surface (conveying surface) of the belt 36 is moved horizontally, and the coagulated sludge is moved to the horizontal sludge discharge port side. The agglomerated sludge is filtered while moving on the belt 36, and the filtrate falls to the lower water collecting means 34.
 加圧手段33は、汚泥移動手段32の汚泥排出口37の手前に、ベルト36との間に隙間を空けて斜めに設置された加圧板33Aを備えている。汚泥は、汚泥移動手段32によって水平方向汚泥排出口側に移動されてくると、加圧板33Aとベルト36との間の隙間を通過する際に上から加圧される。 The pressurizing means 33 is provided with a pressurizing plate 33A that is installed obliquely with a gap between the belt 36 and the sludge discharge port 37 of the sludge moving means 32. When the sludge is moved toward the horizontal sludge discharge port by the sludge moving means 32, the sludge is pressurized from above when passing through the gap between the pressure plate 33A and the belt 36.
 加圧板33Aは一つ或いは二つ以上設けてもよいし、また、加圧板33Aは、設置角度が固定されるように設けることもできるし、設置角度を随時変更できるように設けることもでき、さらには、上下揺動可能に軸支することもできる。加圧板33Aの角度並びにベルト36との隙間の大きさを変更することにより、凝集汚泥にかかる圧力を調整することができ、濃縮効率を調整することができる。また、加圧板33Aの代わりに、例えばローラを設置することもできる。 One or more pressure plates 33A may be provided, and the pressure plate 33A may be provided such that the installation angle is fixed, or the installation angle can be changed as needed. Further, it can be pivotally supported so as to be swingable up and down. By changing the angle of the pressure plate 33A and the size of the gap with the belt 36, the pressure applied to the coagulated sludge can be adjusted, and the concentration efficiency can be adjusted. Further, instead of the pressure plate 33A, for example, a roller can be installed.
 水捕集手段34は、汚泥移動手段32に沿ってその下方に設けられており、汚泥移動手段32から落下してくる水を捕集して、廃水口から排水できるようになっている。 The water collecting means 34 is provided below the sludge moving means 32 so that water falling from the sludge moving means 32 can be collected and discharged from the waste water outlet.
 次に、このような構成を備えた濃縮機3の動作について説明する。汚泥投入用ホッパー31に凝集汚泥を投入すると、凝集汚泥は汚泥移動手段32によって水平方向汚泥排出口側に移動させられ、ベルト36の上面上を水平に搬送される。凝集汚泥は、この搬送過程で脱水されると共に、加圧板33Aで圧搾されることで、さらに濃縮濾液を分離させ、濃縮汚泥の濃度を所定の濃度に近づけられ、汚泥排出口37から板状の濃縮汚泥として送り出される。脱水された水は、汚泥移動手段32から落下して水捕集手段34に捕集され、廃水口から排水される。 Next, the operation of the concentrator 3 having such a configuration will be described. When aggregated sludge is charged into the sludge charging hopper 31, the aggregated sludge is moved to the horizontal sludge discharge port side by the sludge moving means 32, and is transported horizontally on the upper surface of the belt 36. The agglomerated sludge is dehydrated during the conveyance process and is squeezed by the pressure plate 33A to further separate the concentrated filtrate, thereby bringing the concentration of the concentrated sludge closer to a predetermined concentration. It is sent out as concentrated sludge. The dehydrated water falls from the sludge moving means 32, is collected by the water collecting means 34, and is drained from the waste water outlet.
 なお、濃縮機3としては、上記のような構成の汚泥圧搾機のほかにも、従来の汚泥脱水に使用される汚泥圧搾機、例えば遠心濃縮機、スクリュー濃縮機、楕円板型濃縮機などを採用することも可能である。また、平板で汚泥を加圧する構成の機械を使用することもできる。また、濃縮濾液を分離するための構造は、ベルトに限定されず、隙間を空けたスリットバーを並べて、その隙間から濃縮濾液を排出し、スリットバー上の濃縮汚泥を機械的な移送手段で移送するような装置で代替してもよい。濃縮機3では、上記のような機械濃縮によって、汚泥濃度が6%以上、好ましくは8%以上になるように、汚泥を濃縮する。 As the concentrator 3, in addition to the sludge press having the above-described configuration, a sludge press used for conventional sludge dewatering, such as a centrifugal concentrator, a screw concentrator, an elliptical plate type concentrator, etc. It is also possible to adopt. Moreover, the machine of the structure which pressurizes sludge with a flat plate can also be used. In addition, the structure for separating the concentrated filtrate is not limited to the belt, and slit bars with gaps are arranged, the concentrated filtrate is discharged from the gaps, and the concentrated sludge on the slit bars is transferred by mechanical transfer means. It is also possible to substitute with such a device. In the concentrator 3, the sludge is concentrated so that the sludge concentration becomes 6% or more, preferably 8% or more by the mechanical concentration as described above.
 このように、濃縮機3では、例えば濃縮汚泥濃度を6%以上とかなり高くするために濃縮時に圧搾力が加えられるので、濃縮機3の前段階の凝集槽で添加した薬品による汚泥凝集力は低下しており、この状態で脱水機4に投入して加熱しながら脱水すると、凝集が不十分な柔らかい汚泥を脱水することになり、脱水対象汚泥の含水率が低下しにくい。特に余剰汚泥や消化汚泥のような柔らかい汚泥では、加熱により凝集が崩れやすいが、無機凝集剤を加えることで、脱水部内での汚泥凝集力を再度高めることができ、加熱による脱水対象汚泥の含水率の低下の効果を大きくできる。 In this way, in the concentrator 3, for example, a squeezing force is applied at the time of concentration in order to make the concentrated sludge concentration as high as 6% or more. Therefore, the sludge coagulation force due to the chemical added in the coagulation tank in the previous stage of the concentrator 3 is In this state, when the dehydrator 4 is put into the dehydrator 4 and dehydrated while being heated, the soft sludge with insufficient aggregation is dehydrated, and the water content of the dewatered sludge is unlikely to decrease. In particular, soft sludge such as excess sludge and digested sludge is prone to agglomeration by heating, but the addition of an inorganic flocculant can re-increase the sludge cohesion in the dewatering section, and the water content of the sludge to be dewatered by heating. The effect of rate reduction can be increased.
 そこで、本実施の形態では、薬品添加部9が濃縮機3と脱水機4との間に配置される。薬品添加部9は、濃縮機3の汚泥排出口37と脱水機4の投入口22とを接続する通路として構成され、ここを通過する濃縮汚泥に対して薬品を添加する。濃縮機3から排出された濃縮汚泥は、その重力によって薬品添加部9内を通過する間に薬品を添加されて、脱水機4の投入口22から外筒スクリーン12内に投入される。 Therefore, in the present embodiment, the chemical addition unit 9 is disposed between the concentrator 3 and the dehydrator 4. The chemical addition unit 9 is configured as a passage connecting the sludge discharge port 37 of the concentrator 3 and the input port 22 of the dehydrator 4, and adds chemicals to the concentrated sludge passing therethrough. The concentrated sludge discharged from the concentrator 3 is added with chemicals while passing through the chemical addition unit 9 due to its gravity, and is introduced into the outer cylinder screen 12 from the inlet 22 of the dehydrator 4.
 薬品添加部9は、濃縮機3にて濃縮された汚泥に対して、薬品として、ポリマ及び無機薬品(無機凝集剤)を添加する。薬品添加部9で濃縮汚泥に添加される汚泥処理凝集用の無機薬品(無機凝集剤)としては、アルミニウムや鉄などの金属塩(例えば、ポリ硫酸第二鉄、塩化第二鉄、硫酸バンド、PAC(ポリ塩化アルミニウム)等)を採用できる。ただし、塩素を多く含む金属塩であるPACや塩化第二鉄では、脱水後の脱水濾液に塩素イオンが多く含まれることになり、脱水機4の腐食が進行しやすく、脱水機4の耐久性が低下する。特に、本実施の形態のように脱水時に加熱をする場合には、脱水濾液が高温になり、塩素イオンによりスクリーンやケーシングの腐食が激しく進行する。このため、スクリーンやケーシングに耐久性のある高価な材料を選定しなければならず、脱水機4の製造コストが高くなってしまう。よって、本実施の形態において使用する無機薬品として好ましいのは、金属硫酸塩(例えば、ポリ硫酸第二鉄や硫酸バンド)である。 The chemical addition unit 9 adds a polymer and an inorganic chemical (inorganic flocculant) as chemicals to the sludge concentrated by the concentrator 3. As an inorganic chemical (inorganic flocculant) for sludge treatment coagulation added to the concentrated sludge in the chemical addition section 9, metal salts such as aluminum and iron (for example, polyferric sulfate, ferric chloride, sulfate bands, PAC (polyaluminum chloride) or the like can be employed. However, PAC and ferric chloride, which are metal salts containing a large amount of chlorine, contain a large amount of chlorine ions in the dehydrated filtrate after dehydration, and the corrosion of the dehydrator 4 is likely to proceed. Decreases. In particular, when heating is performed at the time of dehydration as in the present embodiment, the dehydrated filtrate becomes high temperature, and the corrosion of the screen and the casing is rapidly advanced by chlorine ions. For this reason, durable and expensive materials must be selected for the screen and casing, and the manufacturing cost of the dehydrator 4 is increased. Therefore, a metal sulfate (for example, polyferric sulfate or a sulfate band) is preferable as the inorganic chemical used in the present embodiment.
 外筒スクリーン12内に投入された濃縮汚泥は、回転するスクリュー軸13の周りに螺旋状に設けられたスクリュー羽根15によって落下路28に向けて搬送されつつ、圧縮され、この圧縮によって分離した水分が外筒スクリーン12の周壁に設けられた小孔14から外部に排出される。また、脱水された汚泥(脱水汚泥)は、落下路28から脱水機4の外部に排出される。 The concentrated sludge thrown into the outer cylinder screen 12 is compressed while being conveyed toward the dropping path 28 by the screw blades 15 spirally provided around the rotating screw shaft 13, and the water separated by this compression. Is discharged to the outside through a small hole 14 provided in the peripheral wall of the outer cylinder screen 12. Further, the dewatered sludge (dehydrated sludge) is discharged from the dropping path 28 to the outside of the dehydrator 4.
 本実施の形態の脱水機4では、スクリュー軸13及びスクリュー羽根15が中空に形成されており、その内部に熱媒加熱機6で加熱された熱媒(温水)が導入される。スクリュー軸13の内部空間とスクリュー羽根15の内部空間とは、スクリュー羽根15の汚泥供給側端部で互いに連通している(スクリュー軸13の内部空間とスクリュー羽根15の内部空間とがシリーズになっている)。 In the dehydrator 4 of the present embodiment, the screw shaft 13 and the screw blade 15 are formed hollow, and the heat medium (hot water) heated by the heat medium heater 6 is introduced into the screw shaft 13 and the screw blade 15. The internal space of the screw shaft 13 and the internal space of the screw blade 15 communicate with each other at the sludge supply side end of the screw blade 15 (the internal space of the screw shaft 13 and the internal space of the screw blade 15 form a series. ing).
 図4は、熱媒の流路の例を示す図である。図4に示すように、熱媒入口からスクリュー軸13の内部に流入された熱媒は、スクリュー軸13内部を汚泥の排出側(図4の左側)から汚泥の供給側(図4の右側)に向かって、汚泥の搬送方向と逆方向に流れる。スクリュー軸13の右端(汚泥の供給側端)に到達した熱媒は、そこからスクリュー羽根15の内部に流入する。 FIG. 4 is a diagram showing an example of the flow path of the heat medium. As shown in FIG. 4, the heat medium that has flowed into the screw shaft 13 from the heat medium inlet passes through the screw shaft 13 from the sludge discharge side (left side in FIG. 4) to the sludge supply side (right side in FIG. 4). Toward the direction of the sludge flow. The heat medium that has reached the right end (sludge supply side end) of the screw shaft 13 flows into the screw blade 15 from there.
 スクリュー軸13からスクリュー羽根15に流入した熱媒は、スクリュー羽根15の内部空間を、汚泥の搬送方向に向かって螺旋状に流れる。スクリュー軸13の汚泥排出側(図4の左側)端部は、二重管構造となっており、熱媒入口から導入された熱媒が内管を通ってスクリュー軸13の内部空間に流入し、スクリュー羽根15の内部空間を流れて汚泥供給側から汚泥排出側に戻ってきた熱媒は、外管を通って排出される。 The heat medium that has flowed into the screw blades 15 from the screw shaft 13 flows spirally through the internal space of the screw blades 15 in the sludge transport direction. The end of the screw shaft 13 on the sludge discharge side (left side in FIG. 4) has a double tube structure, and the heat medium introduced from the heat medium inlet flows into the internal space of the screw shaft 13 through the inner tube. The heat medium flowing through the internal space of the screw blade 15 and returning from the sludge supply side to the sludge discharge side is discharged through the outer tube.
 スクリュー軸13とスクリュー羽根15は回転しているため、熱媒をスクリュー羽根15に流入させるには、熱媒を回転継手(ロータリージョイント)を介して回転の中心にあるスクリュー軸13に注入し、スクリュー軸13を経由してスクリュー羽根15に流す必要がある。本実施の形態のように、スクリュー軸13の内部空間とスクリュー羽根15の内部空間とをシリーズにすることで、スクリュー軸13内で、熱媒を、スクリュー軸13内部に流す熱媒とスクリュー羽根15に流す熱媒とに定量に分配する必要がなく、複雑な構造を必要としない。 Since the screw shaft 13 and the screw blade 15 are rotating, in order to allow the heat medium to flow into the screw blade 15, the heat medium is injected into the screw shaft 13 at the center of rotation through a rotary joint (rotary joint), It is necessary to flow to the screw blade 15 via the screw shaft 13. As in the present embodiment, the internal space of the screw shaft 13 and the internal space of the screw blade 15 are made into a series so that the heat medium flows inside the screw shaft 13 and the screw blade in the screw shaft 13. Therefore, it is not necessary to distribute the heat to the heating medium in a fixed amount, and a complicated structure is not required.
 上記のように、本実施の形態では、脱水機4で加熱しながら脱水する前に、濃縮機3において汚泥を濃縮する。このように濃縮後に加熱しながら脱水することで、必要なエネルギーが小さくても高い脱水効果が得られ、また、薬品添加部9において濃縮汚泥に無機凝集剤を添加しているので、含水率がより低下するが、この無機凝集剤によって、加熱面でスケールが生成されるという問題がある。すなわち、熱媒として一般的に使用される蒸気など、温度が100℃以上の熱媒を使用すると、加熱面温度が100℃以上となり、脱水対象汚泥に水分蒸発が生じやすくなり、脱水中に発生する濾液中のスケール成分による加熱面へのスケール付着が生じやすくなる。加熱面にスケールが付着すると、加熱のための伝熱速度が低下し、加温効果が表れなかったり、スケールが成長することで汚泥の脱水機内での挙動に変化を与え、脱水性を低下させたりする。特に、濃縮汚泥に無機凝集剤を添加する場合には、濃縮汚泥が酸性となって汚泥中のスケール成分が脱水濾液中に溶け出しやすくなり、スケール生成量は顕著に増加する。 As described above, in the present embodiment, the sludge is concentrated in the concentrator 3 before being dehydrated while being heated in the dehydrator 4. By dehydrating while heating after concentration in this way, a high dehydration effect can be obtained even if the required energy is small, and since the inorganic flocculant is added to the concentrated sludge in the chemical addition section 9, the water content is low. Although it is further reduced, there is a problem that scale is generated on the heating surface by the inorganic flocculant. That is, when a heat medium having a temperature of 100 ° C. or higher, such as steam generally used as a heat medium, the heating surface temperature becomes 100 ° C. or higher, and water is easily evaporated from the dewatered sludge. The scale adheres to the heated surface due to the scale component in the filtrate. When scale adheres to the heating surface, the heat transfer rate for heating decreases, and the heating effect does not appear, or the scale grows, changing the behavior of sludge in the dehydrator and reducing the dewaterability. Or In particular, when an inorganic flocculant is added to the concentrated sludge, the concentrated sludge becomes acidic, the scale components in the sludge are easily dissolved in the dehydrated filtrate, and the amount of scale generated increases remarkably.
 そして、加熱面にスケールが付着して伝熱速度や脱水性が低下すると、継続的に目標とする含水率まで低下できないことになり、甚だしい場合には、スケールに遮られて汚泥が流動できなくなる場合もある。その結果、小さなエネルギーで高い脱水効果が得られる脱水システムを提供できないことになる。 And if the scale adheres to the heating surface and the heat transfer rate and dewaterability decrease, it will not be possible to continuously reduce the moisture content to the target, and in severe cases, it will be blocked by the scale and the sludge will not flow In some cases. As a result, it is impossible to provide a dehydration system that can obtain a high dehydration effect with small energy.
 そこで、本実施の形態では、熱媒の温度は55℃以上100℃未満(好ましくは70℃以上90℃未満)とし、汚泥が沸騰しない温度に抑える。熱媒加熱機6は、熱媒が上記範囲内の所定の温度(ないしは範囲内)となるように、温度センサで熱媒の温度を監視しながら、熱媒を加熱する。あるいは、熱媒加熱機6は、100℃以上の熱媒(水又は水蒸気)に冷水を加水することで熱媒の温度を目標とする温度(ないしは温度範囲内)となるように制御してもよい。熱媒は、温水、又は真空下の減圧蒸気であってよい。 Therefore, in the present embodiment, the temperature of the heat medium is 55 ° C. or higher and lower than 100 ° C. (preferably 70 ° C. or higher and lower than 90 ° C.), and is suppressed to a temperature at which sludge does not boil. The heat medium heater 6 heats the heat medium while monitoring the temperature of the heat medium with a temperature sensor so that the heat medium has a predetermined temperature (or within the range) within the above range. Alternatively, the heating medium heater 6 may be controlled so that the temperature of the heating medium becomes a target temperature (or within a temperature range) by adding cold water to a heating medium (water or steam) of 100 ° C. or higher. Good. The heat medium may be warm water or reduced pressure steam under vacuum.
 また、スクリュー軸13及びスクリュー羽根15の内部に熱媒を導入することにより、スクリュー軸13及びスクリュー羽根15の表面が伝熱面となって汚泥に接触し、これによって脱水機4は、汚泥を加熱しながら脱水することになる。このように伝熱面を広く確保することで、上記のように低温の熱媒(例えば温水、すなわち100℃未満の水)であっても十分に汚泥を加熱させて、脱水汚泥の低含水率化を達成できる。 In addition, by introducing a heat medium into the screw shaft 13 and the screw blades 15, the surfaces of the screw shaft 13 and the screw blades 15 become heat transfer surfaces and come into contact with the sludge. It will dehydrate while heating. Thus, by ensuring a wide heat transfer surface, the sludge is sufficiently heated even with a low-temperature heat medium (for example, hot water, that is, water of less than 100 ° C.) as described above, and the low moisture content of the dewatered sludge Can be achieved.
 図5は、熱媒の流路の他の例を説明する図である。この例では、スクリュー軸13の外管131の内部には、投入口22に対応する位置に、軸心方向に内部空間を仕切る仕切板132が設けられており、スクリュー軸13の外管131の内部の空間は、この仕切板132によって軸芯方向に二分されている。 FIG. 5 is a diagram for explaining another example of the flow path of the heat medium. In this example, inside the outer tube 131 of the screw shaft 13, a partition plate 132 that partitions the inner space in the axial direction is provided at a position corresponding to the insertion port 22. The internal space is divided into two by the partition plate 132 in the axial direction.
 仕切板132の一方側(図5の左側)には、端部から仕切板132の手前まで、軸芯方向に平行な内管133が設けられている。また、仕切り板132の他方側(図5の右側)にも、端部から仕切板132の手前まで、軸芯方向に平行な内管134が設けられている。即ち、スクリュー軸13の外管131の内部は、仕切板132の両側で、内管133、134と外管131とからなる二重管構造になっている。外管131と内管133との間の外側流路135は、仕切板132の手前で、内管133内の内側流路137と連通している。 An inner tube 133 parallel to the axial direction is provided on one side of the partition plate 132 (left side in FIG. 5) from the end to the front of the partition plate 132. In addition, an inner tube 134 parallel to the axial direction is provided on the other side of the partition plate 132 (on the right side in FIG. 5) from the end to the front of the partition plate 132. That is, the inside of the outer tube 131 of the screw shaft 13 has a double tube structure including the inner tubes 133 and 134 and the outer tube 131 on both sides of the partition plate 132. The outer channel 135 between the outer tube 131 and the inner tube 133 communicates with the inner channel 137 in the inner tube 133 before the partition plate 132.
 スクリュー羽根15は中空構造を有する。スクリュー羽根15の内部空間は、往路(外側)と復路(内側)に分かれている。往路と復路は、スクリュー羽根15の螺旋形状に沿って螺旋状に形成されており、スクリュー羽根15の左端が折り返し箇所となって往路から復路につながっている。スクリュー羽根15の往路は、仕切板132の右側で、外管131と内管134との間の外側流路136と連通しており、復路は仕切板132の右側で内管134内の内側流路138と連通している。 The screw blade 15 has a hollow structure. The internal space of the screw blade 15 is divided into an outward path (outside) and a return path (inside). The forward path and the return path are formed in a spiral shape along the spiral shape of the screw blade 15, and the left end of the screw blade 15 serves as a turning point and is connected from the forward path to the return path. The forward path of the screw blade 15 communicates with the outer flow path 136 between the outer tube 131 and the inner tube 134 on the right side of the partition plate 132, and the return path is the inner flow in the inner tube 134 on the right side of the partition plate 132. It communicates with the path 138.
 熱媒は、スクリュー軸13の両側からそれぞれスクリュー軸13の内部に供給される。仕切板132の左側では、熱媒は、外側流路135に供給されて、外側流路135を汚泥の搬送方向と逆方向に流れ、仕切板132で止められて、内側流路137を通って汚泥の搬送方向と同方向に流れ、排出される。 The heat medium is supplied to the inside of the screw shaft 13 from both sides of the screw shaft 13. On the left side of the partition plate 132, the heat medium is supplied to the outer channel 135, flows in the outer channel 135 in the direction opposite to the sludge conveyance direction, is stopped by the partition plate 132, and passes through the inner channel 137. It flows in the same direction as the sludge transport direction and is discharged.
 仕切板132の右側では、熱媒は、外側流路136に供給されて、スクリュー羽根15の往路を通ってスクリュー羽根15の内部を汚泥の搬送方向に向かって流れ、端部で折り返して復路を通って戻ってきて、内側流路138を通って排出される。即ち、スクリュー軸13の一方側から供給された熱媒は一方側から排出され、スクリュー軸13の他方側から供給された熱媒は他方側から排出される。 On the right side of the partition plate 132, the heat medium is supplied to the outer flow path 136, flows in the screw blade 15 through the forward path of the screw blade 15 toward the sludge conveyance direction, and then turns back at the end to return the return path. Returns through and is discharged through the inner channel 138. That is, the heat medium supplied from one side of the screw shaft 13 is discharged from one side, and the heat medium supplied from the other side of the screw shaft 13 is discharged from the other side.
 熱媒加熱機6とスクリュー軸13との間は、回転継手(ロータリージョイント)を介して接続されている。熱媒加熱機6から移送された熱媒は、回転継手を介してスクリュー軸13の内部に注入される。 The heat medium heater 6 and the screw shaft 13 are connected via a rotary joint (rotary joint). The heat medium transferred from the heat medium heater 6 is injected into the screw shaft 13 through the rotary joint.
 この例においても、仕切板132の左側でスクリュー軸13に供給する熱媒と、仕切り板132の右側からスクリュー羽根15に供給する熱媒とを、スクリュー軸13の内部で所定の量に分配する必要がなく、複雑な構造を必要としない。 Also in this example, the heating medium supplied to the screw shaft 13 on the left side of the partition plate 132 and the heating medium supplied to the screw blades 15 from the right side of the partition plate 132 are distributed into a predetermined amount inside the screw shaft 13. There is no need for a complicated structure.
 本実施の形態の脱水機4では、さらに、外筒スクリーン12にも、加熱用ジャケット51が設置されて、その内部に熱媒が供給される。図2の例の加熱用ジャケット51は、外筒スクリーン12の外周を囲む環状の中空部材である。熱媒を内部に流通させて加熱用ジャケット51を加熱することで、外筒スクリーン12内の汚泥を加熱する。加熱用ジャケット51は、外筒スクリーン12の外周面の一部に沿って、外筒スクリーン12に接触するように設けることができる。 In the dehydrator 4 according to the present embodiment, the outer jacket screen 12 is further provided with a heating jacket 51 and a heat medium is supplied to the inside thereof. The heating jacket 51 in the example of FIG. 2 is an annular hollow member that surrounds the outer periphery of the outer cylinder screen 12. The sludge in the outer cylinder screen 12 is heated by circulating the heating medium inside and heating the heating jacket 51. The heating jacket 51 can be provided so as to come into contact with the outer cylinder screen 12 along a part of the outer peripheral surface of the outer cylinder screen 12.
 上述のように、外筒スクリーン12には、圧搾された汚泥から分離した水分を外筒スクリーン12の外部に排出するための小孔14が複数設けられている。加熱用ジャケット51が被せられた外筒スクリーン12の外周面では、この小孔14が塞がれて汚泥から分離した水分を排出することができず、濾過面積が減少することになるが、脱水処理に影響はない。その理由は以下のとおりである。 As described above, the outer cylinder screen 12 is provided with a plurality of small holes 14 for discharging moisture separated from the compressed sludge to the outside of the outer cylinder screen 12. On the outer peripheral surface of the outer cylinder screen 12 covered with the heating jacket 51, the small holes 14 are blocked and the water separated from the sludge cannot be discharged, and the filtration area is reduced. There is no effect on processing. The reason is as follows.
 脱水処理には、汚泥から水分を分離する(汚泥から濾液を絞り出す)分離工程と、濾液を外筒スクリーン12外に排出する排出工程とがあり、それぞれの工程における濾液の量は同じである。しかしながら、濾液が処理する(絞り出す/排出する)時間はそれぞれの工程で異なり、分離工程の方が長くなる。よって、排出工程では時間に余裕ができるため、外筒スクリーン12に形成されている小孔14による濾過面積を減少しても、脱水工程には影響しない。換言すれば、排出工程では、その濾過面積が小さくても、分離工程で汚泥から分離された水分を十分に排出できる。 The dehydration process includes a separation step of separating water from sludge (squeezing the filtrate from the sludge) and a discharge step of discharging the filtrate out of the outer cylinder screen 12, and the amount of the filtrate in each step is the same. However, the time for the filtrate to process (squeeze / discharge) differs in each process, and the separation process becomes longer. Therefore, since time can be afforded in the discharging process, even if the filtration area by the small holes 14 formed in the outer cylinder screen 12 is reduced, the dehydrating process is not affected. In other words, in the discharge step, even if the filtration area is small, the water separated from the sludge in the separation step can be sufficiently discharged.
 一方、スクリュー軸13及びスクリュー羽根15の内部に熱媒を供給してスクリュー軸13及びスクリュー羽根15から汚泥を加熱するのだけでなく、加熱用ジャケット51内にも熱媒を供給して加熱用ジャケット51から外筒スクリーン12を介して汚泥を加熱することで、従来の脱水機に比べて伝熱面が広くなり、より低温の熱媒であっても十分に汚泥を加熱することが可能となる。 On the other hand, not only the heating medium is supplied into the screw shaft 13 and the screw blade 15 to heat the sludge from the screw shaft 13 and the screw blade 15 but also the heating medium is supplied into the heating jacket 51 for heating. By heating the sludge from the jacket 51 through the outer cylinder screen 12, the heat transfer surface becomes wider than that of the conventional dehydrator, and it is possible to sufficiently heat the sludge even with a lower temperature heating medium. Become.
 図2に示すように、本実施の形態の脱水機4では、汚泥の搬送方向(スクリュー軸13の軸芯方向)に間隔をあけて3つの加熱用ジャケット51が設けられている。このように、複数の加熱用ジャケット51が汚泥の搬送方向に間隔をあけて設置されるので、外筒スクリーン12の外周面は、搬送方向に濾過面(小孔14が露出している面)と加熱面(加熱用ジャケット51が取り付けられた面)とが交互に繰り返し配置され、汚泥は加熱と濾過を繰り返しながら搬送される。 As shown in FIG. 2, in the dehydrator 4 of the present embodiment, three heating jackets 51 are provided at intervals in the sludge transport direction (axial direction of the screw shaft 13). As described above, since the plurality of heating jackets 51 are installed at intervals in the sludge conveyance direction, the outer peripheral surface of the outer cylinder screen 12 is a filtration surface (a surface where the small holes 14 are exposed) in the conveyance direction. And heating surfaces (surfaces to which the heating jacket 51 is attached) are alternately and repeatedly disposed, and sludge is conveyed while repeating heating and filtration.
 このような加熱と濾過の繰り返すことで脱水効果が向上することが、実験で確認されている。すなわち、搬送方向の長さLの加熱用ジャケット51を1つだけ設置するよりも、搬送方向の長さL/nのn枚の加熱用ジャケット51を搬送方向に離間して設置したほうが脱水効果が高いことが分かっている。これは、汚泥は、加熱面で加熱されることで粘度が低下し、また、熱変性によって保水力が低下するので、脱水されやすい状態となり、汚泥がそのような状態で濾過面に達すると十分に濾過されるとともに、水分が離脱したことで汚泥量が減少し、加熱に必要な熱量が減少するため次の加熱用ジャケット面で加熱されやすくなり、さらに脱水されやすい状態となるからである。 It has been confirmed by experiments that the dehydration effect is improved by repeating such heating and filtration. That is, rather than installing only one heating jacket 51 having a length L in the transport direction, it is more effective to install n heating jackets 51 having a length L / n in the transport direction apart from each other in the transport direction. Is known to be expensive. This is because when sludge is heated on the heating surface, the viscosity decreases, and the water retention capacity decreases due to heat denaturation, so that it becomes easy to dehydrate, and it is sufficient if the sludge reaches the filtration surface in such a state. This is because the amount of sludge is reduced due to the separation of moisture and the amount of heat necessary for heating is reduced, so that it is easily heated on the next jacket surface for heating and further dehydrated.
 複数の加熱用ジャケット51には、いずれも同一の熱媒加熱機6から熱媒が供給される。複数の加熱用ジャケット51は、それぞれ配管で熱媒加熱機6に接続されており、熱媒加熱機6から複数の加熱用ジャケット51に並列に熱媒が供給されてもよいし、熱媒加熱機6と複数の加熱用ジャケット51とが配管で一連に(直列に)接続されて、熱媒が複数の加熱用ジャケット51に順に供給されるようにしてもよい。 The heat medium is supplied from the same heat medium heater 6 to the plurality of heating jackets 51. The plurality of heating jackets 51 are respectively connected to the heating medium heater 6 by piping, and the heating medium may be supplied from the heating medium heater 6 to the plurality of heating jackets 51 in parallel. The machine 6 and the plurality of heating jackets 51 may be connected in series (in series) by piping so that the heat medium is supplied to the plurality of heating jackets 51 in order.
 複数の加熱用ジャケット51を直列に熱媒加熱機6に接続する場合には、複数の加熱用ジャケット51を並列に熱媒加熱機6に接続する場合と比較して、配管を少なくすることができる。複数の加熱用ジャケット51を直列に接続する場合には、加熱用ジャケット51には、脱水汚泥の排出側から供給側に向けて、熱媒加熱機6からの熱媒を流通させることが望ましい。この場合には、排出側で熱媒と汚泥の温度差をより大きくとることができるため、汚泥の温度をより高くすることができ、より低含水率化を達成できる。 In the case where a plurality of heating jackets 51 are connected in series to the heat medium heater 6, it is possible to reduce the number of pipes compared to the case where the plurality of heating jackets 51 are connected to the heat medium heater 6 in parallel. it can. In the case where a plurality of heating jackets 51 are connected in series, it is desirable that the heating medium from the heating medium heater 6 is circulated in the heating jacket 51 from the dewatered sludge discharge side to the supply side. In this case, since the temperature difference between the heat medium and the sludge can be made larger on the discharge side, the temperature of the sludge can be increased, and a lower water content can be achieved.
 加熱用ジャケット51内には、図示しない迂流板を設けて、加熱用ジャケット51の内部に熱媒の流路を形成してもよい。このようにすることで、熱媒の短絡流や滞留を防止して、均一な熱伝導を達成でき、さらに、加熱用ジャケット51の内部の熱媒を乱流状態にして熱伝達効率を向上できる。 A bypass plate (not shown) may be provided in the heating jacket 51 to form a heat medium flow path inside the heating jacket 51. By doing so, it is possible to prevent short-circuit flow and retention of the heat medium, achieve uniform heat conduction, and further improve heat transfer efficiency by making the heat medium inside the heating jacket 51 turbulent. .
 このように、スクリュー軸13及びスクリュー羽根15の内部に熱媒を供給するとともに加熱用ジャケット51内にも熱媒を供給することで、汚泥を加熱するための伝熱面を十分に確保できるので、廃熱を利用して得られる温水のような低温熱媒を用いた場合にも、十分に汚泥を加熱して加熱脱水を行うことができる。 Thus, by supplying a heat medium into the screw shaft 13 and the screw blade 15 and also supplying a heat medium into the heating jacket 51, a heat transfer surface for heating sludge can be sufficiently secured. Even when a low-temperature heating medium such as hot water obtained using waste heat is used, the sludge can be sufficiently heated and dehydrated.
 また、スクリュー軸13、スクリュー羽根15、及び加熱用ジャケット15によって汚泥を加熱しながら脱水すると、上述のように、汚泥の粘度が低下し、また、熱変性によって汚泥の保水力が低下するので、濾液が分離しやすくなる。このようにして、脱水汚泥の含水率を低減して、焼却炉5における汚泥の焼却に要するエネルギーを抑えることができる。分離できる濾液は加熱後速やかに分離し、それを分離しないことで余計なエネルギーを使用することを防ぐことができる。 Further, when the sludge is dehydrated while being heated by the screw shaft 13, the screw blades 15 and the heating jacket 15, as described above, the viscosity of the sludge is reduced, and the water retention capacity of the sludge is reduced by thermal denaturation. The filtrate is easily separated. In this way, the water content of the dewatered sludge can be reduced, and the energy required for incineration of the sludge in the incinerator 5 can be suppressed. The filtrate that can be separated is separated promptly after heating, and it is possible to prevent the use of extra energy by not separating the filtrate.
 さらに、本実施の形態の脱水装置8では、濃縮機3で汚泥の濃度を十分に高くし、加熱する汚泥量を減少させてから脱水機4で加熱をするので、脱水機4で汚泥を加熱するのに必要なエネルギー(加熱エネルギー)を抑えることができるとともに、脱水機4では濾過面積を小さくすることができ、その分、加熱用ジャケット51の面積を広くすることができる。 Furthermore, in the dehydrator 8 of the present embodiment, the concentration of sludge is sufficiently increased by the concentrator 3 and the amount of sludge to be heated is reduced and then heated by the dehydrator 4, so the sludge is heated by the dehydrator 4. The energy (heating energy) required to do this can be suppressed, and the dehydrator 4 can reduce the filtration area, and the area of the heating jacket 51 can be increased accordingly.
 また、加熱用ジャケット51の面積を広くとることで、熱媒の温度が低くても(低温熱媒であっても)十分な加熱ができる。低温熱媒としては、温水を用いることができ、温水は、図1に示したように、焼却炉5や発電機7の廃熱を用いて生成できる。脱水機4では、汚泥の温度は、平均で45℃以上100℃未満とし、好ましくは55℃以上100℃未満とし、汚泥に含まれる水分が沸騰しない温度に抑える。 Further, by taking a large area of the heating jacket 51, sufficient heating can be performed even if the temperature of the heating medium is low (even if it is a low-temperature heating medium). As the low-temperature heat medium, hot water can be used, and the hot water can be generated using waste heat from the incinerator 5 and the generator 7 as shown in FIG. In the dehydrator 4, the temperature of the sludge is 45 ° C. or more and less than 100 ° C. on average, and preferably 55 ° C. or more and less than 100 ° C., and is suppressed to a temperature at which water contained in the sludge does not boil.
 なお、上記の脱水システム100において、脱水機4の落下路28の下部にシュート等で接続された乾燥機を設けてもよい。このように乾燥機を脱水機4の落下路28の下部に設けることで、脱水汚泥を乾燥機に移送する機器などを省略することができ、また、熱を持っている脱水汚泥を冷却することなく乾燥できるので、乾燥機で使用する熱量が小さくて済む。 In the dehydration system 100 described above, a dryer connected by a chute or the like may be provided below the dropping path 28 of the dehydrator 4. By providing the dryer in the lower part of the dropping path 28 of the dehydrator 4 as described above, a device for transferring the dehydrated sludge to the dryer can be omitted, and the dehydrated sludge having heat can be cooled. The amount of heat used in the dryer can be small.
 以下、加熱用ジャケット51の変形例を説明する。図6~11は、加熱用ジャケット51の変形例を示す図である。図6~11では、外筒スクリーン12と加熱用ジャケット51との関係を模式的に示している。図6の例は、加熱用ジャケット51が格子状に外筒スクリーン12の外周に設けられる例を示している。この例によれば、外筒スクリーン12では、濾過部を確保できるとともに加熱用ジャケット51によって万遍なく加熱することができる。外筒スクリーン12のサポートを加熱用ジャケット51としてもよい。 Hereinafter, modifications of the heating jacket 51 will be described. 6 to 11 are diagrams showing modifications of the heating jacket 51. 6 to 11 schematically show the relationship between the outer cylinder screen 12 and the heating jacket 51. The example of FIG. 6 shows an example in which the heating jacket 51 is provided on the outer periphery of the outer cylinder screen 12 in a lattice shape. According to this example, the outer cylinder screen 12 can secure a filtration part and can be heated uniformly by the heating jacket 51. The support of the outer cylinder screen 12 may be used as the heating jacket 51.
 図7の例では、加熱用ジャケット51は、外筒スクリーン12の搬送方向の中段に設けられる。加熱用ジャケット51は、外筒スクリーン12の外周を囲む円筒形状を有している。汚泥は、加熱ジャケット51が設けられた加熱部に到達する前にある程度水分が除去され、加熱部で十分に加熱され、その後の水分が離脱しやすくなった汚泥に対して再度濾過が行われる。 In the example of FIG. 7, the heating jacket 51 is provided in the middle of the outer cylinder screen 12 in the conveying direction. The heating jacket 51 has a cylindrical shape surrounding the outer periphery of the outer cylinder screen 12. The sludge is filtered again with respect to the sludge from which moisture has been removed to some extent before reaching the heating section where the heating jacket 51 is provided, is sufficiently heated by the heating section, and the subsequent moisture is easily separated.
 図8の例では、加熱用ジャケット51は、上下で分割されている。外筒スクリーン12の上側には、円弧形状の複数の加熱用ジャケット51が互いに離間して配置され、外筒スクリーン12の下側にも、円弧形状の複数の加熱用ジャケット51が互いに離間して配置されている。各加熱用ジャケット51は、外筒スクリーン12の周方向の一部のみを覆う半円形状を有している。 In the example of FIG. 8, the heating jacket 51 is divided vertically. A plurality of arc-shaped heating jackets 51 are spaced apart from each other on the upper side of the outer cylinder screen 12, and a plurality of arc-shaped heating jackets 51 are also spaced apart from each other on the lower side of the outer cylinder screen 12. Has been placed. Each of the heating jackets 51 has a semicircular shape that covers only a part of the outer cylinder screen 12 in the circumferential direction.
 また、上側の複数の加熱用ジャケット51と下側の複数の加熱用ジャケット51とは互いに搬送方向にずれており、搬送方向に上側の加熱用ジャケット51と下側の加熱用ジャケット51とが交互に配置される。なお、上下に分割する位置は、外筒スクリーン12の高さの中央でなくてもよい。 Further, the plurality of upper heating jackets 51 and the plurality of lower heating jackets 51 are shifted from each other in the transport direction, and the upper heating jacket 51 and the lower heating jacket 51 alternate in the transport direction. Placed in. It should be noted that the position to be divided vertically does not have to be the center of the height of the outer cylinder screen 12.
 図9の例では、図2の例と同様に、複数の環状の加熱用ジャケット51が搬送方向に互いに離間して配置される。図9の例では、図2の例と比較して、各加熱用ジャケット51の搬送方向の幅が狭く、互いの間隔も狭く、より多くの加熱用ジャケット51が配置されている。 In the example of FIG. 9, as in the example of FIG. 2, a plurality of annular heating jackets 51 are arranged apart from each other in the transport direction. In the example of FIG. 9, as compared with the example of FIG. 2, the width of each heating jacket 51 in the transport direction is narrow, and the interval between them is also narrow, and more heating jackets 51 are arranged.
 図10の例では、加熱用ジャケット51は、外筒スクリーン12の搬送方向に亘って、外筒スクリーン12の外周の高さ方向の中段の一部のみを覆うように設けられる。加熱用ジャケット51は帯状であり、搬送方向に平行に、外筒スクリーン12に取り付けられる。図10に示す加熱用ジャケット51は、外筒スクリーン12の反対側の面にも設けられる。 In the example of FIG. 10, the heating jacket 51 is provided so as to cover only a part of the middle in the height direction of the outer periphery of the outer cylinder screen 12 over the conveying direction of the outer cylinder screen 12. The heating jacket 51 has a strip shape and is attached to the outer cylinder screen 12 in parallel with the transport direction. The heating jacket 51 shown in FIG. 10 is also provided on the opposite surface of the outer cylinder screen 12.
 図11の例では、加熱用ジャケット51は、外筒スクリーン12の搬送方向に亘って、外筒スクリーン12の上側の部分を覆うように設けられる。加熱用ジャケット51は、半 円筒形状を有している。この例では、外筒スクリーン12の上側に加熱面が形成され、下側に濾過面が形成される。 In the example of FIG. 11, the heating jacket 51 is provided so as to cover the upper part of the outer cylinder screen 12 over the conveying direction of the outer cylinder screen 12. The heating jacket 51 has a semi-cylindrical shape. In this example, a heating surface is formed on the upper side of the outer cylinder screen 12, and a filtration surface is formed on the lower side.
 図10、図11の例では、ジャケットの分割数を少なくできるとともに、熱媒の制御も容易であり、製造コストを低減できる。スクリュープレス方式では、汚泥は外筒スクリーン12内を回転しながら排出方向に向けて搬送されるので、搬送方向に平行な加熱用ジャケットであっても、汚泥に均一に熱を与えることができる。 10 and 11, the number of divisions of the jacket can be reduced, the control of the heat medium is easy, and the manufacturing cost can be reduced. In the screw press method, since the sludge is conveyed in the discharge direction while rotating in the outer cylinder screen 12, even the heating jacket parallel to the conveyance direction can uniformly apply heat to the sludge.
 また、図示はしないが、外筒スクリーン12の搬送方向の後方にのみ、図2及び図6~11のいずれかの例に示すような加熱用ジャケット51を設けてもよい。加熱の効果はある程度脱水が進んだスクリュープレスの後段で顕著となるため、搬送方向の後方に加熱用ジャケット51を集中させることで、効果的な加熱脱水効果を得ることができる。また、前段で水分を出した後、後段で加熱するので、必要な熱量を低減でき、省エネルギーを実現できる。 Although not shown, a heating jacket 51 as shown in any of the examples of FIGS. 2 and 6 to 11 may be provided only behind the outer cylinder screen 12 in the conveying direction. Since the effect of heating becomes significant after the screw press where dehydration has progressed to some extent, an effective heating and dehydrating effect can be obtained by concentrating the heating jacket 51 behind the conveying direction. In addition, since moisture is removed in the former stage and then heated in the latter stage, the necessary amount of heat can be reduced and energy saving can be realized.
 (実施例)
 下水処理場で発生する消化汚泥を使用して、本実施の形態の脱水システム100を用いて脱水試験を実施した。汚泥処理量は、固形物換算で10kg-DS/hとし、脱水方式はスクリュープレス方式を採用し、スクリュー軸13の内部と加熱用ジャケット51の内部に熱媒として温水を注入して脱水しながら汚泥を加熱した。脱水機4に投入する汚泥の温度は20℃とし、その量は100kg/hとし、熱媒としての温水の流量は1.5m/hとした。
(Example)
Using the digested sludge generated at the sewage treatment plant, a dehydration test was performed using the dehydration system 100 of the present embodiment. The amount of sludge treated is 10 kg-DS / h in terms of solids, the screw press method is used as the dewatering method, and hot water is injected into the screw shaft 13 and the heating jacket 51 as a heat medium while dewatering. The sludge was heated. The temperature of the sludge thrown into the dehydrator 4 was 20 ° C., the amount thereof was 100 kg / h, and the flow rate of hot water as a heating medium was 1.5 m 3 / h.
 脱水機4に汚泥を投入する前に、凝集槽2でポリ硫酸第二鉄とポリマを添加し、凝集させた後、濃縮機3で10%程度まで濃縮した。濃縮汚泥にはポリマを再度添加した。ポリマ添加率は1.2~1.5%とし、ポリ硫酸第二鉄の添加率は10~15%とした。 Before adding sludge to the dehydrator 4, polyferric sulfate and polymer were added in the coagulation tank 2 and coagulated, and then concentrated to about 10% with the concentrator 3. The polymer was added again to the concentrated sludge. The polymer addition rate was 1.2 to 1.5%, and the addition rate of polyferric sulfate was 10 to 15%.
 外筒スクリーン12加熱面の配置方法は、以下の条件(1)及び(2)とした。条件(1)では、図7に示すように、外筒スクリーン12に対して、汚泥の搬送方向に、加熱面(加熱用ジャケット51)を1つ配置した。条件(2)では、図2に示すように、外筒スクリーン12における汚泥の搬送方向に、濾過面と加熱面(加熱用ジャケット51)を交互に複数回配置した。なお、条件(1)と条件(2)とで加熱面の総面積は同じになるようにした。 The arrangement method of the heating surface of the outer cylinder screen 12 was the following conditions (1) and (2). In condition (1), as shown in FIG. 7, one heating surface (heating jacket 51) is arranged in the sludge transport direction with respect to the outer cylinder screen 12. In condition (2), as shown in FIG. 2, the filtration surface and the heating surface (heating jacket 51) were alternately arranged a plurality of times in the sludge transport direction in the outer cylinder screen 12. In addition, the total area of the heating surface was made to be the same between condition (1) and condition (2).
 脱水汚泥の到達温度及び含水率を測定し、脱水機4にて必要な熱量は、それらの測定結果から計算して求めた。具体的には、必要熱量Eは、熱媒としての温水の流量Qと、その温水を脱水機4に注入する際の温度T1と、温水が脱水機4から出てくる際の温度T2を測定して、E=α×Q×(T1-T2)として求めた(αは単位換算のための係数である)。 The ultimate temperature and moisture content of the dewatered sludge were measured, and the amount of heat necessary for the dehydrator 4 was calculated from the measurement results. Specifically, the necessary heat quantity E is measured by measuring a flow rate Q of hot water as a heat medium, a temperature T1 when the hot water is injected into the dehydrator 4, and a temperature T2 when the hot water comes out of the dehydrator 4. Then, E = α × Q × (T1-T2) was obtained (α is a coefficient for unit conversion).
 実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The experimental results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 条件(1)では、汚泥は十分に加熱され、脱水汚泥の含水率も72%となった。その時に必要な熱量は6.3MJ/hであった。条件(2)では、汚泥をさらに十分に加熱でき、脱水汚泥の含水率も70%まで下げることができた。その時に必要な熱量は5.0MJ/hであり、小さく抑えることができた。このように、条件(2)では、加熱面と濾過面を複数回配置することで、加熱しながら脱水する効果を高くすることができ、必要熱量は条件(1)より小さくできた。 (Condition (1)) The sludge was sufficiently heated, and the water content of the dewatered sludge was 72%. The amount of heat required at that time was 6.3 MJ / h. Under condition (2), the sludge could be heated more sufficiently and the water content of the dewatered sludge could be reduced to 70%. The amount of heat required at that time was 5.0 MJ / h, which could be kept small. Thus, in the condition (2), the heating surface and the filtration surface are arranged a plurality of times, so that the effect of dehydration while heating can be increased, and the required heat amount can be made smaller than that in the condition (1).
 以上のように、上記の脱水システム100は、下水、し尿、生ごみ消化汚泥などの有機性汚泥を加熱しながら脱水するシステムであるが、この加熱のための熱源として消化ガス、焼却廃熱(炭化・乾燥を含む)、発電廃熱を利用しているので、新たなエネルギー源を必要としないで、汚泥の含水率を低減し、焼却処理のための補助燃料(油やガス)を低減もしくはなくすことができるので、省エネルギーや創エネルギーを実現できる。 As described above, the dehydration system 100 is a system that dehydrates organic sludge such as sewage, human waste, and garbage digested sludge while heating. Digestion gas, incineration waste heat (as a heat source for this heating) (Including carbonization / drying) and power generation waste heat, so no new energy source is required, reducing the moisture content of sludge and reducing auxiliary fuel (oil and gas) for incineration or Since it can be eliminated, energy saving and creation energy can be realized.
 また、上記の脱水システム100では、消化ガス、焼却廃熱、発電廃熱を利用して加熱された温水を熱媒として用いている。一般的に、温水は、温度が低いために熱交換速度が低く、利用先が限られるが、本実施の形態の脱水システム100では、脱水機4にてスクリュー軸13内だけでなく、スクリュー羽根15の内部、外筒スクリーン12に取り付けた加熱用ジャケット51の内部にも熱媒を供給するので、熱媒の温度は比較的低くてよく(45℃以上100℃未満)、温水を用いることができる。従って、利用先が限られていて捨てられてしまうこともある温水を利用することで、さらに省エネルギーや創エネルギーを促進できる。 In the above dehydration system 100, hot water heated using digestion gas, incineration waste heat, and power generation waste heat is used as a heat medium. Generally, hot water has a low heat exchange rate due to its low temperature, and the usage destination is limited. However, in the dehydrating system 100 according to the present embodiment, not only the screw shaft 13 but also the screw blades in the dehydrator 4. 15 and the heating jacket 51 attached to the outer cylinder screen 12, the heating medium is also supplied, so the temperature of the heating medium may be relatively low (45 ° C. or more and less than 100 ° C.), and hot water is used. it can. Therefore, energy saving and energy creation can be further promoted by using hot water that is limited in use and may be discarded.
 また、本発明の一態様の脱水方法は、汚泥を濃縮して濃縮汚泥を生成する濃縮工程と、前記濃縮工程にて生成された前記濃縮汚泥を脱水対象汚泥として、前記脱水対象汚泥を間接加熱方式で加熱しながら脱水する脱水工程と前記濃縮汚泥に対して無機凝集剤を添加する添加工程とを含み、前記脱水工程にて前記脱水対象汚泥の加熱に使用する熱媒の温度は100℃未満である構成を有している。ここで、間接加熱方式とは、非加熱物と熱媒とが混合しない状態で加熱する方式をいい、板や布などの遮蔽物の一方側に被加熱物が存在し、他方側に熱媒が存在し、熱媒から被加熱物に遮蔽物を介して熱を移動させる加熱方式である。 The dehydration method according to one aspect of the present invention includes a concentration step in which sludge is concentrated to produce concentrated sludge, and the concentrated sludge generated in the concentration step is used as dewatered sludge, and the dewatered sludge is indirectly heated. Including a dehydration step of dehydrating while heating by a method and an addition step of adding an inorganic flocculant to the concentrated sludge, and the temperature of the heat medium used for heating the dewatered sludge in the dehydration step is less than 100 ° C It has the composition which is. Here, the indirect heating method refers to a method of heating in a state where the non-heated material and the heating medium are not mixed, and the heated object is present on one side of a shield such as a plate or cloth, and the heating medium is present on the other side. Is a heating method in which heat is transferred from a heating medium to an object to be heated through a shield.
 この構成によれば、脱水工程で汚泥が加熱されながら脱水されるので、汚泥の粘性が低下し、かつ熱変性によって汚泥の保水力が低下して濾液が分離しやすくなり、脱水された汚泥(脱水汚泥)の含水率を低くすることができる。また、脱水濾液の多くは加熱が完了しない段階で速やかに汚泥から分離できるため、脱水濾液に余計な熱エネルギーを使用することを防止できる。また、濃縮工程で汚泥の濃度を高くし、加熱する汚泥量を減少させてから加熱するので、脱水工程で加熱しながら脱水を行う際、脱水工程における汚泥の温度を所望の温度にまで加熱するための熱エネルギー(加熱エネルギー)を低く抑えることができる。さらに、脱水工程で汚泥を加熱するのに間接加熱方式を採用するので、温水等の熱媒を利用して汚泥を加熱できる。 According to this configuration, since the sludge is dehydrated while being heated in the dehydration step, the viscosity of the sludge is decreased, and the water retention capacity of the sludge is decreased due to thermal denaturation, and the filtrate is easily separated. The water content of dewatered sludge) can be reduced. In addition, since most of the dehydrated filtrate can be promptly separated from the sludge at the stage where heating is not completed, it is possible to prevent the use of excess heat energy in the dehydrated filtrate. Also, since the concentration of sludge is increased in the concentration step and the amount of sludge to be heated is reduced before heating, the temperature of the sludge in the dehydration step is heated to a desired temperature when dehydrating while heating in the dehydration step. Therefore, the heat energy (heating energy) can be kept low. Furthermore, since the indirect heating method is employed to heat the sludge in the dehydration step, the sludge can be heated using a heat medium such as hot water.
 また、余剰汚泥や消化汚泥のような柔らかい汚泥では、加熱により凝集が崩れやすいが、濃縮汚泥に無機凝集剤を加えることで、脱水部内での汚泥凝集力を再度高めることができ、加熱による脱水対象汚泥の含水率の低下の効果を大きくできる。また、100℃未満の熱媒を使用することで、加熱面での水分蒸発が生じにくくなり、脱水中に発生する濾液中のスケール成分による加熱面へのスケール付着が生じにくくなる。 In addition, soft sludge such as excess sludge and digested sludge is prone to agglomeration by heating, but by adding an inorganic flocculant to the concentrated sludge, the sludge agglomeration power in the dewatering section can be increased again, and dehydration by heating. The effect of reducing the moisture content of the target sludge can be increased. Further, by using a heat medium of less than 100 ° C., moisture evaporation on the heating surface is less likely to occur, and scale adhesion due to scale components in the filtrate generated during dehydration is less likely to occur.
(実施例)
 以下、本実施の形態の脱水システム100の実施例を説明する。本実施例では、下水処理場で発生する消化汚泥を使用して、脱水システム100で脱水試験を実施した。汚泥処理量は、固形物換算で8kg-DS/hとし、脱水機4はスクリュープレス方式を採用し、スクリュー軸13の内部に熱媒を注入して脱水しながら加熱を行った。脱水機4に投入される前に、凝集槽2で汚泥にポリマを添加して凝集させた後に、濃縮機3で10%程度まで汚泥を濃縮した。薬品添加部9では、濃縮汚泥にポリマと無機凝集剤(具体的には、ポリ硫酸第二鉄)を添加した。ポリマの添加率は、2.0~2.5%とし、ポリ硫酸第二鉄の添加率は20~25%とした。
(Example)
Hereinafter, examples of the dehydration system 100 of the present embodiment will be described. In this example, a dewatering test was performed with the dewatering system 100 using digested sludge generated in a sewage treatment plant. The amount of sludge treated was 8 kg-DS / h in terms of solid matter, and the dehydrator 4 employed a screw press system, and a heating medium was injected into the screw shaft 13 and heated while dehydrating. Before being put into the dehydrator 4, the sludge was concentrated to about 10% with the concentrator 3 after adding polymer to the sludge in the coagulation tank 2 and coagulating it. In the chemical addition section 9, a polymer and an inorganic flocculant (specifically, polyferric sulfate) were added to the concentrated sludge. The addition rate of the polymer was 2.0 to 2.5%, and the addition rate of polyferric sulfate was 20 to 25%.
 熱媒加熱機6における熱媒温度条件を80℃(温水)、120℃(蒸気)、および熱媒不使用の3条件とし、それぞれ濃縮汚泥への無機凝集剤の添加有無ごとに、脱水ケーキの含水率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
The heat medium temperature conditions in the heat medium heater 6 are 80 ° C. (warm water), 120 ° C. (steam), and no heat medium, and each time the inorganic flocculant is added to the concentrated sludge, The water content was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、無機凝集剤の添加の有無にかかわらず、加熱(熱媒温度80~120℃)した方が、加熱しないより脱水ケーキの含水率が低下した。また、熱媒温度条件にかかわらず、無機凝集剤を添加した条件1~3では、無機凝集剤を添加しなかった条件4~6に比べて、脱水ケーキの含水率が低下した。これは無機凝集剤の凝集効果によるものである。さらに、無機凝集剤を添加した条件1~3では、熱媒温度が80℃の条件2の場合(74%)よりも、120℃の条件3の場合(76%)の方が、ケーキ含水率が上昇した。これは、120℃条件では、スクリュー軸の加熱面へスケール付着が多く、加熱のための伝熱速度が低下し加温効果が良好に表れなかったためである。 As shown in Table 2, the moisture content of the dehydrated cake was lower when heated (heating medium temperature 80 to 120 ° C.) than when not heated, regardless of whether or not the inorganic flocculant was added. Regardless of the heat medium temperature condition, the water content of the dehydrated cake was lower in conditions 1 to 3 where the inorganic flocculant was added than in conditions 4 to 6 where the inorganic flocculant was not added. This is due to the aggregation effect of the inorganic flocculant. Furthermore, in conditions 1 to 3 to which an inorganic flocculant was added, the moisture content of the cake was higher in the case of condition 3 (76%) at 120 ° C. than in the case of condition 2 (74%) where the heating medium temperature was 80 ° C. Rose. This is because, under the condition of 120 ° C., there is much scale adhesion on the heating surface of the screw shaft, the heat transfer rate for heating is reduced, and the heating effect does not appear well.
 なお、上記の実施の形態では、熱媒を加熱するのに消化ガス、焼却廃熱、発電廃熱をいずれも利用したが、それらの一部のみを利用してもよく、その他の熱源を利用してもよい。また、上記の実施の形態では、濃縮機3にて汚泥にポリマを添加したが、凝集槽2において汚泥にポリマを添加してもよい。また、凝集槽2において脱水助剤を添加してもよい。 In the above embodiment, digestion gas, incineration waste heat, and power generation waste heat are all used to heat the heat medium, but only a part of them may be used, or other heat sources are used. May be. Moreover, in said embodiment, although the polymer was added to sludge with the concentrator 3, you may add a polymer to sludge in the coagulation tank 2. FIG. Further, a dehydrating aid may be added in the aggregation tank 2.
 上記の脱水システム100の脱水機4は、1つのスクリュー軸13を備えたスクリュープレス方式の脱水機であったが、脱水システム100に用いられる脱水機は、2つのスクリュー軸を備えたスクリュープレス方式の脱水機であってもよい。 The dehydrator 4 of the dehydration system 100 is a screw press type dehydrator provided with one screw shaft 13. However, the dehydrator used in the dehydration system 100 is a screw press type provided with two screw shafts. It may be a dehydrator.
 スクリュー軸を2軸とすることで、軸と汚泥とが接触する面積が増大するので、低温熱媒であっても十分に汚泥を加熱することが可能となる。また、2軸の羽根同士が重なり合う部分で汚泥の攪拌及び混合が進み、汚泥をむらなく加熱することができ、脱水汚泥の含水率を安定して低減できる。なお、2つのスクリュー軸は、上下に並べられても横に並べられてもよい。また、脱水機が3つ以上のスクリュー軸を備えていてもよい。 By using two screw shafts, the contact area between the shaft and sludge increases, so that sludge can be sufficiently heated even with a low-temperature heating medium. Further, the stirring and mixing of the sludge proceeds at the portion where the biaxial blades overlap each other, the sludge can be heated evenly, and the moisture content of the dewatered sludge can be stably reduced. Note that the two screw shafts may be arranged vertically or horizontally. Moreover, the dehydrator may include three or more screw shafts.
 なお、上記の実施の形態では、外筒スクリーン12に対して加熱用ジャケット51を取り付けて、外筒スクリーン12を介して汚泥を加熱したが、加熱用ジャケット51は、外筒スクリーン12の内周面に設けられてもよい。この場合には、外筒スクリーン12の内部での汚泥の流通を妨げることがないように加熱用ジャケット51を設定することが望ましい。加熱用ジャケット51によって汚泥が外筒スクリーン12内で滞留すると、滞留した汚泥が伝熱を妨げて、加熱効率が低下してしまうからである。なお、上記の実施の形態のように加熱用ジャケット51を外筒スクリーン12の外周面に設置すれば、このような懸念は不要である。 In the above-described embodiment, the heating jacket 51 is attached to the outer cylinder screen 12 and the sludge is heated via the outer cylinder screen 12, but the heating jacket 51 has an inner periphery of the outer cylinder screen 12. It may be provided on the surface. In this case, it is desirable to set the heating jacket 51 so as not to hinder the flow of sludge inside the outer cylinder screen 12. This is because if the sludge stays in the outer cylinder screen 12 by the heating jacket 51, the staying sludge hinders heat transfer and lowers the heating efficiency. In addition, if the jacket 51 for heating is installed in the outer peripheral surface of the outer cylinder screen 12 like said embodiment, such a concern is unnecessary.
 また、外筒スクリーン12自体を中空としてそこに熱媒を流通させてもよく、この場合には外筒スクリーン12に取り付けられる加熱用ジャケット51は不要であり、外筒スクリーン12において加熱される部分は加熱面にも濾過面にもなる。この場合において、外 筒スクリーン12は、その一部が加熱面とされてもよいし、全面が加熱面とされてもよい。 Further, the outer cylinder screen 12 itself may be made hollow and a heat medium may be circulated there. In this case, the heating jacket 51 attached to the outer cylinder screen 12 is unnecessary, and the portion heated in the outer cylinder screen 12 Becomes both a heating surface and a filtration surface. In this case, a part of the outer cylinder screen 12 may be a heating surface, or the entire surface may be a heating surface.
 また、上記の実施の形態では、加熱用ジャケット51を中空としてその内部に熱媒を流通させたが、これに加えて、又はこれに代えて、加熱用ジャケット51を電熱ヒータとして、加熱用ジャケット51自体が発熱するようにしてもよい。 In the above-described embodiment, the heating jacket 51 is hollow and the heat medium is circulated therein. In addition to or instead of this, the heating jacket 51 is used as an electric heater, and the heating jacket is used. 51 itself may generate heat.
 さらに、加熱用ジャケット51には、その外側、即ち外筒スクリーンに接する面と反対側の面に、断熱材又は断熱板を設置してもよい。これにより、加熱用ジャケット51から外側に放出される熱の量を低減でき、省エネルギーを実現できる。 Further, the heating jacket 51 may be provided with a heat insulating material or a heat insulating plate on the outer side thereof, that is, the surface opposite to the surface in contact with the outer cylinder screen. Thereby, the amount of heat released to the outside from the heating jacket 51 can be reduced, and energy saving can be realized.
 上記の脱水システム100の消化ガス利用方法や焼却廃熱利用方法が異なる脱水システム101を図12に示す。図12において、図1と同じ構成については同一の符号を付して、適宜説明を省略する。 FIG. 12 shows a dehydration system 101 in which the digestion gas utilization method and incineration waste heat utilization method of the above dehydration system 100 are different. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 脱水システム101では、消化槽1で発生した消化ガスが消化ガス発電機71で使用され、電気は場内で有効利用される。消化ガス発電機71における発電廃熱は、消化槽1の加温に利用されるとともに、脱水時の加熱熱源として利用される。また、焼却炉5からの廃熱は、熱媒加熱機6にて白煙防止用空気との熱交換により温水を昇温するのに利用される。また、熱媒加熱機6で生成された温水は脱水機4だけでなく消化槽1にも供給され、消化槽1の加温に用いられる。 In the dehydration system 101, digestion gas generated in the digestion tank 1 is used in the digestion gas generator 71, and electricity is effectively used in the field. The waste heat generated in the digestion gas generator 71 is used for heating the digestion tank 1 and also used as a heating heat source during dehydration. The waste heat from the incinerator 5 is used to raise the temperature of the hot water by heat exchange with the white smoke prevention air in the heat medium heater 6. Further, the hot water generated by the heating medium heater 6 is supplied not only to the dehydrator 4 but also to the digestion tank 1 and used for heating the digestion tank 1.
 本発明は、外筒スクリーンに加熱面と濾過面を設けて脱水対象物を外筒スクリーンで加熱しながら脱水するので、熱媒が低温であっても加熱脱水を行うことができるという効果を有し、汚泥等の水分を含む脱水対象物から水分を除去する脱水装置等として有用である。 The present invention provides an effect that heat dehydration can be performed even when the heat medium is at a low temperature because the outer cylinder screen is provided with a heating surface and a filtration surface and the object to be dehydrated is dehydrated while being heated by the outer cylinder screen. In addition, it is useful as a dehydrator for removing moisture from a dehydration target containing moisture such as sludge.
 1:消化槽、2:凝集槽、3:濃縮機、4:脱水機、5:焼却炉、6:熱媒加熱機、7:発電機、8:脱水装置、9:薬品添加部、11:機台、12:外筒スクリーン、13:スクリュー軸、14:小孔、15:スクリュー羽根、16:可動台、17:前側軸受、18:後側軸受、19:可変速電動機、20:連結ベルト、21:移送圧縮通路、22:投入口、23:圧縮室、24:受皿、25:軸受板、26:油圧シリンダ、27:ピストンロッド、28:落下路、29:テーパーコーン、31:汚泥投入用ホッパー、32:汚泥移動手段、33:加圧手段、33A:加圧板、34:水捕集手段、36:ベルト、37:汚泥排出口、38:ベルト駆動装置、51:加熱用ジャケット、71:消化ガス発電機、100、101:脱水システム、131:外管、132:仕切板、133、134:内管、135、136:外側流路、137、138:内側流路 1: Digestion tank, 2: Coagulation tank, 3: Concentrator, 4: Dehydrator, 5: Incinerator, 6: Heating medium heater, 7: Generator, 8: Dehydrator, 9: Chemical addition section, 11: Machine base, 12: outer cylinder screen, 13: screw shaft, 14: small hole, 15: screw blade, 16: movable base, 17: front bearing, 18: rear bearing, 19: variable speed motor, 20: connecting belt , 21: transfer compression passage, 22: inlet, 23: compression chamber, 24: tray, 25: bearing plate, 26: hydraulic cylinder, 27: piston rod, 28: drop path, 29: taper cone, 31: sludge injection Hopper, 32: sludge moving means, 33: pressurizing means, 33A: pressurizing plate, 34: water collecting means, 36: belt, 37: sludge discharge port, 38: belt driving device, 51: heating jacket, 71 : Digestion gas generator, 100, 101: Dehydration system , 131: outer tube, 132: partition plate 133: inner tube, 135 and 136: outer channel, 137, 138: inner channel

Claims (13)

  1.  周壁に小孔が形成された外筒スクリーンと、
     前記外筒スクリーンの内部に設けられたスクリュー軸と、
     前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根と、
     を備え、
     前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔から排出する脱水装置であって、
     前記外筒スクリーンが、加熱される加熱面と、前記小孔が露出する濾過面とを有することを特徴とする脱水装置。
    An outer cylinder screen with a small hole formed in the peripheral wall;
    A screw shaft provided inside the outer cylinder screen;
    Screw blades provided spirally around the screw shaft;
    With
    By rotating the screw shaft together with the screw blades, the dehydration target charged in the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft, and moisture separated from the dehydration target is separated from the outer cylinder. A dehydrator for discharging from the small hole of the screen,
    The dehydrating apparatus, wherein the outer cylinder screen has a heating surface to be heated and a filtration surface from which the small holes are exposed.
  2.  前記外筒スクリーンの一部に取り付けられた、内部に熱媒を流通させる構成を有する加熱用ジャケットをさらに備え、
     前記加熱用ジャケットが取り付けられた前記外筒スクリーンの部分が前記加熱面とされることを特徴とする請求項1に記載の脱水装置。
    A heating jacket attached to a part of the outer cylinder screen and having a configuration for circulating a heat medium therein, further comprises:
    The dehydrating apparatus according to claim 1, wherein a portion of the outer cylinder screen to which the heating jacket is attached is used as the heating surface.
  3.  前記熱媒の温度は100℃未満であることを特徴とする請求項2に記載の脱水装置。 The dehydrating apparatus according to claim 2, wherein the temperature of the heat medium is less than 100 ° C.
  4.  前記濃縮汚泥に対して無機凝集剤を添加する添加部をさらに備えることを特徴とする請求項3に記載の脱水装置。 4. The dehydrator according to claim 3, further comprising an addition unit for adding an inorganic flocculant to the concentrated sludge.
  5.  前記加熱面と前記濾過面とが前記スクリュー軸の軸芯方向に交互に繰り返して配置されていることを特徴とする請求項1ないし4のいずれかに記載の脱水装置。 The dehydrator according to any one of claims 1 to 4, wherein the heating surface and the filtration surface are alternately and repeatedly arranged in the axial direction of the screw shaft.
  6.  前記加熱面は、前記外筒スクリーンを周方向に囲む環状、又は前記外筒スクリーンの周方向の一部を覆う半円筒形状に形成されていることを特徴とする請求項1ないし4のいずれかに記載の脱水装置。 5. The heating surface according to claim 1, wherein the heating surface is formed in an annular shape that surrounds the outer cylinder screen in a circumferential direction, or in a semi-cylindrical shape that covers a part of the outer cylinder screen in the circumferential direction. The dehydration apparatus according to 1.
  7.  前記加熱面は複数あり、各加熱面は、前記外筒スクリーンの周方向の一部のみに形成されていることを特徴とする請求項1ないし4のずれかに記載の脱水装置。 The dehydrating apparatus according to any one of claims 1 to 4, wherein there are a plurality of heating surfaces, and each heating surface is formed only on a part of the outer cylinder screen in the circumferential direction.
  8.  前記スクリュー軸及び/又は前記スクリュー羽根は、内部に熱媒を流通させる中空形状を有することを特徴とする請求項1ないし7のいずれかに記載の脱水装置。 The dehydrating apparatus according to any one of claims 1 to 7, wherein the screw shaft and / or the screw blade has a hollow shape in which a heat medium is circulated.
  9.  前記外筒スクリーンに投入される前の前記脱水対象物を濃縮する濃縮機をさらに備えたことを特徴とする請求項1ないし8のいずれか一項に記載の脱水装置。 The dehydrator according to any one of claims 1 to 8, further comprising a concentrator for concentrating the object to be dehydrated before being put into the outer cylinder screen.
  10.  周壁に小孔が形成された外筒スクリーンと、
     前記外筒スクリーンの内部に設けられたスクリュー軸と、
     前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根と、
     を備え、
     前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔から排出する脱水システムであって、さらに、
     内部に熱媒を流通させる構成を有し、前記外筒スクリーンの一部に取り付けられた加熱用ジャケットと、
     廃熱を利用して前記熱媒を加熱する熱媒加熱機と、
     を備えたことを特徴とする脱水システム。
    An outer cylinder screen with a small hole formed in the peripheral wall;
    A screw shaft provided inside the outer cylinder screen;
    Screw blades provided spirally around the screw shaft;
    With
    By rotating the screw shaft together with the screw blades, the dehydration target charged in the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft, and moisture separated from the dehydration target is separated from the outer cylinder. A dewatering system for discharging from the small holes of the screen,
    A heating jacket attached to a part of the outer cylinder screen, having a configuration in which a heat medium is circulated inside;
    A heating medium heater that heats the heating medium using waste heat;
    A dehydration system comprising:
  11.  水分が離脱した前記脱水対象物を焼却し、乾燥し、又は炭化する熱処理設備をさらに備え、
     前記熱媒加熱機は、前記熱処理設備の廃熱を利用して前記熱媒を加熱することを特徴とする請求項10に記載の脱水システム。
    It further comprises a heat treatment facility that incinerates, dries, or carbonizes the dehydrated object from which moisture has been released,
    The dehydration system according to claim 10, wherein the heat medium heater heats the heat medium using waste heat of the heat treatment facility.
  12.  前記外筒スクリーンに投入される前の前記脱水対象物に対して消化処理を行う消化槽をさらに備え、
     前記熱媒加熱機は、前記消化槽で発生する消化ガスを利用して前記熱媒を加熱することを特徴とする請求項10又は11に記載の脱水システム。
    Further comprising a digestion tank for performing a digestion process on the dehydrated object before being put into the outer cylinder screen;
    The dehydration system according to claim 10 or 11, wherein the heating medium heater heats the heating medium using digestion gas generated in the digestion tank.
  13.  周壁に小孔が形成された外筒スクリーンと、前記外筒スクリーンの内部に設けられたスクリュー軸と、前記スクリュー軸の周囲に螺旋状に設けられたスクリュー羽根とを備えた脱水装置における脱水方法であって、
     前記スクリュー羽根と共にスクリュー軸を回転させることで、前記外筒スクリーンに投入された脱水対象物を前記スクリュー軸の軸芯方向に搬送しながら圧縮し、
     前記外筒スクリーンの加熱面で前記外筒スクリーン内を搬送される前記脱水対象物を加熱し、前記脱水対象物から分離した水分を前記外筒スクリーンの前記小孔が露出した濾過面から排出することを特徴とする脱水方法。
     
    A dehydrating method in a dehydrating apparatus comprising: an outer cylinder screen having a small hole formed in a peripheral wall; a screw shaft provided inside the outer cylinder screen; and a screw blade spirally provided around the screw shaft Because
    By rotating the screw shaft together with the screw blades, the dehydration target charged in the outer cylinder screen is compressed while being conveyed in the axial direction of the screw shaft,
    The dehydration object conveyed in the outer cylinder screen is heated by the heating surface of the outer cylinder screen, and water separated from the dehydration object is discharged from the filtration surface where the small holes of the outer cylinder screen are exposed. A dehydration method characterized by the above.
PCT/JP2016/073133 2015-09-07 2016-08-05 Dehydration device, dehydration system, and dehydration method WO2017043232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539067A JP6672318B2 (en) 2015-09-07 2016-08-05 Dehydration apparatus, dehydration system, and dehydration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-175872 2015-09-07
JP2015175872 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043232A1 true WO2017043232A1 (en) 2017-03-16

Family

ID=58239619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073133 WO2017043232A1 (en) 2015-09-07 2016-08-05 Dehydration device, dehydration system, and dehydration method

Country Status (2)

Country Link
JP (3) JP6672318B2 (en)
WO (1) WO2017043232A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957184A (en) * 2017-05-15 2017-07-18 浙江竟成环保科技有限公司 A kind of rubbish treatment in situ system of energy-conserving and environment-protective
CN108245988A (en) * 2018-02-08 2018-07-06 刘肖俊 A kind of water conservancy row's silt device that can effectively promote sludge treatment quality
JP2020044482A (en) * 2018-09-18 2020-03-26 水ing株式会社 Sludge treatment system and sludge treatment method
CN111170611A (en) * 2020-01-16 2020-05-19 梁秀宜 Spiral sludge treatment equipment of multi-functional integration
WO2020158551A1 (en) 2019-01-29 2020-08-06 月島機械株式会社 Organic sludge treatment facility and treatment method
WO2020158552A1 (en) * 2019-01-29 2020-08-06 月島機械株式会社 Organic sludge treatment facility and treatment method
CN111514649A (en) * 2020-05-08 2020-08-11 戴阳华 River silt handles and uses mud-water separation device
JP2020131169A (en) * 2019-02-25 2020-08-31 月島機械株式会社 Heat dehydration system and heat dehydration method
CN111632429A (en) * 2020-05-29 2020-09-08 江苏苏美达成套设备工程有限公司 Integrated sludge composite conditioning deep dehydration drying treatment system and method thereof
JP2020157261A (en) * 2019-03-27 2020-10-01 日立セメント株式会社 Organic sludge treatment method and treatment apparatus
WO2021174544A1 (en) * 2020-03-06 2021-09-10 王佰忠 Integrated device for solid-liquid separation and drying of excreta
WO2022126423A1 (en) * 2020-12-16 2022-06-23 浙江千辰生态环保科技有限公司 Sludge treatment device for environmental protection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003192B1 (en) 2020-07-28 2022-01-20 月島機械株式会社 Organic sludge treatment equipment and treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838357A (en) * 1971-09-15 1973-06-06
JPS6048199A (en) * 1983-08-29 1985-03-15 Kurita Water Ind Ltd Sludge dehydrator
JPS61289996A (en) * 1985-06-14 1986-12-19 Nikko Sogyo Kk Treatment device for dehydrating and drying sludge or the like
JPH07185600A (en) * 1993-12-28 1995-07-25 Ataka Kogyo Kk Dehydration treatment of sludge and its stirring and mixing device
JPH0824899A (en) * 1994-07-20 1996-01-30 Ohbayashi Corp Organic waste treatment
US6673247B2 (en) * 2000-10-13 2004-01-06 Fkc Co., Ltd. Sludge dewatering and pasteurization process
JP2005230840A (en) * 2004-02-18 2005-09-02 Fukoku Kogyo Kk Screw press
JP2006218383A (en) * 2005-02-09 2006-08-24 Kobe Steel Ltd High water content organic waste treatment system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122092A (en) * 1982-01-14 1983-07-20 Ebara Infilco Co Ltd Methane fermenting method for organic waste
JPS614795A (en) * 1984-06-18 1986-01-10 Ebara Infilco Co Ltd Method for producing solid fuel from organic sludge
JPS6191400U (en) * 1984-11-19 1986-06-13
JP3248188B2 (en) * 1991-03-14 2002-01-21 栗田工業株式会社 Organic sludge dewatering method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838357A (en) * 1971-09-15 1973-06-06
JPS6048199A (en) * 1983-08-29 1985-03-15 Kurita Water Ind Ltd Sludge dehydrator
JPS61289996A (en) * 1985-06-14 1986-12-19 Nikko Sogyo Kk Treatment device for dehydrating and drying sludge or the like
JPH07185600A (en) * 1993-12-28 1995-07-25 Ataka Kogyo Kk Dehydration treatment of sludge and its stirring and mixing device
JPH0824899A (en) * 1994-07-20 1996-01-30 Ohbayashi Corp Organic waste treatment
US6673247B2 (en) * 2000-10-13 2004-01-06 Fkc Co., Ltd. Sludge dewatering and pasteurization process
JP2005230840A (en) * 2004-02-18 2005-09-02 Fukoku Kogyo Kk Screw press
JP2006218383A (en) * 2005-02-09 2006-08-24 Kobe Steel Ltd High water content organic waste treatment system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957184A (en) * 2017-05-15 2017-07-18 浙江竟成环保科技有限公司 A kind of rubbish treatment in situ system of energy-conserving and environment-protective
CN108245988A (en) * 2018-02-08 2018-07-06 刘肖俊 A kind of water conservancy row's silt device that can effectively promote sludge treatment quality
JP7074630B2 (en) 2018-09-18 2022-05-24 水ing株式会社 Sewage sludge treatment system and sludge treatment method
JP2020044482A (en) * 2018-09-18 2020-03-26 水ing株式会社 Sludge treatment system and sludge treatment method
WO2020158551A1 (en) 2019-01-29 2020-08-06 月島機械株式会社 Organic sludge treatment facility and treatment method
WO2020158552A1 (en) * 2019-01-29 2020-08-06 月島機械株式会社 Organic sludge treatment facility and treatment method
JP2020131169A (en) * 2019-02-25 2020-08-31 月島機械株式会社 Heat dehydration system and heat dehydration method
WO2020175029A1 (en) * 2019-02-25 2020-09-03 月島機械株式会社 Thermal dewatering system and thermal dewatering method
JP7254580B2 (en) 2019-03-27 2023-04-10 日立セメント株式会社 Method and apparatus for treating organic sludge
JP2020157261A (en) * 2019-03-27 2020-10-01 日立セメント株式会社 Organic sludge treatment method and treatment apparatus
CN111170611A (en) * 2020-01-16 2020-05-19 梁秀宜 Spiral sludge treatment equipment of multi-functional integration
WO2021174544A1 (en) * 2020-03-06 2021-09-10 王佰忠 Integrated device for solid-liquid separation and drying of excreta
CN111514649A (en) * 2020-05-08 2020-08-11 戴阳华 River silt handles and uses mud-water separation device
CN111632429A (en) * 2020-05-29 2020-09-08 江苏苏美达成套设备工程有限公司 Integrated sludge composite conditioning deep dehydration drying treatment system and method thereof
WO2022126423A1 (en) * 2020-12-16 2022-06-23 浙江千辰生态环保科技有限公司 Sludge treatment device for environmental protection

Also Published As

Publication number Publication date
JP7048654B2 (en) 2022-04-05
JP6892943B2 (en) 2021-06-23
JP2020093256A (en) 2020-06-18
JP2020099906A (en) 2020-07-02
JPWO2017043232A1 (en) 2018-06-21
JP6672318B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6892943B2 (en) Dehydration device and dehydration method
JP6639330B2 (en) Dehydration system and dehydration method
JP6216763B2 (en) Dehydration system and method
JP6308933B2 (en) Sludge dewatering method and sludge dewatering device
BR112015027715B1 (en) METHOD TO ULTRADEHYDRATE THICK OR PASTY PRODUCTS FORMING A BIOMASS AND APPLIANCE TO IMPLEMENT THE METHOD
CN110436731A (en) Sludge drying system based on biomass energy
CN103992018A (en) Sludge drying system
CN106430898A (en) Sludge drying system and method
KR100787948B1 (en) A rotary carbonization apparatus for organic waste matter
JP2018143921A (en) Dehydrating device, system and method
CN206255975U (en) Sewage sludge continuous band and the complete processing system of heat pump desiccation
WO2022105089A1 (en) Sludge dryer
CN107954585A (en) A kind of domestic sludge assists coal desiccation molding machine
CN105174683A (en) Sludge reduction combined treatment system and method
WO2020158551A1 (en) Organic sludge treatment facility and treatment method
JP3609636B2 (en) Sludge drying equipment
CN113233735B (en) High-moisture-content sludge rapid dehydration device
CN210303554U (en) Integration material mummification prilling granulator
KR101843316B1 (en) Combined Drying Apparatus for Sludge
CN107935354A (en) Sewage sludge continuous band and the complete processing system of heat pump desiccation and processing method
KR101955809B1 (en) Low Energy Sludge Drying Fuelization System Using Oxidation Dehydration, Hybrid Drying and Waste Heat Generation
KR20170112326A (en) Apparatus for drying sludge
CN201850208U (en) Novel water supply sludge dewatering device
JP2004313820A (en) Dehydrator, oil circulation system, dehydration system and dehydration method for sludge
CN211999432U (en) Novel sludge drying and incineration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844096

Country of ref document: EP

Kind code of ref document: A1