JP7254580B2 - Method and apparatus for treating organic sludge - Google Patents

Method and apparatus for treating organic sludge Download PDF

Info

Publication number
JP7254580B2
JP7254580B2 JP2019061775A JP2019061775A JP7254580B2 JP 7254580 B2 JP7254580 B2 JP 7254580B2 JP 2019061775 A JP2019061775 A JP 2019061775A JP 2019061775 A JP2019061775 A JP 2019061775A JP 7254580 B2 JP7254580 B2 JP 7254580B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
steam
aeration
digested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061775A
Other languages
Japanese (ja)
Other versions
JP2020157261A (en
Inventor
淳 永井
達也 小泉
靖夫 石橋
忍 堀邉
真司 植田
江理 大塚
良和 岩根
隆生 萩野
直明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2019061775A priority Critical patent/JP7254580B2/en
Publication of JP2020157261A publication Critical patent/JP2020157261A/en
Application granted granted Critical
Publication of JP7254580B2 publication Critical patent/JP7254580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Description

本発明は、有機性汚泥の処理方法及び処理装置に関し、特に難脱水性消化汚泥の処理方法及び処理装置に関する。 TECHNICAL FIELD The present invention relates to a method and apparatus for treating organic sludge, and more particularly to a method and apparatus for treating difficult-to-dewater digested sludge.

食品加工残渣、生ごみ、汚泥などの廃棄物系バイオマスを対象としたメタン発酵技術において、設備のコンパクト化やメタンガスのエネルギー回収率向上を目的として、設備への投入原料濃度を高濃度化することで運転動力を削減し、エネルギー回収の効率化を図ることが知られている(高濃度消化法)。 In methane fermentation technology targeting waste biomass such as food processing residue, garbage, and sludge, increasing the concentration of raw materials input to equipment for the purpose of downsizing the equipment and improving the energy recovery rate of methane gas. It is known to reduce the driving power and improve the efficiency of energy recovery (high-concentration digestion method).

バイオマスを対象としたメタン発酵での汚泥濃度が高濃度化すると、発酵微生物の阻害反応に加えて、汚泥濃度の上昇に伴う移送、混合、撹拌時の設備容量や動力費増大、汚泥の難脱水化などの問題が発生してくる。特に、下水汚泥などの一般的な嫌気性消化汚泥のTS濃度(全蒸発残留物:Total solids)は15~20g/Lであるのに対して、バイオマスを対象としたメタン発酵汚泥のTS濃度が20g/L以上となる高濃度消化法では、発酵設備での適切な混合・撹拌技術とともに、難脱水化した発酵汚泥を簡便で安定的に汚泥処理できる技術が必要となっている。そして、TS濃度が20g/L以上の汚泥の場合には、汚泥が高粘質化したり、固液分離性が著しく低下したりする傾向が強く、安定した汚泥処理技術が要求されている。 When the sludge concentration in methane fermentation for biomass increases, in addition to the inhibitory reaction of fermentation microorganisms, the equipment capacity and power cost increase during transfer, mixing, and agitation due to the increase in sludge concentration, and the sludge is difficult to dewater. problems such as conversion will occur. In particular, the TS concentration (total solids) of general anaerobic digestion sludge such as sewage sludge is 15 to 20 g / L, whereas the TS concentration of methane fermentation sludge for biomass is In the high-concentration digestion method of 20 g/L or more, appropriate mixing/stirring technology in the fermentation facility and technology for simple and stable sludge treatment of difficult-to-dehydrate fermented sludge are required. In the case of sludge with a TS concentration of 20 g/L or more, there is a strong tendency that the sludge becomes highly viscous and the solid-liquid separability is remarkably lowered, and a stable sludge treatment technology is required.

メタン発酵汚泥処理では、凝集薬剤を注入して汚泥中の懸濁物質を化学的に凝集処理した後、機械脱水することが多い。その際、TS濃度が20g/L以上の高濃度汚泥では、希釈液などで汚泥を希釈処理してから汚泥脱水処理する方法が採られている。この高濃度消化汚泥の脱水処理に用いる高分子凝集剤としては、高価なアミジン系高分子凝集剤などが用いられ、適正な凝集フロックを形成させるためには薬注率5wt%以上(対TS濃度)の高い添加率で添加する必要があるため、薬品費も著しくコスト高となっていた。下水汚泥を対象とする一般的な嫌気性消化汚泥の脱水処理に用いられる高分子凝集剤が安価な非アミジン系高分子凝集剤で薬注率2wt%(対TS濃度)程度であることと比較すると、著しくコスト高であることが明らかである。 In the methane fermentation sludge treatment, a flocculating agent is injected to chemically flocculate the suspended solids in the sludge, followed by mechanical dehydration. At that time, for high-concentration sludge with a TS concentration of 20 g/L or more, a method of diluting the sludge with a diluent or the like and then dehydrating the sludge is adopted. Expensive amidine-based polymer flocculants are used as polymer flocculants for dehydration treatment of this high-concentration digested sludge. ) is required to be added at a high addition rate, the chemical cost is remarkably high. Compared to the fact that the polymer flocculant used for the dehydration treatment of general anaerobic digestion sludge for sewage sludge is an inexpensive non-amidine polymer flocculant with a chemical dosing rate of about 2 wt% (relative to TS concentration). Then, it is clear that the cost is remarkably high.

例えば、特許文献1では、メタン発酵汚泥の脱水性を改善するために、メタン発酵処理した消化残物(消化汚泥、又は消化液と消化汚泥との混合スラリー)を酸素含有ガスで曝気したのち機械脱水する方法が提案されている。この汚泥処理方法では、難脱水性消化汚泥に対して、凝集剤の添加量を低減でき、安定的に短時間で高濃度消化汚泥の脱水処理が可能であるものの、汚泥脱水後に得られるケーキ含水率は最高でも79~81%程度であることから、更なる脱水改善の余地がある。 For example, in Patent Document 1, in order to improve the dewaterability of methane fermentation sludge, methane fermentation-treated digestion residue (digested sludge, or a mixed slurry of digested juice and digested sludge) is aerated with an oxygen-containing gas and then machined. A method of dehydration has been proposed. In this sludge treatment method, the amount of coagulant added to difficult-to-dewater digested sludge can be reduced, and high-concentration digested sludge can be stably dehydrated in a short time. Since the rate is about 79 to 81% at maximum, there is room for further improvement in dehydration.

特許文献2では、固形状の汚泥と食品廃棄物の双方をメタン発酵してバイオガスを高収率で得るエネルギー回収システムが提供されている。このエネルギー回収システムでは、得られたバイオガスを燃料として電力と高温高圧水蒸気を発生するコ・ジェネレーション機関、消化汚泥を脱水して脱水汚泥として排出する脱水機、脱水汚泥を高温高圧水蒸気で乾燥する乾燥装置が備えられ、コ・ジェネレーション機関で発生した高温高圧水蒸気を可溶化装置、乾燥装置、メタン発酵槽に供給することを特徴とした提案がされている。しかしながら、難脱水化した発酵汚泥に対する脱水条件に関しては、メタン発酵槽から排出された含水率96%程度の消化汚泥は、脱水機に移送され、脱水され、固形状の含水率80%程度の脱水汚泥および脱離液(水)として排出されることが記載されるのみであり(段落0034)、その脱水汚泥の含水率80%程度であることからも、改善の余地が大きい。 Patent Document 2 provides an energy recovery system that obtains biogas at a high yield by methane fermentation of both solid sludge and food waste. This energy recovery system consists of a cogeneration engine that uses the obtained biogas as fuel to generate electricity and high-temperature, high-pressure steam; A proposal has been made in which a drying device is provided and the high-temperature, high-pressure steam generated by the cogeneration engine is supplied to the solubilization device, the drying device, and the methane fermentation tank. However, regarding the dehydration conditions for the difficult-to-dehydrate fermented sludge, the digested sludge with a water content of about 96% discharged from the methane fermentation tank is transferred to a dehydrator and dehydrated to obtain a solid state with a water content of about 80%. It is only described that it is discharged as sludge and desorbed liquid (water) (paragraph 0034), and since the water content of the dewatered sludge is about 80%, there is a large room for improvement.

特許文献3には、余剰汚泥を脱水工程および乾燥工程を経て堆肥化する廃棄物処理方法について、余剰汚泥と高水分の有機性廃棄物とをバイオガス化工程でメタン発酵させてバイオガスを取出し、バイオガス化工程から排出されるメタン発酵処理汚泥を脱水工程で脱水し、脱水工程で得られた脱水汚泥を乾燥工程で乾燥する際に、バイオガスを燃料として発生した蒸気を、乾燥工程に用いられる乾燥装置の吸収冷凍機へ熱源として供給することが提案されている。そして、脱水工程で脱水された汚泥は含水率70~87%となり、さらにこの脱水汚泥は乾燥工程において低温除湿乾燥装置で乾燥されて含水率30~70%の乾燥汚泥とする方法が述べられている。しかしながら、脱水工程での詳細な運転条件の記述は一切開示されておらず、また、バイオガスを燃料として発生した蒸気は乾燥工程に用いられる乾燥装置の吸収冷凍機へ熱源として供給され、脱水装置には供給されない処理方法がとられており、脱水工程での処理コストや性能改善の取組みは無い。 Patent Document 3 describes a waste treatment method in which excess sludge is composted through a dehydration process and a drying process. Excess sludge and high-moisture organic waste are subjected to methane fermentation in a biogasification process to extract biogas. , The methane fermentation sludge discharged from the biogasification process is dehydrated in the dehydration process, and the dehydrated sludge obtained in the dehydration process is dried in the drying process. It has been proposed to feed the absorption chiller of the dryer used as a heat source. Then, the sludge dehydrated in the dehydration process has a water content of 70 to 87%, and the dehydrated sludge is further dried in a low-temperature dehumidifying dryer in the drying process to obtain dry sludge with a water content of 30 to 70%. there is However, no detailed description of the operating conditions in the dehydration process is disclosed at all, and the steam generated using biogas as fuel is supplied as a heat source to the absorption refrigerator of the drying apparatus used in the drying process, and is used in the dehydration apparatus. There is no treatment cost or performance improvement in the dehydration process.

特許文献4には、汚泥を間接加熱方式で加熱しながらスクリュープレス方式で脱水する際、脱水部に投入される前の汚泥に送気をすることで、汚泥を好気状態にする好気部を備える構成により、脱水部からの排気に対して脱臭処理をするための脱臭設備が不要となる。その解決策として、消化槽と凝集槽との間に、好気槽を設け、消化汚泥にブロワで空気を吹き込むことで、汚泥を好気状態とし、液中の硫化水素を酸化処理して低減させる方法が提案されている。しかしながら、この汚泥処理方法での好気槽は、汚泥の脱臭処理を目的とすることが記載されているのみである。 In Patent Document 4, when dehydrating the sludge by a screw press method while heating the sludge by an indirect heating method, air is supplied to the sludge before it is introduced into the dehydration unit, thereby making the sludge an aerobic state. , the need for deodorizing equipment for deodorizing the exhaust air from the dewatering unit is eliminated. As a solution, an aerobic tank is installed between the digestion tank and the flocculation tank, and by blowing air into the digested sludge with a blower, the sludge is made into an aerobic state, and the hydrogen sulfide in the liquid is oxidized and reduced. A method has been proposed to do so. However, it is only described that the aerobic tank in this sludge treatment method is intended for sludge deodorization treatment.

非特許文献1では、し尿処理汚泥を対象とした脱水方法において、第1段目のベルトプレス型脱水機で脱水された脱水ケーキを、第2段目のスクリュープレス型脱水機で再脱水して、脱水ケーキの含水率を65wt%以下にする2段脱水法が提案されている。特に、第2段目のスクリュープレス型脱水機では、脱水時にスチーム熱を有効に利用できるので脱水ケーキの含水率を他脱水機よりも低下できるとしているものの、2段もの脱水機の設備コストと運転管理を考慮すると、現実的には難しい面が多い。 In Non-Patent Document 1, in a dehydration method for night soil treatment sludge, the dehydrated cake dehydrated in the first stage belt press type dehydrator is re-dehydrated in the second stage screw press type dehydrator. , a two-stage dehydration method has been proposed in which the moisture content of the dehydrated cake is reduced to 65 wt% or less. In particular, in the second-stage screw press type dehydrator, steam heat can be effectively used during dehydration, so it is said that the water content of the dehydrated cake can be reduced more than other dehydrators. Considering operation management, there are many difficult aspects in reality.

国際公開第2016/111324号WO2016/111324 特開2009-34569号公報JP 2009-34569 A 特開2005-131558号公報JP-A-2005-131558 特許第6216763号公報Japanese Patent No. 6216763

荏原インフィルコ時報、第88号、「スクリュープレスによるし尿処理汚泥の脱水」、荏原インフィルコ株式会社『荏原インフィルコ時報』編集室、株式会社文祥堂印刷、1983年3月28日発行、p.41~49Ebara Infilco Jiho, No. 88, "Dehydration of night soil treatment sludge by screw press", Ebara Infilco Co., Ltd. "Ebara Infilco Jiho" editorial office, Bunshodo Printing Co., Ltd., March 28, 1983, p. 41-49

上記課題を鑑み、本発明は、より低コストで高脱水効率を達成可能な有機性汚泥の処理方法及び処理装置を提供する。 In view of the above problems, the present invention provides an organic sludge treatment method and treatment apparatus capable of achieving high dehydration efficiency at a lower cost.

本発明者らは、高濃度消化汚泥中に残留するコロイダル性の粘着質成分が高濃縮されることによって高濃度消化汚泥が難脱水化してくるという経験をもとに、高濃度消化汚泥の粘度を低下させることによって、凝集剤の添加量を削減でき、加えて、脱水装置に蒸気を吹込んで加温脱水することで、脱水効率を向上できることを見いだした。 Based on the experience that the high-concentration digested sludge becomes difficult to dehydrate due to the highly concentrated colloidal sticky components remaining in the high-concentration digested sludge, the present inventors have found that the viscosity of the high-concentration digested sludge is It was found that the amount of coagulant to be added can be reduced by lowering the , and that the dehydration efficiency can be improved by blowing steam into the dehydrator to heat and dehydrate.

以上の知見を基礎として完成した本発明の実施の形態に係る有機性汚泥の処理方法は一側面において、有機性汚泥を嫌気性処理した後の難脱水性消化汚泥に対し、酸素含有気体を通気して曝気処理を行うことにより難脱水性消化汚泥の汚泥粘度を低減させた後、蒸気を吹込んで加温脱水処理することを含む有機性汚泥の処理方法である。 In one aspect of the method for treating organic sludge according to the embodiment of the present invention, which has been completed based on the above knowledge, an oxygen-containing gas is passed through difficult-to-dehydrate digested sludge after anaerobic treatment of organic sludge. This is a method for treating organic sludge, which comprises reducing the sludge viscosity of difficult-to-dewater digested sludge by aeration treatment, and then heating and dehydrating the sludge by blowing in steam.

本発明の実施の形態に係る有機性汚泥の処理方法は一実施態様において、曝気処理は、酸素含有気体を0.05~0.3m3/(m3・分)の曝気強度において、曝気処理後の消化汚泥の粘度が、下水試験方法に定められたB型回転粘度計による30℃での測定で150mPa・s以下に低下するまで行う。 In one embodiment of the organic sludge treatment method according to the embodiment of the present invention, the aeration treatment is carried out with an oxygen-containing gas at an aeration intensity of 0.05 to 0.3 m 3 /(m 3 min). The viscosity of the post-digested sludge is measured at 30° C. with a B-type rotational viscometer specified in the sewage test method until it decreases to 150 mPa·s or less.

本発明の実施の形態に係る有機性汚泥の処理方法は別の一実施態様において、曝気処理後の消化汚泥に高分子凝集剤を1.5~7質量%添加して凝集処理を行う。 In another embodiment of the organic sludge treatment method according to the embodiment of the present invention, 1.5 to 7% by mass of a polymer flocculant is added to digested sludge after aeration treatment to perform flocculation treatment.

本発明の実施の形態に係る有機性汚泥の処理方法は更に別の一実施態様において、加温脱水処理は、高分子凝集剤を用いたプレス式脱水機による脱水処理を含み、曝気処理後の消化汚泥の汚泥粘度に基づいて脱水機への蒸気吹き込み量を調整し、含水率が78%以下の脱水ケーキを得る。 In still another embodiment of the organic sludge treatment method according to the embodiment of the present invention, the heat dehydration treatment includes dehydration treatment by a press dehydrator using a polymer flocculant, and after aeration treatment A dehydrated cake having a moisture content of 78% or less is obtained by adjusting the amount of steam blown into the dehydrator based on the sludge viscosity of the digested sludge.

本発明の実施の形態に係る有機性汚泥の処理方法は更に別の一実施態様において、脱水ケーキに対して蒸気を吹き込んで加熱乾燥する汚泥乾燥機を用いた汚泥乾燥処理を含み、曝気処理後の消化汚泥の汚泥粘度に基づいて脱水機及び汚泥乾燥機への蒸気吹き込み量を調整することにより、堆肥化処理に適した含水率の乾燥ケーキを得る。 In still another embodiment, the organic sludge treatment method according to the embodiment of the present invention includes sludge drying treatment using a sludge dryer that heats and dries the dehydrated cake by blowing steam into it, and after aeration treatment By adjusting the amount of steam blown into the dehydrator and the sludge dryer based on the sludge viscosity of the digested sludge, a dry cake with a moisture content suitable for composting is obtained.

本発明の実施の形態に係る有機性汚泥の処理方法は更に別の一実施態様において、加温脱水処理に用いる蒸気が、焼却処理施設、下水汚泥処理施設、またはバイオマスメタン発酵施設の少なくとも1以上のボイラ設備から得られる蒸気であるか、もしくは発電設備から得られる熱を変換した蒸気である。 In still another embodiment of the organic sludge treatment method according to the embodiment of the present invention, the steam used for thermal dehydration is at least one of an incineration facility, a sewage sludge treatment facility, and a biomass methane fermentation facility. It is the steam obtained from the boiler equipment of the plant, or the steam obtained by converting the heat obtained from the power generation equipment.

本発明の実施の形態に係る有機性汚泥の処理装置は、一側面において、有機性汚泥を嫌気性処理して難脱水性消化汚泥を形成する嫌気性処理槽と、消化汚泥を酸素含有気体で曝気する曝気槽と、曝気処理後の消化汚泥に高分子凝集剤を添加して凝集汚泥を形成する凝集槽と、曝気槽に供給する酸素含有気体の曝気速度を調整する風量制御装置と、凝集汚泥を蒸気吹込みで加温脱水処理して脱水汚泥を得る脱水装置と、脱水汚泥を蒸気吹込みで乾燥処理する乾燥装置と、脱水装置および乾燥装置に供給する蒸気の吹込み速度を調整する制御装置とを具備する有機性汚泥の処理装置である。 In one aspect, an organic sludge treatment apparatus according to an embodiment of the present invention includes an anaerobic treatment tank for anaerobically treating organic sludge to form hard-to-dehydrate digested sludge, and an oxygen-containing gas for digested sludge. An aeration tank for aeration, a flocculation tank for forming flocculated sludge by adding a polymer flocculant to digested sludge after aeration treatment, an air volume control device for adjusting the aeration rate of the oxygen-containing gas supplied to the aeration tank, and flocculation The dehydrator that heats and dehydrates sludge by blowing steam to obtain dehydrated sludge, the dryer that dries the dehydrated sludge by blowing steam, and the blowing speed of the steam supplied to the dehydrator and dryer are adjusted. and a control device.

本発明の実施の形態に係る有機性汚泥の処理装置は一実施態様において、嫌気性処理により得られるガスを燃料として焼却処理する焼却施設、下水汚泥処理施設またはバイオマスメタン発酵施設の少なくとも1以上のボイラ設備から得られる蒸気または発電設備から得られる熱を変換した蒸気を供給する蒸気供給ラインを備える。 In one embodiment of the organic sludge treatment apparatus according to the embodiment of the present invention, at least one or more of an incineration facility that incinerates gas obtained by anaerobic treatment as a fuel, a sewage sludge treatment facility, or a biomass methane fermentation facility A steam supply line is provided for supplying steam obtained from the boiler facility or heat-converted steam obtained from the power generation facility.

本発明によれば、より低コストで高脱水効率を達成可能な有機性汚泥の処理方法及び処理装置が提供できる。 According to the present invention, it is possible to provide a method and apparatus for treating organic sludge that can achieve high dehydration efficiency at a lower cost.

本発明の実施の形態に係る有機性汚泥の処理方法の一例を示すフロー図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows an example of the processing method of the organic sludge which concerns on embodiment of this invention. 本発明の実施の形態に係る有機性汚泥の処理装置の一例を表す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic showing an example of the processing apparatus of the organic sludge which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。なお、本実施形態において「%」は特に記載のない場合は「質量%」を意味するものとする。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are denoted by the same or similar reference numerals. The embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. It does not specify anything. In this embodiment, "%" means "% by mass" unless otherwise specified.

本発明の実施の形態に係る有機性汚泥の処理方法は、図1に示すように、有機性汚泥(有機物質)を嫌気性処理した後の難脱水性消化汚泥に対し、酸素含有気体を通気して曝気処理を行うことにより難脱水性消化汚泥の汚泥粘度を低減させた後、脱水工程において蒸気を吹き込んで加温脱水処理することを含む。 In the organic sludge treatment method according to the embodiment of the present invention, as shown in FIG. After reducing the sludge viscosity of the difficult-to-dewater digested sludge by performing aeration treatment, steam is blown in in the dehydration step to perform heat dehydration treatment.

(A)難脱水性消化汚泥
本実施形態にける処理対象物は、20g/L以上、好ましくは20~60g/LのTS濃度を有する難脱水性消化汚泥であることが好ましい。一実施態様ではTS濃度20~50g/LのTS濃度を有し、別の一実施態様では25~40g/LのTS濃度を有する高濃度で高粘度の難脱水性消化汚泥を処理することが更に好ましい。消化汚泥の汚泥性状としては、典型的にはpH6.5~8.0であり、下水試験方法に定められたB型回転粘度計で測定した30℃での汚泥粘度が200~2000mPa・s、好ましくは400~1500mPa・sであり、SSに対する粗浮遊物含有率が3~20wt%である。難脱水性汚泥は、TS濃度よりも5g/L以上少ないSS濃度を有することができる。一実施態様では、SS濃度が18~45g/L、更にはSS濃度が20~40g/Lの汚泥が好適に利用できる。
(A) Hard-to-dewater digested sludge The object to be treated in this embodiment is preferably hard-to-dewater digested sludge having a TS concentration of 20 g/L or more, preferably 20 to 60 g/L. In one embodiment, it has a TS concentration of 20 to 50 g / L, and in another embodiment, it is possible to treat a highly concentrated and highly viscous difficult-to-dewater digested sludge having a TS concentration of 25 to 40 g / L. More preferred. The sludge properties of the digested sludge are typically pH 6.5 to 8.0, and the sludge viscosity at 30 ° C. measured with a B-type rotational viscometer specified in the sewage test method is 200 to 2000 mPa s, It is preferably 400 to 1500 mPa·s, and the content of coarse suspended solids in SS is 3 to 20 wt%. The difficult-to-dewater sludge can have a SS concentration that is 5 g/L or more less than the TS concentration. In one embodiment, sludge with an SS concentration of 18 to 45 g/L, more preferably 20 to 40 g/L can be used.

このような難脱水性消化汚泥は、食品製造残渣、生ごみ、汚泥などの有機性物質を嫌気性処理(メタン発酵処理)する工程から発生する。一般には、処理温度30~60℃の中温発酵領域及び高温発酵領域にて、滞留日数(HRT)12~40日の条件で運転される完全混合型メタン発酵槽や乾式メタン発酵槽を用いた嫌気性処理で排出される汚泥である。 Such difficult-to-dewater digested sludge is generated from a process of anaerobic treatment (methane fermentation treatment) of organic substances such as food manufacturing residue, garbage, and sludge. In general, an anaerobic process using a complete mixing methane fermentation tank or a dry methane fermentation tank that is operated under conditions of a retention period (HRT) of 12 to 40 days in a mesophilic fermentation region and a high temperature fermentation region at a processing temperature of 30 to 60 ° C. This is sludge that is discharged from the sludge treatment process.

(B)曝気処理
曝気処理では、酸素を含む気体で難脱水性消化汚泥を曝気処理して、消化汚泥中に残留する粘着質成分を生物的反応とともに化学的反応で分解させて汚泥粘度を低下させる。この曝気処理では、汚泥中に溶解している炭酸ガスの脱炭酸反応が進行するのみでなく、汚泥中の残留有機物と無機物とが架橋作用で結合して生じた粘着物、有機物同士が会合して生じた粘着物、高分子系粘着物が曝気処理による生物的反応及び化学的反応で低減される。特に消化汚泥中に残留する分子量100万~200万以上の高分子物質が曝気処理によって低分子化されることで汚泥粘度が低減する。
(B) Aeration Treatment In the aeration treatment, difficult-to-dehydrate digested sludge is aerated with oxygen-containing gas, and sticky components remaining in the digested sludge are decomposed through biological and chemical reactions to reduce the viscosity of the sludge. Let In this aeration process, not only does the decarboxylation reaction of carbon dioxide gas dissolved in the sludge progress, but also sticky substances and organic substances formed by binding residual organic matter and inorganic matter in the sludge by cross-linking action. Adhesives and high-molecular-weight adhesives produced by the aeration treatment are reduced by biological and chemical reactions caused by the aeration treatment. In particular, high-molecular-weight substances having a molecular weight of 1,000,000 to 2,000,000 or more remaining in the digested sludge are reduced in molecular weight by the aeration treatment, thereby reducing the viscosity of the sludge.

曝気処理は、酸素含有気体を0.05m3/(m3・分)以上の曝気強度とし、曝気時間を4~48時間とすることが好ましい。曝気強度が0.05m3/(m3・分)未満では、汚泥粘度が高いため、汚泥全体に曝気することが困難であることが多い。一方、酸素含有気体の曝気強度を0.3m3/(m3・分)よりも高くする場合や処理時間が過大となる場合は、消化汚泥の発泡が激しくなることに加えて、汚泥中の粘着質成分ばかりでなく、汚泥自体の分解が進行して菌体成分が溶解する場合や、汚泥性状が更に変化し、後段の凝集処理や脱水処理に悪影響を及ぼす場合がある。曝気強度は、0.1~0.25m3/(m3・分)とすることが好ましく、より好ましくは0.1~0.2m3/(m3・分)、より好ましくは0.1~0.15m3/(m3・分)である。 In the aeration treatment, the oxygen-containing gas is preferably aerated at an intensity of 0.05 m 3 /(m 3 ·min) or more, and the aeration time is preferably 4 to 48 hours. If the aeration intensity is less than 0.05 m 3 /(m 3 ·min), it is often difficult to aerate the entire sludge due to the high sludge viscosity. On the other hand, when the aeration intensity of the oxygen-containing gas is higher than 0.3 m 3 /(m 3 ·min) or when the treatment time is excessive, the foaming of the digested sludge becomes intense, and the sludge Not only the sticky components but also the decomposition of the sludge itself progresses to dissolve the bacterial components, or the properties of the sludge further change, which may adversely affect the flocculation treatment and dehydration treatment in the subsequent stage. The aeration intensity is preferably 0.1 to 0.25 m 3 /(m 3 ·min), more preferably 0.1 to 0.2 m 3 /(m 3 ·min), more preferably 0.1 ˜0.15 m 3 /(m 3 ·min).

本実施形態では、曝気処理後の消化汚泥の粘度が、下水試験方法に定められたB型回転粘度計による30℃での測定で150mPa・s以下に低下するまで曝気を行うことが好ましい。典型的には曝気時間4~48時間、更に典型的には6~24時間で行われる。曝気処理後の消化汚泥の粘度が150mPa・sを超える場合、例えば粘度が200mPa・s程度の場合であっても、後述する脱水処理における脱水ケーキの脱水率自体は高めることは可能となる場合もあるが、脱水処理に用いられる脱水装置や脱水ケーキを移送・運搬するコンベヤやその後の乾燥処理に用いられる乾燥装置の内側に汚泥が付着し、汚泥処理速度が低下、脱水装置及び乾燥装置の清掃等のメンテナンスが煩雑になる場合や、運転中に詰まり等が生じて脱水装置及び乾燥装置にトラブルが生じる場合がある。 In this embodiment, aeration is preferably performed until the viscosity of the digested sludge after aeration treatment is reduced to 150 mPa·s or less as measured at 30° C. using a B-type rotational viscometer specified in the sewage test method. Aeration times of 4 to 48 hours are typically used, more typically 6 to 24 hours. When the viscosity of the digested sludge after aeration treatment exceeds 150 mPa s, for example, even when the viscosity is about 200 mPa s, it may be possible to increase the dehydration rate of the dehydrated cake itself in the dehydration treatment described later. However, sludge adheres to the dewatering equipment used for dehydration, the conveyor that transfers and transports the dehydrated cake, and the inside of the drying equipment used for subsequent drying, reducing the sludge treatment speed and cleaning the dehydration equipment and drying equipment. Such maintenance may become complicated, and troubles may occur in the dewatering device and the drying device due to clogging during operation.

システム全体において極力凝集剤の添加を少なくし、且つ、高脱水率で各装置の保守性を高めるためには、曝気処理後の消化汚泥の粘度が、下水試験方法に定められたB型回転粘度計による30℃での測定で150mPa・s以下、好ましくは120mPa・s以下、更に好ましくは100mPa・s以下、更に好ましくは80mPa・s以下に低下するまで、曝気強度を0.05~0.3m3/(m3・分)において出来るだけ緩慢に曝気処理を行うことが好ましい。 In order to minimize the addition of flocculants in the entire system and to improve the maintainability of each device with a high dehydration rate, the viscosity of the digested sludge after aeration treatment should be B-type rotational viscosity specified in the sewage test method. 150 mPa s or less, preferably 120 mPa s or less, more preferably 100 mPa s or less, still more preferably 80 mPa s or less, measured at 30 ° C. with a meter, until the aeration strength is reduced from 0.05 to 0.3 mPa s. It is preferable to aerate as slowly as possible in 3 /(m 3 ·min).

曝気処理時の温度は10~50℃、pHは7~9とすることができる。曝気に用いられる酸素含有気体としては、酸素ガスを含む気体であれば問題なく、難脱水性消化汚泥が形成される処理施設内のごみ受入ピットやごみ選別設備などから発生する悪臭成分を含む低濃度系および高濃度系の臭気ガス、汚水の活性汚泥処理設備から発生する曝気排ガスなどを用いることができる。 The temperature during the aeration treatment can be 10-50° C., and the pH can be 7-9. As the oxygen-containing gas used for aeration, there is no problem if it contains oxygen gas. Concentrated and high-concentration odorous gases, aerated exhaust gases generated from activated sludge treatment equipment for sewage, and the like can be used.

曝気処理時の汚泥中の溶存酸素(DO)濃度は1.0mg/L以下に維持する。汚泥の酸化還元電位(ORP)は多くの場合-400~+100mV程度である。曝気処理は、汚泥pH7.5~9.5、下水試験方法に定められたB型回転粘度計による30℃での測定で汚泥粘度150mPa・s以下となるまで行うことで、その後の凝集工程で用いられる凝集剤の使用量を少なくしながら、脱水工程における脱水効率を向上させることができる。 The dissolved oxygen (DO) concentration in the sludge during aeration treatment is maintained at 1.0 mg/L or less. The oxidation-reduction potential (ORP) of sludge is often around −400 to +100 mV. Aeration treatment is performed until the sludge pH is 7.5 to 9.5 and the sludge viscosity is 150 mPa s or less as measured at 30 ° C with a B-type rotational viscometer specified in the sewage test method. It is possible to improve the dehydration efficiency in the dehydration step while reducing the amount of flocculant used.

曝気処理による生物的反応を促進する上では、曝気処理を行う前に、難脱水性消化汚泥に、好気性微生物群を含む汚泥(以下「好気性微生物群含有汚泥」という)を添加することが好ましく、粘着質成分を積極的に分解させ汚泥粘度を低下させることが可能である。添加することができる汚泥としては、硝化脱窒素工程から得られる活性汚泥の余剰濃縮汚泥、あるいは堆肥化汚泥、生物脱臭の汚泥などの好気性微生物群含有汚泥が好ましい。好気性微生物群含有汚泥の添加量は、その汚泥濃度にもよるが、曝気槽での汚泥滞留時間等を考慮して嫌気性消化汚泥量の5~20wt%、好ましくは5~10wt%程度が好ましい。 In order to promote the biological reaction by aeration treatment, sludge containing aerobic microorganisms (hereinafter referred to as "sludge containing aerobic microorganisms") may be added to difficult-to-dehydrate digested sludge before aeration treatment. Preferably, it is possible to positively decompose sticky components and reduce sludge viscosity. The sludge that can be added is preferably excess thickened sludge of activated sludge obtained from the nitrification and denitrification process, or sludge containing aerobic microorganisms such as composted sludge and biological deodorizing sludge. The amount of aerobic microorganisms-containing sludge to be added depends on the sludge concentration, but is 5 to 20 wt%, preferably about 5 to 10 wt% of the amount of anaerobic digestion sludge in consideration of the sludge retention time in the aeration tank. preferable.

(C)凝集処理
凝集処理では、曝気処理した消化汚泥に凝集剤を添加して凝集フロックを形成させ、凝集フロックを脱水処理する(凝集工程)。凝集剤としては、特に限定されないが、高分子凝集剤が用いられる。高分子凝集剤としては、カチオン系、アニオン系、両性系、等が挙げられ、例えば、アミジン系凝集剤、アクリルアミド系凝集剤、アクリル酸系凝集剤等が挙げられる。また、比較的安価なカチオンポリマー系凝集剤、例えば、アクリル酸エステル系、メタアクリル酸エステル系、アニオン度よりもカチオン度が高い両性系等を用いることができる。アクリル酸エステル系凝集剤としては、分子量が300万~600万程度が好ましい。汚泥凝集時の高分子凝集剤の添加率は、汚泥のTS濃度に対して1.5~7wt%が好ましく、1.8~5wt%程度が更に好ましく、一実施態様では1.9~2.6wt%である。本凝集処理によって、直径、すなわちフロック径が数ミリ程度であり、沈降分離性が高い凝集フロックを形成することができる。
(C) Aggregation Treatment In the aggregation treatment, a flocculating agent is added to the aerated digested sludge to form flocculated flocs, and the flocculated flocs are dehydrated (flocculation step). The flocculant is not particularly limited, but a polymer flocculant is used. Polymer flocculants include cationic, anionic, amphoteric, and the like, and include, for example, amidine-based flocculants, acrylamide-based flocculants, acrylic acid-based flocculants, and the like. In addition, a relatively inexpensive cationic polymer-based flocculant, such as an acrylic acid ester type, a methacrylic acid ester type, or an amphoteric type having a cationic degree higher than an anionic degree, can be used. As the acrylic acid ester-based flocculant, the molecular weight is preferably about 3 million to 6 million. The addition rate of the polymer flocculant during sludge aggregation is preferably 1.5-7 wt%, more preferably about 1.8-5 wt%, and in one embodiment, 1.9-2. 6 wt %. By this flocculation treatment, it is possible to form flocculated flocs having a diameter, that is, a floc diameter of about several millimeters, and having high sedimentation and separability.

高分子凝集剤のみで実施する場合の他、ポリ硫酸第二鉄または硫酸バンド、PAC等の無機系凝集助剤と高分子凝集剤の併用も分離液の清澄度を高めるために有効な場合がある。ただし、本実施形態のように蒸気吹込みで汚泥を加温脱水する場合は、有機性汚泥の性状によっては脱水機のスクリーン部等に石膏成分などのスケール成分が発生することがある。また、無機系凝集助剤の添加により発生汚泥量も増加することになるため、無機系凝集助剤の適用には汚泥性状などに応じて判断する必要がある。 In addition to using only a polymer flocculant, it may be effective to use an inorganic flocculating aid such as polyferric sulfate, aluminum sulfate, or PAC in combination with a polymer flocculant to improve the clarity of the separated liquid. be. However, when heating and dehydrating sludge by steam blowing as in the present embodiment, depending on the properties of the organic sludge, scale components such as gypsum components may be generated on the screen of the dehydrator. In addition, since the amount of generated sludge also increases due to the addition of the inorganic flocculation aid, it is necessary to determine the application of the inorganic flocculation aid depending on the properties of the sludge.

凝集処理の前に、曝気処理した消化汚泥を希釈することもまた好ましく、これにより凝集剤注入率を低減することができる。消化汚泥を希釈する場合には、曝気処理後の消化汚泥に10.0g/L以下のTS濃度を有する希釈液を添加することができる。これにより曝気処理後も消化汚泥中に残留して汚泥凝集反応を鈍くする高分子物質やコロイダル成分を希釈、洗浄するという効果があり、汚泥凝集反応を促進することが可能である。曝気処理後の消化汚泥に対しては、6.0g/L以下のTS濃度を有する希釈液を添加することが好ましい。 It is also preferable to dilute the aerated digested sludge prior to flocculation, which can reduce the flocculant injection rate. When diluting the digested sludge, a diluent having a TS concentration of 10.0 g/L or less can be added to the aerated digested sludge. This has the effect of diluting and washing macromolecular substances and colloidal components that remain in the digested sludge even after the aeration treatment and slow down the sludge flocculation reaction, and can promote the sludge flocculation reaction. It is preferable to add a diluent having a TS concentration of 6.0 g/L or less to the aerated digested sludge.

希釈液の添加により、希釈された消化汚泥のMアルカリ度が4000mg/L以下、更には2500mg/L以下となるように希釈することが好ましい。希釈された消化汚泥の電気伝導度は1200mS/m以下に調整することが好ましく、750mS/m以下に調整することが更に好ましい。 It is preferable to dilute the diluted digested sludge so that the M alkalinity is 4000 mg/L or less, more preferably 2500 mg/L or less by adding a diluent. The electrical conductivity of the diluted digested sludge is preferably adjusted to 1200 mS/m or less, more preferably 750 mS/m or less.

希釈液としては、通常の飲用水等の他、凝集作用及び脱水作用に影響を与えない性状、たとえば溶解性成分濃度が低いプロセス水、あるいは脱水処理後にさらに生物処理を行う高次処理施設においては生物処理に影響しない性状、たとえばpH5~9、NH4-N 1000mg/L以下、ヘキサン抽出物質500mg/L以下であれば、処理プラント内のプロセス水を用いることができる。 As a diluent, in addition to normal drinking water, properties that do not affect flocculation and dehydration, such as process water with a low concentration of soluble components, or in advanced treatment facilities that perform biological treatment after dehydration Process water in a treatment plant can be used if it has properties that do not affect biological treatment, eg, pH 5-9, NH 4 --N 1000 mg/L or less, hexane extractables 500 mg/L or less.

具体的には、活性汚泥処理水、生物脱臭装置廃液などの生物処理水、汚泥脱水処理により排出される脱水分離水、ボイラ排水、場内洗浄排水、コンポスト化凝縮排水、雑排水などを使用することができる。 Specifically, activated sludge treated water, biologically treated water such as biological deodorizing equipment waste liquid, dewatered and separated water discharged from sludge dehydration, boiler wastewater, on-site washing wastewater, composting condensed wastewater, miscellaneous wastewater, etc. should be used. can be done.

(D)濃縮処理
凝集処理(図2に不図示)により形成された凝集フロックを脱水処理前に固液分離して消化汚泥濃縮物としてから脱水処理してもよい。濃縮処理により、凝集フロックは消化汚泥濃縮物と分離液とに固液分離される。TS濃度8~12wt%に濃縮された汚泥は、より効率的に脱水処理することができる。
(D) Concentration Treatment The flocculated flocs formed by the flocculation treatment (not shown in FIG. 2) may be subjected to solid-liquid separation before the dehydration treatment to obtain a digested sludge concentrate, and then the dehydration treatment. By the concentration treatment, the flocculated floc is solid-liquid separated into a digested sludge concentrate and a separated liquid. Sludge concentrated to a TS concentration of 8 to 12 wt% can be dewatered more efficiently.

(E)脱水処理
脱水処理では、凝集処理、又は凝集処理及び濃縮処理された消化汚泥の凝集フロックを脱水ケーキと分離水とに固液分離する。この脱水処理では、脱水機に蒸気を吹込んで加温脱水処理することで、従来一般的な脱水処理で得られる脱水ケーキよりも低含水率となる含水率78%以下の脱水ケーキが得られる。
(E) Dehydration Treatment In the dehydration treatment, solid-liquid separation is performed on the flocculated floc of the digested sludge that has undergone flocculation treatment or flocculation treatment and concentration treatment into dewatered cake and separated water. In this dehydration treatment, steam is blown into the dehydrator to heat and dehydrate the cake, thereby obtaining a dehydrated cake with a moisture content of 78% or less, which is lower than the moisture content of the dehydrated cake obtained by conventional general dehydration treatment.

供給蒸気圧力は0.15~0.25MPaとし、電動弁の開閉により圧力を調整することにより、蒸気の吹き込み速度を調整する。脱水処理に用いられる脱水装置の例は特に限定されないが、中でも高分子凝集剤を用いたプレス式脱水機による加温脱水処理を用いることにより、装置の大型化を抑制しながらより効率的に加温脱水処理を行うことができる。プレス式脱水機による加温脱水処理に用いられる高分子凝集剤としては上述の凝集処理と同様の材料を用いることができる。高分子凝集剤の添加量は適宜調整することができる。 The supply steam pressure is set to 0.15 to 0.25 MPa, and the blowing speed of the steam is adjusted by adjusting the pressure by opening and closing the electric valve. Examples of the dehydrator used for the dehydration treatment are not particularly limited. Among them, by using a heat dehydration treatment with a press type dehydrator using a polymer flocculant, it is possible to suppress the increase in size of the equipment and to increase the efficiency. Hot dehydration treatment can be performed. As the polymer flocculant used in the heat dehydration treatment using a press dehydrator, the same materials as those used in the flocculation treatment described above can be used. The amount of polymer flocculant to be added can be appropriately adjusted.

脱水処理における蒸気の吹き込み量は、曝気処理後の消化汚泥の汚泥粘度に基づいて脱水機への蒸気吹き込み量を調整することが好ましい。蒸気吹き込み量の調整は作業者が手動で行ってもよいし、最適な蒸気吹き込み量を自動的に算出する計算手段を備えた制御装置によって自動的に制御してもよい。例えば、図2に示すように曝気槽3内にpH計32、DO計33、ORP計34、粘度計35などの計測装置を配置し、これら計測装置の計測結果に基づいて、脱水ケーキの含水率78%以下となるような処理条件となるように、蒸気の吹き込み量を調整することができる。 The amount of steam blown into the dehydrator is preferably adjusted based on the sludge viscosity of digested sludge after aeration. The adjustment of the steam blowing amount may be performed manually by an operator, or may be automatically controlled by a control device having a calculation means for automatically calculating the optimum steam blowing amount. For example, as shown in FIG. 2, measuring devices such as a pH meter 32, a DO meter 33, an ORP meter 34, and a viscometer 35 are arranged in the aeration tank 3, and based on the measurement results of these measuring devices, the moisture content of the dehydrated cake is determined. The amount of steam blowing can be adjusted so that the processing conditions are such that the rate is 78% or less.

本実施形態に係る処理方法によれば、脱水ケーキの含水率は72~78%以下と低含水率化が可能であるため、コンポスト化、炭化、燃料化などの再資源化が可能となる。一方、脱水処理により得られる脱水分離水は、SS濃度100~2000mg/L、Mアルカリ度1000~2000mg/L、電気伝導度200~500mS/mとなるため、消化汚泥の希釈液として用いることができる。 According to the processing method according to the present embodiment, the water content of the dehydrated cake can be reduced to 72 to 78% or less, which enables recycling such as composting, carbonization, and fuel conversion. On the other hand, the dehydrated separated water obtained by the dehydration treatment has an SS concentration of 100 to 2000 mg/L, an M alkalinity of 1000 to 2000 mg/L, and an electrical conductivity of 200 to 500 mS/m, so it can be used as a diluent for digested sludge. can.

(F)乾燥処理
乾燥処理では、脱水処理で得られた含水率78%以下の脱水ケーキを加熱して乾燥させることにより、乾燥ケーキを得る。乾燥処理では、脱水ケーキに対して蒸気を吹き込んで加熱乾燥するための汚泥乾燥機を用いた汚泥乾燥処理を行うことが好ましい。これにより、脱水ケーキの乾燥効率を下げて装置内への汚泥の付着を抑制でき、乾燥機の保守性に優れたプロセスを提供できる。
(F) Drying Treatment In the drying treatment, the dehydrated cake having a moisture content of 78% or less obtained by the dehydration treatment is heated and dried to obtain a dry cake. In the drying treatment, it is preferable to perform a sludge drying treatment using a sludge dryer for heating and drying the dehydrated cake by blowing steam into it. As a result, the drying efficiency of the dehydrated cake can be lowered to suppress adhesion of sludge to the inside of the apparatus, and a process with excellent maintainability of the dryer can be provided.

供給蒸気圧力は0.4~0.7MPaとし、電動弁の開閉により圧力を調整することにより、蒸気の吹き込み速度を調整する。乾燥処理における蒸気の吹き込み量は、曝気処理後の消化汚泥の汚泥粘度に基づいて乾燥機への蒸気吹き込み量を調整することが好ましい。蒸気吹き込み量の調整は作業者が手動で行ってもよいし、最適な蒸気吹き込み量を自動的に算出する計算手段を備えた制御装置によって自動的に制御してもよい。 The supply steam pressure is set to 0.4 to 0.7 MPa, and the blowing speed of the steam is adjusted by adjusting the pressure by opening and closing the electric valve. The amount of steam blown into the drying process is preferably adjusted based on the sludge viscosity of the digested sludge after the aeration process. The adjustment of the steam blowing amount may be performed manually by an operator, or may be automatically controlled by a control device having a calculation means for automatically calculating the optimum steam blowing amount.

乾燥処理における蒸気の吹き込み量を、脱水処理で得られる脱水ケーキの含水率に応じて調整することも好ましい。脱水ケーキの性状に応じて乾燥処理における蒸気吹き込み量を適切に調整することで、蒸気の使用量を最適化してより効率的な処理システムを得ることができる。 It is also preferable to adjust the amount of steam blown in the drying process according to the moisture content of the dehydrated cake obtained in the dehydration process. By appropriately adjusting the amount of steam blown in the drying process according to the properties of the dehydrated cake, it is possible to optimize the amount of steam used and obtain a more efficient treatment system.

本実施形態に係る処理方法によれば、乾燥ケーキの含水率は30~55%程度となり、その後の堆肥化処理に適した含水率の乾燥ケーキを得られる。この乾燥ケーキを後述する堆肥化工程において加温して所定期間発酵させることにより良質な堆肥が得られるため、有機性汚泥を資源として有効に利用することができる点で有用である。 According to the treatment method according to the present embodiment, the moisture content of the dry cake is about 30 to 55%, and the dry cake can be obtained with a moisture content suitable for the subsequent composting treatment. This dry cake is heated and fermented for a predetermined period in the composting step described later to obtain good quality compost, which is useful in that organic sludge can be effectively used as a resource.

(G)堆肥化処理
乾燥処理で得られた含水率30~55%の乾燥ケーキは、水分調整用の副資材無しでも、通気速度0.1~0.2m3/(m3・分)で安定して好気発酵させることが可能である。本堆肥化処理により含水率20~30%の堆肥が得られる。
(G) Composting treatment The dry cake with a moisture content of 30 to 55% obtained by the drying treatment can be composted at an aeration rate of 0.1 to 0.2 m 3 /(m 3 · min) without any auxiliary materials for moisture adjustment. Stable aerobic fermentation is possible. Compost with a water content of 20 to 30% is obtained by this composting treatment.

(H)廃水処理
脱水処理で得られる脱水分離水を硝化脱窒処理してもよい。消化脱窒処理の具体例は特に制限されない。硝化脱窒素で得られる処理水は、外部へ排出するとともにその一部を曝気処理後の消化汚泥に循環させるようにしてもよい。
(H) Waste water treatment The dehydrated and separated water obtained in the dehydration treatment may be subjected to nitrification and denitrification treatment. Specific examples of the digestive denitrification treatment are not particularly limited. The treated water obtained by nitrification and denitrification may be discharged to the outside and a part thereof may be circulated to digested sludge after aeration treatment.

(I)焼却処理・バイオマスメタン発酵・発電処理
脱水処理および乾燥処理に用いる蒸気が、焼却処理施設、下水汚泥処理施設、またはバイオマスメタン発酵施設の少なくとも1以上のボイラ設備から得られる蒸気であるか、もしくは発電設備から得られる熱を変換した蒸気であることが好ましい。中でも、例えば、嫌気性消化処理で得られたメタンガスを、有機物質を焼却処理する焼却処理の燃焼室内へ助燃料として供給し、燃焼により得られた熱をボイラ設備により蒸気に変換し、変換された蒸気をそれぞれ脱水工程及び乾燥工程へ送ることにより、嫌気性消化処理で得られたメタンガスはそのまま助燃料として使用されるため、嫌気性消化処理で得られるガスをロス無く有効利用することができる。
(I) Incineration treatment, biomass methane fermentation, power generation treatment Whether the steam used for dehydration treatment and drying treatment is steam obtained from at least one or more boiler equipment of an incineration treatment facility, a sewage sludge treatment facility, or a biomass methane fermentation facility. , or steam obtained by converting heat obtained from a power generation facility. Among them, for example, methane gas obtained by anaerobic digestion is supplied as an auxiliary fuel to the combustion chamber of the incineration treatment for incinerating organic substances, and the heat obtained by combustion is converted into steam by boiler equipment. By sending the extracted steam to the dehydration process and the drying process respectively, the methane gas obtained in the anaerobic digestion process can be used as it is as auxiliary fuel, so the gas obtained in the anaerobic digestion process can be effectively used without loss. .

本発明の実施の形態に係る有機性汚泥の処理方法によれば、酸素含有気体を通気して曝気処理を行うことにより難脱水性消化汚泥の汚泥粘度を低減させた汚泥に対して蒸気を吹き込みながら加温脱水処理することによって、システム全体において極力凝集剤の添加を少なくしながら、含水率78wt%以下の低含水率の脱水ケーキを得ることができる。粘性の低い汚泥を処理することで、脱水処理に用いられる脱水機内のトラブルも少なくなるため、メンテナンス労力を小さくし、より効率的な処理を行うことができる。 According to the method for treating organic sludge according to the embodiment of the present invention, steam is blown into the sludge of which the sludge viscosity of difficult-to-dehydrate digested sludge has been reduced by performing aeration treatment by aerating an oxygen-containing gas. By heating and dehydrating while heating, it is possible to obtain a dehydrated cake with a low moisture content of 78 wt % or less while minimizing the addition of a flocculant in the entire system. By treating low-viscosity sludge, troubles in the dehydrator used for dewatering treatment can be reduced, so maintenance labor can be reduced and more efficient treatment can be performed.

図2は本発明の実施の形態に係る有機性汚泥の処理装置の一例を示す概略図である。有機性汚泥の処理装置は、有機性汚泥を嫌気性処理して難脱水性消化汚泥を形成する嫌気性処理槽2と、消化汚泥を酸素含有気体で曝気する曝気槽3と、曝気処理後の消化汚泥に高分子凝集剤を添加して凝集汚泥を形成する凝集槽4と、曝気槽3に供給する酸素含有気体の曝気速度を調整する風量制御装置31と、凝集汚泥を蒸気吹込みで加温脱水処理して脱水汚泥を得る脱水装置6と、脱水汚泥を蒸気吹込みで乾燥処理する乾燥装置7と、脱水装置6および乾燥装置7に供給する蒸気の吹込み速度を調整する制御装置10とを具備することができる。嫌気性処理槽2の上流側には、有機性汚泥(有機物質)を貯留するための原水槽1が配置されている。 FIG. 2 is a schematic diagram showing an example of an organic sludge treatment apparatus according to an embodiment of the present invention. The organic sludge treatment apparatus includes an anaerobic treatment tank 2 for anaerobically treating the organic sludge to form hard-to-dehydrate digested sludge, an aeration tank 3 for aerating the digested sludge with an oxygen-containing gas, and A flocculation tank 4 for adding a polymer flocculant to digested sludge to form flocculated sludge, an air volume control device 31 for adjusting the aeration speed of the oxygen-containing gas supplied to the aeration tank 3, and aggregating the flocculated sludge by steam blowing. A dehydrator 6 that obtains dehydrated sludge by thermal dehydration, a drying device 7 that dries the dehydrated sludge by blowing steam, and a control device 10 that adjusts the blowing speed of the steam supplied to the dehydrator 6 and the drying device 7. and A raw water tank 1 for storing organic sludge (organic substances) is arranged upstream of the anaerobic treatment tank 2 .

(a)嫌気性処理槽
嫌気性処理槽2としては、廃棄物系バイオマス処理設備や下水処理施設などで一般に用いられる完全混合型メタン発酵槽や乾式メタン発酵槽など、公知の嫌気性処理槽を制限なく用いることができる。嫌気性処理槽2は、槽内液の均質化や温度分布の均一化とともに、スカムの発生を防止するためにも攪拌が必須であり、本実施形態では機械攪拌方式が最も効率的であるが、設備環境や処理条件に応じてポンプ攪拌方式、ガス攪拌方式を付属することも効果的である。さらに、これらの要件を備えた水密かつ気密な構造の発酵処理槽であれば鉄筋コンクリート造りまたは鋼板製のいずれでも良い。また、嫌気性処理槽2は、対象バイオマスを可溶化および酸発酵処理する可溶化・酸発酵処理槽と、該槽での処理物を発酵処理する嫌気性処理槽2と、を含む構成とすることも可能である。
(a) Anaerobic treatment tank As the anaerobic treatment tank 2, known anaerobic treatment tanks such as complete mixing methane fermentation tanks and dry methane fermentation tanks generally used in waste biomass treatment facilities and sewage treatment facilities are used. Can be used without restrictions. In the anaerobic treatment tank 2, stirring is essential in order to homogenize the liquid in the tank and uniformize the temperature distribution, and also to prevent scum from being generated. It is also effective to attach a pump agitation system or a gas agitation system depending on the facility environment and processing conditions. Furthermore, if the fermentation treatment tank has a watertight and airtight structure that satisfies these requirements, it may be made of either reinforced concrete or steel plate. In addition, the anaerobic treatment tank 2 includes a solubilization/acid fermentation treatment tank for solubilizing and acid fermentation treatment of the target biomass, and an anaerobic treatment tank 2 for fermenting the treated material in the tank. is also possible.

(b)曝気槽
水処理施設などで一般に用いられる曝気槽3を制限なく用いることができ、難脱水性消化汚泥(メタン発酵汚泥など)を導入する手段、酸素含有気体を消化汚泥中に導入するためのブロワなどの曝気手段又は散気手段からなる風量制御装置31、曝気汚泥の引き抜き手段を備え、運転管理する計測機器としてpH計32、DO計33、ORP計34、粘度計35を備えることが好ましい。風量制御装置31は、曝気槽3の底部から曝気槽3内の難脱水性消化汚泥中に気泡を導入できるように設けることが好ましい。さらに、曝気槽3の前段に、高速分散機などの汚泥分散装置を設けてもよい。この場合には、難脱水性消化汚泥を均質に分散したスラリー状態を保持することができ、曝気槽3の容量を小型化することができる。
(b) Aeration tank Aeration tank 3 generally used in water treatment facilities etc. can be used without restriction, means for introducing difficult-to-dehydrate digested sludge (such as methane fermentation sludge), and introducing oxygen-containing gas into digested sludge Equipped with an air volume control device 31 consisting of an aeration means such as a blower or a diffusion means, an aerated sludge extraction means, and a pH meter 32, a DO meter 33, an ORP meter 34, and a viscometer 35 as measuring instruments for operation management. is preferred. The air volume control device 31 is preferably provided so as to introduce air bubbles into the difficult-to-dehydrate digested sludge in the aeration tank 3 from the bottom of the aeration tank 3 . Furthermore, a sludge dispersing device such as a high-speed dispersing machine may be provided upstream of the aeration tank 3 . In this case, a slurry state in which the difficult-to-dewater digested sludge is uniformly dispersed can be maintained, and the capacity of the aeration tank 3 can be reduced.

(c)凝集槽
水処理施設などで一般に用いられる凝集槽4を制限なく用いることができる。凝集槽4には、曝気槽3にて曝気処理した後の消化汚泥を供給する曝気処理後汚泥供給配管、当該汚泥に対して凝集剤を添加する凝集剤供給配管、凝集処理により形成される凝集フロックを含む凝集汚泥を濃縮槽に送る凝集汚泥配管が連結されている。
(c) Coagulation tank Any coagulation tank 4 generally used in water treatment facilities can be used without limitation. The coagulation tank 4 includes a post-aeration sludge supply pipe for supplying digested sludge after aeration treatment in the aeration tank 3, a coagulant supply pipe for adding a coagulant to the sludge, and a coagulant formed by the coagulation treatment. A flocculated sludge pipe is connected to send the flocculated sludge to the thickener.

(d)濃縮槽
凝集槽4にて形成された凝集フロックを固液分離して濃縮凝集フロックを形成する固液分離装置として濃縮槽5を備える。濃縮槽5としては、特に限定されず、重力濃縮法が適用される単なる槽、遠心濃縮法が適用される遠心分離機、浮上濃縮法が適用される分離機、スクリーンを用いた分離機等が挙げられる。中でも、液体成分を通過させる多数のスリットを形成したスリット板と、スリット板上に周面を突出せしめた多数の円板と、を備えるスリット型濃縮機が好ましい。スリット型濃縮機は、例えば、スリット板で受け止められた処理物は、処理物排出方向に偏心回転するスリット板上の多数の円板によってスリット板上を排出側に送られ、この過程でスリットと円板との隙間から液体成分が落下して濾過され、処理物中の固体成分は分離捕集される。さらに、スリット板の上面に近接して処理物の排出方向に回転し、スリット板上の捕集物を圧搾して濃縮する背圧板を上記スリット板上に設けた機械構造も好ましく用いることができる。
(d) Thickening Tank A thickening tank 5 is provided as a solid-liquid separation device for solid-liquid separation of the flocculated flocs formed in the flocculating tank 4 to form concentrated flocculated flocs. The thickening tank 5 is not particularly limited, and may be a simple tank to which the gravitational concentration method is applied, a centrifuge to which the centrifugal concentration method is applied, a separator to which the flotation concentration method is applied, a separator using a screen, or the like. mentioned. Among them, a slit-type concentrator having a slit plate having a large number of slits through which the liquid component passes and a large number of discs having a peripheral surface protruding from the slit plate is preferable. In a slit-type concentrator, for example, the processed material received by a slit plate is sent to the discharge side on the slit plate by a large number of discs on the slit plate that rotate eccentrically in the direction of discharge of the processed material. Liquid components fall through the gap with the disk and are filtered, and solid components in the processed material are separated and collected. Furthermore, a mechanical structure in which a back pressure plate is provided on the slit plate to compress and concentrate the collected matter on the slit plate by rotating in the discharge direction of the processed material in close proximity to the upper surface of the slit plate can also be preferably used. .

(e)脱水装置
凝集槽4からの凝集フロック、又は濃縮槽5からの濃縮凝集フロックを受け入れ、脱水する脱水装置6を備える。脱水装置6としては特に限定されず、脱水機に投入される凝集フロック又は濃縮槽5からの濃縮凝集フロックを加温脱水する手段と、凝集フロック又は濃縮凝集フロックへ応力を付与する手段と、分離液を透過し、消化汚泥凝集物を保持するろ過手段を具備することが好ましい。ろ過手段としては、開孔径が0.1~2.5mmのスクリーン等が挙げられる。
(e) Dehydrator A dehydrator 6 is provided for receiving and dehydrating flocculated flocs from the flocculating tank 4 or concentrated flocculated flocs from the thickening tank 5 . The dehydrator 6 is not particularly limited. It is preferable to provide a filtration means that is permeable to liquid and retains digested sludge aggregates. Examples of filtering means include a screen having an opening diameter of 0.1 to 2.5 mm.

応力を付与する手段としては、プレス、遠心等が挙げられるが、スクリュープレス型脱水機は他脱水機と比べて投入された汚泥を加熱しながら脱水できるという特徴を有する点で好適である。また、汚泥の温度が高い方が汚泥中の水分の粘度が低下して水分が分離され易くなり、脱水が容易になる傾向がある。加温脱水時の蒸気の供給は、スクリュープレス型脱水機のスクリュー軸に設けた蒸気注入口から流入させてスクリュー軸を加熱することで汚泥を加温することが可能で、従来よりも低含水率の含水率78%以下の脱水ケーキが得られる。 Means for applying stress include a press, centrifugation, and the like. A screw press type dehydrator is more suitable than other dehydrators in that it can dehydrate while heating sludge. Also, the higher the temperature of the sludge, the lower the viscosity of the water in the sludge, the more easily the water is separated, and the easier the dewatering tends to be. Steam is supplied during thermal dehydration by inflowing from the steam inlet provided on the screw shaft of the screw press type dewatering machine, and by heating the screw shaft, it is possible to heat the sludge, resulting in a lower water content than before. A dehydrated cake having a moisture content of 78% or less is obtained.

(f)乾燥装置
脱水装置6からの脱水ケーキを受入れ、乾燥する乾燥装置7を備える。乾燥装置7としては特に限定されず、乾燥装置7に投入する手段、キャリアガス(空気)を送気する送風機、乾燥装置7内の温度維持のためキャリアガスを加温する送風機用ヒーター、排気されるキャリアガスを湿式集塵装置に移送する送風機、送風機から送られる排気ガスの集塵冷却を行う湿式集塵装置及び湿式集塵装置循環ポンプ、を具備する。
(f) Drying Device A drying device 7 for receiving and drying the dehydrated cake from the dehydrating device 6 is provided. The drying device 7 is not particularly limited, and includes a means for feeding the drying device 7, a blower for supplying a carrier gas (air), a blower heater for heating the carrier gas to maintain the temperature in the drying device 7, and an exhaust. and a wet dust collector for collecting and cooling the exhaust gas sent from the blower, and a wet dust collector circulation pump.

乾燥方法には、直接乾燥方式、間接乾燥方式があるが、間接乾燥方式では有機物を含んだまま乾燥汚泥を作ることができ、その後の堆肥等への有効利用が可能である。また、間接乾燥方式の中でも伝導電熱式乾燥機は、乾燥に必要な熱量を本体及び羽根からの伝導電熱によって供給するため、効率よく乾燥が可能である。脱水ケーキが本体ケーシング面と中空撹拌翼の間に充満し、電熱面との友好な接触が順次繰り返されることで効率よく熱交換処理が行われる。蒸発した湿分は送風機によって送られるキャリアガスに同伴され機外に排気、湿式集塵装置にて集塵冷却される。 Drying methods include a direct drying method and an indirect drying method. In the indirect drying method, dried sludge can be produced while still containing organic matter, which can then be effectively used as compost or the like. In addition, among the indirect drying methods, the conduction electric heat dryer supplies the amount of heat required for drying by conduction electric heat from the main body and blades, so drying can be performed efficiently. The dehydrated cake fills between the surface of the casing of the main body and the hollow stirring blades, and the friendly contact with the electric heating surface is successively repeated to efficiently perform the heat exchange process. Evaporated moisture is accompanied by a carrier gas sent by an air blower, is exhausted outside the machine, and is collected and cooled by a wet dust collector.

使用蒸気圧力は0.4MPa~0.7MPaとし、蒸気圧力を変更することで含水率78%以下の脱水ケーキを含水率30~55%、より具体的には含水率40~55%に乾燥する。 The steam pressure used is 0.4 MPa to 0.7 MPa, and by changing the steam pressure, the dehydrated cake with a moisture content of 78% or less is dried to a moisture content of 30 to 55%, more specifically to a moisture content of 40 to 55%. .

(g)堆肥化装置
堆肥化装置(図示せず)をさらに備える場合は、加熱乾燥装置7からの乾燥ケーキを受入れ、好気性発酵で堆肥化される。本実施形態により乾燥処理された含水率30~55%の乾燥ケーキは、水分調整用の副資材無しでも、通気速度0.1~0.2m3/(m3・分)で安定して好気発酵させることが可能であり、含水率20~30%の堆肥が得られる。堆肥化装置の発酵処理時間は、回転式発酵槽や多層階式発酵槽で2~7日間、すき返し方式で20~40日程度、野積方式(堆積方式)では30日程度発酵させて堆肥化することができる。本実施形態では、消化汚泥の凝集剤として鉄系凝集剤を用いずに高分子凝集剤のみで安定して加温脱水処理することが可能であることから、その場合は製品堆肥が鉄剤由来の赤味を帯びることもないので、見た目でも違和感のない高品質な堆肥を得ることが可能である。
(g) Composting device When a composting device (not shown) is further provided, the dried cake from the heat drying device 7 is received and composted by aerobic fermentation. A dry cake having a water content of 30 to 55% dried according to the present embodiment can be stably maintained at an aeration rate of 0.1 to 0.2 m 3 /(m 3 min) even without auxiliary materials for moisture adjustment. Aerial fermentation is possible, and compost with a moisture content of 20 to 30% can be obtained. Fermentation processing time of the composting equipment is 2 to 7 days for rotary fermenters and multi-level fermenters, about 20 to 40 days for plowing method, and about 30 days for open-air method (pile method). can do. In this embodiment, since it is possible to stably heat and dehydrate only with a polymer flocculant without using an iron-based flocculant as a flocculant for digested sludge, in that case, the product compost is derived from an iron agent. Since the compost does not have a reddish tinge, it is possible to obtain high-quality compost that does not look strange.

(h)硝化脱窒素槽
脱水装置6からの脱水分離水を硝化脱窒素する硝化脱窒素槽8を備えていてもよい。水処理施設などで一般に用いられる循環式硝化脱窒素槽、高負荷脱窒素槽、膜分離式高負荷硝化脱窒素槽を制限なく用いることができる。循環式硝化脱窒素槽の場合、嫌気的環境の脱窒槽、曝気等による好気的環境の硝酸化槽の2槽を設け、硝酸化槽で好気性微生物反応により生成された硝酸塩を脱窒槽に戻して嫌気性又は通性嫌気性微生物反応で脱窒素する方式で、循環法による硝化・脱窒を行う。膜分離高負荷脱窒素法の場合、硝化脱窒素槽は嫌気部と好気部に分割され、生物浮遊法を採用し、活性汚泥や凝集汚泥の固液分離を限外ろ過膜で処理を行う。
(h) Nitrification and denitrification tank A nitrification and denitrification tank 8 for nitrifying and denitrifying the dehydrated and separated water from the dehydrator 6 may be provided. A circulation type nitrification and denitrification tank, a high-load denitrification tank, and a membrane separation type high-load nitrification and denitrification tank, which are generally used in water treatment facilities, can be used without limitation. In the case of a circulating nitrification and denitrification tank, two tanks are installed: a denitrification tank in an anaerobic environment and a nitrification tank in an aerobic environment using aeration, etc. Nitrates produced by aerobic microbial reactions in the nitrification tank are transferred to the denitrification tank. Nitrification and denitrification are carried out by the circulation method in the method of returning and denitrifying by anaerobic or facultative anaerobic microbial reaction. In the case of high-load denitrification by membrane separation, the nitrification and denitrification tank is divided into an anaerobic section and an aerobic section, adopting the biological flotation method, and performing solid-liquid separation of activated sludge and flocculated sludge with an ultrafiltration membrane. .

(i)希釈液供給配管
硝化脱窒素槽8からの処理水を曝気処理後の消化汚泥に添加する希釈液供給配管81を備えていてもよい。希釈液供給配管81は、曝気槽3と凝集槽4とを連結する配管に連結されていることが好ましい。希釈液供給配管81には、脱水装置6からの脱水分離水の一部を送液する希釈液供給配管61が連結されていてもよい。
(i) Diluent supply pipe A diluent supply pipe 81 for adding the treated water from the nitrification and denitrification tank 8 to the aerated digested sludge may be provided. The diluent supply pipe 81 is preferably connected to a pipe connecting the aeration tank 3 and the coagulation tank 4 . The diluent supply pipe 81 may be connected to a diluent supply pipe 61 that feeds part of the dehydrated and separated water from the dehydrator 6 .

(j)蒸気供給制御装置
隣接する廃棄物焼却処理施設の焼却炉から発生する蒸気、または、下水汚泥処理施設やバイオマスメタン発酵施設などの焼却、発電、ボイラ設備9から得られる蒸気を、蒸気供給ライン12aを介して移送し、蒸気供給弁11をコントロールすることにより、必要な圧力を得ることができる。蒸気供給時においては、曝気槽3内の汚泥の汚泥粘度に基づいて脱水装置6への蒸気吹き込み量を蒸気供給弁11により調整して、蒸気供給ライン12bを介して、脱水装置6から排出される脱水ケーキの含水率が78%以下で処理されるように蒸気吹き込み量を制御することが可能である。
(j) Steam supply control device Steam is supplied from the incinerator of the adjacent waste incineration treatment facility, or the steam obtained from the incineration, power generation, boiler equipment 9 of the sewage sludge treatment facility, biomass methane fermentation facility, etc. By transferring via line 12a and controlling steam supply valve 11, the required pressure can be obtained. During steam supply, the amount of steam blown into the dehydrator 6 is adjusted by the steam supply valve 11 based on the sludge viscosity of the sludge in the aeration tank 3, and the sludge is discharged from the dehydrator 6 through the steam supply line 12b. It is possible to control the amount of steam blowing so that the moisture content of the dehydrated cake is 78% or less.

さらには、脱水装置6で得られた脱水ケーキを蒸気吹込みで加熱乾燥する乾燥処理において、曝気槽3の汚泥の汚泥粘度に基づいて脱水装置6と乾燥装置7への双方の蒸気吹き込み量を調整して排出される乾燥ケーキの含水率が30~55%に乾燥処理されるように蒸気吹き込み量をそれぞれ制御することも可能である。制御装置10は、曝気槽3内の汚泥の性状を測定するpH計32、DO計33、ORP計34、粘度計35を含む測定装置に接続されており、測定装置の測定結果を介して最適となる圧力の蒸気を所定量脱水装置6及び乾燥装置7へ供給するように制御することができる。制御装置10は、曝気槽3内の曝気風量を制御する風量制御装置31にも接続されており、難脱水性消化汚泥に対する曝気強度を調整する。 Furthermore, in the drying process of heating and drying the dehydrated cake obtained in the dehydrator 6 by blowing steam, the amount of steam blown into both the dewatering device 6 and the drying device 7 is adjusted based on the sludge viscosity of the sludge in the aeration tank 3. It is also possible to individually control the amount of steam blowing so that the moisture content of the discharged dry cake is adjusted and dried to 30 to 55%. The control device 10 is connected to measuring devices including a pH meter 32, a DO meter 33, an ORP meter 34, and a viscometer 35 that measure the properties of the sludge in the aeration tank 3, and the optimum can be controlled to supply a predetermined amount of steam having a pressure of . The control device 10 is also connected to an air volume control device 31 that controls the aeration volume in the aeration tank 3, and adjusts the aeration intensity for the difficult-to-dewater digested sludge.

本発明の実施の形態に係る有機性汚泥の処理装置及び処理方法によれば、嫌気性処理により発生するメタン発酵汚泥などのTS濃度20~50g/L、好ましくは25~40g/Lの高濃度で高粘度の難脱水性消化汚泥を低コストで効率的に脱水処理可能となる。 According to the organic sludge treatment apparatus and treatment method according to the embodiment of the present invention, the TS concentration of methane fermentation sludge generated by anaerobic treatment is 20 to 50 g / L, preferably 25 to 40 g / L. It is possible to efficiently dehydrate highly viscous, difficult-to-dewater digested sludge at low cost.

更に、本発明の有機性汚泥の処理装置及び処理方法によれば、難脱水性消化汚泥を曝気処理することで汚泥の粘度を低下させ、凝集剤による凝集作用と脱水効率が向上する。その結果、薬品コスト及び脱水コストを大幅に低減することができる。汚泥粘度の低減は、曝気処理によるコロイダル性の粘着質成分の低減によるものと考えられるが、曝気処理した汚泥を蒸気吹込みで加温脱水することで、脱水ケーキを安定的に低含水率化させることが可能である。 Furthermore, according to the organic sludge treatment apparatus and treatment method of the present invention, the difficult-to-dewater digested sludge is aerated to reduce the viscosity of the sludge and improve the flocculation action and dehydration efficiency of the flocculant. As a result, chemical costs and dehydration costs can be significantly reduced. The reduction in sludge viscosity is thought to be due to the reduction of colloidal sticky components due to aeration. It is possible to

従来は、高粘度の難脱水性消化汚泥を凝集及び脱水処理する際には、希釈により粘度を低下させることが必要であった。そのため処理すべき汚泥の体積が多くなり、処理に負担がかかっていた。本方法によれば、凝集及び脱水処理の際の希釈が不要となるか、あるいは低希釈率で十分となる。これにより、希釈液のコストを削減でき、脱水分離水の浄化のために行われる生物処理工程での分離膜濾過コスト及び下水道放流コストも削減することができる。 Conventionally, when flocculating and dehydrating highly viscous, difficult-to-dewater digested sludge, it has been necessary to reduce the viscosity by dilution. As a result, the volume of sludge to be treated has increased, placing a burden on the treatment. According to this method, dilution is not required during flocculation and dehydration treatment, or a low dilution rate is sufficient. As a result, the cost of the diluent can be reduced, and the separation membrane filtration cost and the sewage discharge cost in the biological treatment process for purifying the dehydrated and separated water can also be reduced.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are presented below along with comparative examples, which are provided for a better understanding of the invention and its advantages and are not intended to be limiting of the invention.

図1のフロー図に基づいて、以下に示す処理条件にて、種々の食品製造廃棄物を混合してメタン発酵処理を行った。曝気用気体として、原料受入ホッパ、破砕機、選別機、可溶化槽、堆肥化発酵槽などの処理設備からの高濃度臭気含有空気を吸引して使用し、曝気槽底部の散気装置から導入した。 Based on the flow diagram of FIG. 1, various food manufacturing wastes were mixed and subjected to methane fermentation treatment under the treatment conditions shown below. As the gas for aeration, the air containing highly concentrated odor is sucked from processing equipment such as raw material receiving hoppers, crushers, sorters, solubilization tanks, and composting fermentation tanks, and is introduced from the diffuser at the bottom of the aeration tank. bottom.

(処理条件)
・メタン発酵槽(縦型機械式攪拌機) 有効容積1700m3×2槽
メタン発酵槽への廃棄物(可溶化処理液)投入量 平均157m3/日
発酵温度38℃
・曝気槽 有効容積70m3
曝気槽へのメタン発酵汚泥投入量160m3/日
曝気強度0.15m3/(m3・分)
発酵汚泥滞留時間6~24時間
酸素含有気体:施設内の高濃度臭気成分を含む空気
・凝集槽(縦型機械式攪拌機) 有効容積0.6m3
希釈液(脱水分離水の硝化脱窒素処理水)70m3/日
TS濃度5610mg/L、SS濃度6mg/L、pH7.3、Mアルカリ度213mgCaCO3/L、NH4-N 22mg/L、塩化物イオン1940mg/L
凝集剤
・カチオン性高分子凝集剤(エバグロースHE-100B)の1液法
または、
・カチオン性高分子凝集剤(エバグロースHE-100B)+鉄系無機凝集剤(ポリ鉄)の2液法
・スリット型濃縮機(スクリーンスリット幅1.0mm、背圧板付帯)
・加温脱水装置(スクリュープレス型脱水機、固形物処理量 約280kgDS/h)
スクリュー回転速度 0.15~0.25rpm
供給蒸気圧 0.2MPa
汚泥温度 65~80℃
・脱水分離水の膜分離式硝化脱窒素槽 有効容積1080m3
曝気槽への硝化脱窒素汚泥投入量270m3/日
・pH 7.1
・TS 17,600mg/L
・VS 9,380mg/L
・MLSS 9,770mg/L
・MLVSS 8,590mg/L
・NH4-N 26mg/L
・NO3-N 検出されず
(Processing conditions)
・Methane fermentation tank (vertical mechanical agitator) Effective volume: 1,700 m 3 × 2 tanks Amount of waste (solubilized liquid) input to methane fermentation tank: Average 157 m 3 /day Fermentation temperature: 38°C
・Aeration tank effective volume 70m 3
Amount of methane fermentation sludge input to aeration tank: 160 m 3 /day Aeration intensity: 0.15 m 3 /(m 3 ·min)
Fermented sludge retention time 6 to 24 hours Oxygen-containing gas: Air containing highly concentrated odorous components in the facility / flocculation tank (vertical mechanical agitator) Effective volume 0.6 m 3
Diluted solution (nitrified denitrified water of dehydrated and separated water) 70 m 3 /day TS concentration 5610 mg/L, SS concentration 6 mg/L, pH 7.3, M alkalinity 213 mg CaCO 3 /L, NH 4 —N 22 mg/L, chloride substance ion 1940mg/L
Flocculant ・One-liquid method of cationic polymer flocculant (Ebergrose HE-100B) or
・2-liquid method of cationic polymer flocculant (Evergulose HE-100B) + iron-based inorganic flocculant (polyiron) ・Slit-type concentrator (screen slit width 1.0 mm, with back pressure plate)
・Thermal dehydrator (screw press type dehydrator, amount of solids processed: about 280 kgDS/h)
Screw rotation speed 0.15 to 0.25 rpm
Supply steam pressure 0.2 MPa
Sludge temperature 65-80℃
・Membrane separation type nitrification and denitrification tank for dehydrated and separated water Effective volume: 1080 m 3
Amount of nitrified and denitrified sludge input to aeration tank: 270 m 3 /day pH: 7.1
・TS 17,600mg/L
・VS 9,380mg/L
・MLSS 9,770mg/L
・MLVSS 8,590mg/L
NH4 -N 26 mg/L
・NO 3 -N not detected

メタン発酵後に得られる消化汚泥(メタン発酵汚泥)と曝気処理後の消化汚泥の性状を表1に示す。 Table 1 shows the properties of the digested sludge obtained after methane fermentation (methane fermentation sludge) and the digested sludge after aeration treatment.

Figure 0007254580000001
Figure 0007254580000001

各分析項目は以下の分析方法に拠った。
・TS(Total solids、全蒸発残留物);105℃蒸発残留物重量(JIS K 0102)
・VS(Volatile total solids、強熱減量);600℃強熱減量(JIS K 0102)
・SS(Suspended solids、懸濁物質);遠心分離機による回転数3,000rpm,10分間での沈殿物重量(JIS K 0102)
・VSS(Volatile suspended solids、揮発性懸濁物質);懸濁物質の600℃強熱減量(JIS K 0102)
・Mアルカリ度;遠心分離機による回転数3,000rpm,3分間での上澄液を0.1mol/Lの塩酸溶液でpH4.8まで滴定(下水試験方法)
・コロイド荷電量;汚泥の表面荷電量、コロイド滴定法により当量を測定(下水試験方法)
・粗浮遊物含有量;呼び寸法74μmふるいでの残留物の強熱減量分析(下水試験方法)
・汚泥粘度;B型回転粘度計を用いて30℃で測定(下水試験方法)
・脱水試験;カチオン性高分子凝集剤エバグロースHE-100Bを用いた。
・粘り感;脱水汚泥を掌で触った際の汚泥粘着性(粘り感)を3段階評価(なし:さらさらで粘り感なし、弱:粘り感ややあり、強:掌に付着する強い粘り感あり)
Each analysis item was based on the following analysis methods.
・ TS (Total solids, total evaporation residue); 105 ° C evaporation residue weight (JIS K 0102)
・ VS (Volatile total solids, ignition loss); 600 ° C. ignition loss (JIS K 0102)
・SS (Suspended solids); Sediment weight after 10 minutes at 3,000 rpm in a centrifuge (JIS K 0102)
・ VSS (Volatile suspended solids, volatile suspended solids); 600 ° C ignition loss of suspended solids (JIS K 0102)
・M alkalinity: Titrate the supernatant with a 0.1 mol/L hydrochloric acid solution to pH 4.8 at 3,000 rpm in a centrifuge for 3 minutes (sewage test method)
・Colloidal charge amount: surface charge amount of sludge, equivalent weight measured by colloid titration method (sewage test method)
・ Content of crude suspended solids; loss on ignition analysis of residue with nominal size 74 μm sieve (sewage test method)
・ Sludge viscosity; measured at 30 ° C. using a B-type rotational viscometer (sewage test method)
• Dehydration test; cationic polymer flocculant Evergulose HE-100B was used.
・ Stickiness: Evaluation of sludge stickiness (stickiness) when dewatered sludge is touched with the palm (none: smooth and no stickiness, weak: slightly sticky, strong: strong stickiness that adheres to the palm) )

実施例1~3及び比較例1~4の処理条件及び処理結果を表2に示す。 Table 2 shows the treatment conditions and treatment results of Examples 1 to 3 and Comparative Examples 1 to 4.

Figure 0007254580000002
Figure 0007254580000002

実施例1~3に示すように、汚泥粘度200mPa・s以上の高粘性の嫌気性消化汚泥に対して、曝気処理を行って汚泥粘度を70mPa・sレベルに低下させ、その曝気処理汚泥を蒸気吹込みにより加温脱水処理することで、脱水ケーキ含水率72~75%の汚泥を安定して得られることが分かる。更に実施例2及び3では、鉄系凝集剤等の無機系凝集助剤を添加せずにポリマを添加することで、低含水率の脱水ケーキが得られるとともに脱水機のスケール付着も抑制することができている。 As shown in Examples 1 to 3, highly viscous anaerobic digested sludge with a sludge viscosity of 200 mPa s or more is subjected to aeration treatment to reduce the sludge viscosity to a level of 70 mPa s, and the aerated sludge is steamed. It can be seen that sludge with a water content of 72 to 75% in the dehydrated cake can be stably obtained by heating and dehydrating by blowing. Furthermore, in Examples 2 and 3, by adding a polymer without adding an inorganic coagulant such as an iron-based coagulant, a dehydrated cake with a low moisture content can be obtained and the scale adhesion of the dehydrator can be suppressed. is made.

比較例1の試験結果のとおり、曝気処理を行って汚泥粘度を73mPa・sに低下させても、曝気処理汚泥を通常の脱水処理では安定した汚泥処理は可能であるものの、脱水ケーキ含水率79%であり、脱水性がやや劣ることが分かる。 As shown in the test results of Comparative Example 1, even if the sludge viscosity is reduced to 73 mPa s by performing aeration treatment, stable sludge treatment is possible with normal dehydration treatment of aerated sludge, but the water content of the dehydrated cake is 79. %, and it can be seen that the dehydration property is slightly inferior.

また、比較例2の試験結果のとおり、曝気処理を行わずに高汚泥粘度のまま加温脱水処理すると、脱水機内で汚泥凝集フロックが壊れやすいこともあって高分子凝集剤の薬注率は実施例と比較すると2倍以上高くなり、脱水ケーキ含水率83%、汚泥処理量も低く、安定した脱水処理はできなかった。 In addition, as shown in the test results of Comparative Example 2, if the sludge is heated and dehydrated with high viscosity without aeration, the sludge flocculation flocs are easily broken in the dehydrator. The water content of the dewatered cake was 83%, and the amount of sludge treated was low.

なお、比較例3と4の試験結果のとおり、曝気処理を行わずに高汚泥粘度のまま通常の脱水処理では、高分子凝集剤の薬注率は実施例と比較して2倍以上高く、ポリ鉄添加を併用しても、脱水ケーキ含水率83%程度で、汚泥処理量も低く、安定した脱水処理はできなかった。 As shown in the test results of Comparative Examples 3 and 4, in normal dehydration treatment with high sludge viscosity without aeration treatment, the dosing rate of the polymer flocculant is at least twice as high as in the example, Even with the addition of polyiron, the moisture content of the dewatered cake was about 83%, the amount of sludge treated was low, and stable dehydration was not possible.

次に、図2に示す装置構成で、表1に示す処理条件にて、脱水機と汚泥乾燥機への蒸気吹き込み量を調整した運転を行った。なお、この試験運転では曝気槽の曝気強度0.1~0.15m3/(m3・分)、凝集剤は高分子凝集剤エバグロースHE-100Bの1液法で行った。また、汚泥乾燥装置と堆肥化装置の条件は下記のとおりである。
・汚泥乾燥装置(固形物処理量5000kgDS/日)
水分蒸発量 750kg/h
供給蒸気圧 0.5~0.6MPa
供給蒸気温度 160℃
・堆肥化装置 60m3×2槽
給気ブロワ速度 0.1m3/(m3・分)
水分調整用の副資材添加無し
Next, with the apparatus configuration shown in FIG. 2, operation was performed under the processing conditions shown in Table 1 while adjusting the amount of steam blown into the dehydrator and the sludge dryer. In this test operation, the aeration strength of the aeration tank was 0.1 to 0.15 m 3 /(m 3 ·min), and the flocculant was the macromolecular flocculant Evergulose HE-100B, a one-liquid method. The conditions for the sludge drying equipment and composting equipment are as follows.
・Sludge drying equipment (solid matter processing amount 5000kgDS/day)
Moisture evaporation 750kg/h
Supply steam pressure 0.5 to 0.6 MPa
Supply steam temperature 160°C
・Composting equipment 60 m 3 × 2 tanks Air supply blower speed 0.1 m 3 /(m 3 · min)
No secondary materials added for moisture adjustment

Figure 0007254580000003
Figure 0007254580000003

実施例4~9のとおり、汚泥粘度200mPa・s以上の難脱水性嫌気性消化汚泥に対して、曝気槽の曝気強度を調整して汚泥粘度を70~120mPa・sに低下させた後、その曝気処理汚泥を蒸気供給制御運転により加温脱水処理、続いて乾燥処理することで、脱水ケーキ含水率72~78%、乾燥ケーキ含水率33~47%の汚泥処理をほぼ安定して運転できることが分かる。そして、得られた乾燥ケーキは、副資材を用いずに好気発酵による堆肥化も可能で、含水率22~25%の堆肥が得られた。 As in Examples 4 to 9, for difficult-to-dewater anaerobic digested sludge with a sludge viscosity of 200 mPa s or more, the aeration intensity of the aeration tank was adjusted to reduce the sludge viscosity to 70 to 120 mPa s. By heating and dehydrating the aerated sludge by steam supply control operation, followed by drying, it is possible to operate the sludge treatment with a dehydrated cake moisture content of 72 to 78% and a dry cake moisture content of 33 to 47% almost stably. I understand. The dried cake thus obtained could be composted by aerobic fermentation without using secondary materials, and compost with a water content of 22 to 25% was obtained.

以上のように、本実施形態によれば、有機性廃棄物を高濃度でメタン発酵処理した難脱水性消化汚泥に対して、脱水処理の前に曝気処理を施すことで汚泥の粘度を大幅に低下させることができ、凝集性能及び脱水効率を向上させることができる。本実施形態の処理方法によれば、凝集剤の添加量を低減でき(低薬注率)、難脱水性の高濃度消化汚泥を蒸気吹込みで加温脱水処理が可能となる。本実施形態によって得られた含水率78%以下の脱水ケーキは、従来の脱水ケーキと比較して低含水率で、粘着性がなく、特殊な不快臭もないことから、コンポスト、炭化、燃料化などの再資源化にも好適である。 As described above, according to the present embodiment, the difficult-to-dewater digested sludge obtained by methane fermentation treatment of organic waste at a high concentration is subjected to aeration treatment before dehydration treatment, thereby significantly increasing the viscosity of the sludge. can be reduced, and flocculation performance and dewatering efficiency can be improved. According to the treatment method of the present embodiment, the amount of coagulant to be added can be reduced (low chemical dosing rate), and heat dehydration treatment of difficult-to-dewater, high-concentration digested sludge by steam blowing becomes possible. The dehydrated cake having a moisture content of 78% or less obtained by this embodiment has a lower moisture content than conventional dehydrated cakes, has no stickiness, and does not have a particular unpleasant odor. It is also suitable for recycling such as.

1…原水槽
2…嫌気性処理槽
3…曝気槽
4…凝集槽
6…脱水装置
7…乾燥装置
8…硝化脱窒素槽
9…焼却、発電、ボイラ設備
10…制御装置
11…蒸気供給弁
31…風量制御装置
32…pH計
33…乾燥ケーキ含水率
33…DO計
34…ORP計
35…粘度計
61…希釈液供給配管
81…希釈液供給配管
REFERENCE SIGNS LIST 1 raw water tank 2 anaerobic treatment tank 3 aeration tank 4 coagulation tank 6 dehydration device 7 drying device 8 nitrification and denitrification tank 9 incineration, power generation, boiler equipment 10 control device 11 steam supply valve 31 ... Air volume control device 32 ... pH meter 33 ... Dry cake moisture content 33 ... DO meter 34 ... ORP meter 35 ... Viscometer 61 ... Diluent supply pipe 81 ... Diluent supply pipe

Claims (9)

有機性汚泥を嫌気性処理した後の20g/L以上のTS濃度、200~2000mP・sの汚泥粘度、3~20wt%のSSに対する粗浮遊物含有率を有する難脱水性消化汚泥に対し、酸素含有気体を通気して曝気処理を行うことにより前記難脱水性消化汚泥の汚泥粘度を低減させた後、凝集処理し、前記曝気処理後の前記難脱水性消化汚泥の汚泥粘度に基づいて供給蒸気圧力0.15~0.25MPaで蒸気吹込み量を調整しながら加温脱水処理することを含む有機性汚泥の処理方法。 For difficult-to-dewater digested sludge having a TS concentration of 20 g/L or more after anaerobic treatment of organic sludge, a sludge viscosity of 200 to 2000 mPa s , and a coarse suspended matter content rate for SS of 3 to 20 wt%, After reducing the sludge viscosity of the hard-to-dewater digested sludge by performing an aeration treatment with an oxygen-containing gas, the hard-to-dewater digested sludge is coagulated and supplied based on the sludge viscosity of the hard-to-dewater digested sludge after the aeration treatment. A method for treating organic sludge, which includes heat dehydration treatment at a steam pressure of 0.15 to 0.25 MPa while adjusting the amount of steam blowing. 前記曝気処理は、酸素含有気体を0.05~0.3m3/(m3・分)の曝気強度において、曝気処理後の消化汚泥の粘度が、下水試験方法に定められたB型回転粘度計による30℃での測定で150mPa・s以下に低下するまで行うことを特徴とする請求項1に記載の有機性汚泥の処理方法。 In the aeration treatment, the oxygen-containing gas is applied at an aeration intensity of 0.05 to 0.3 m 3 /(m 3 · min), and the viscosity of the digested sludge after the aeration treatment is the B-type rotational viscosity specified in the sewage test method. 2. The method for treating organic sludge according to claim 1, wherein the organic sludge is treated until it decreases to 150 mPa.s or less when measured at 30[deg.] C. with a meter. 前記曝気処理後の消化汚泥に高分子凝集剤を1.5~7質量%添加して凝集処理を行うことを特徴とする請求項1又は2に記載の有機性汚泥の処理方法。 3. The method for treating organic sludge according to claim 1, wherein 1.5 to 7% by mass of a polymer flocculant is added to the digested sludge after the aeration treatment to carry out flocculation treatment. 前記加温脱水処理は、高分子凝集剤を用いたプレス式脱水機による脱水処理を含み、前記曝気処理後の消化汚泥の汚泥粘度に基づいて前記脱水機への蒸気吹き込み量を調整し、含水率が78%以下の脱水ケーキを得ることを特徴とする請求項1~3のいずれか1項に記載の有機性汚泥の処理方法。 The heat dehydration treatment includes dehydration treatment by a press dehydrator using a polymer flocculant, adjusting the amount of steam blown into the dehydrator based on the sludge viscosity of the digested sludge after the aeration treatment, and The method for treating organic sludge according to any one of claims 1 to 3, characterized in that a dehydrated cake having a rate of 78% or less is obtained. 前記脱水ケーキに対して蒸気を吹き込んで加熱乾燥する汚泥乾燥機を用いた汚泥乾燥処理を含み、前記曝気処理後の消化汚泥の汚泥粘度に基づいて前記脱水機及び前記汚泥乾燥機への蒸気吹き込み量を調整することにより、堆肥化処理に適した含水率30~55%の乾燥ケーキを得ることを特徴とする請求項4に記載の有機性汚泥の処理方法。 Sludge drying treatment using a sludge dryer that heats and dries the dewatered cake by blowing steam into it, and blowing steam into the dehydrator and the sludge dryer based on the sludge viscosity of the digested sludge after the aeration treatment. 5. The method for treating organic sludge according to claim 4, wherein a dry cake having a moisture content of 30 to 55% suitable for composting is obtained by adjusting the amount. 前記加温脱水処理に用いる蒸気が、焼却処理施設、下水汚泥処理施設、またはバイオマスメタン発酵施設の少なくとも1以上のボイラ設備から得られる蒸気であるか、もしくは発電設備から得られる熱を変換した蒸気であることを特徴とする請求項1~5のいずれか1項に記載の有機性汚泥の処理方法。 The steam used for the heat dehydration treatment is steam obtained from at least one or more boiler equipment of an incineration treatment facility, sewage sludge treatment facility, or biomass methane fermentation facility, or steam obtained by converting heat obtained from a power generation facility. The method for treating organic sludge according to any one of claims 1 to 5, characterized in that 有機性汚泥を嫌気性処理して20g/L以上のTS濃度、200~2000mP・sの汚泥粘度、3~20wt%のSSに対する粗浮遊物含有率を有する難脱水性消化汚泥を形成する嫌気性処理槽と、
前記難脱水性消化汚泥を酸素含有気体で曝気する曝気槽と、
曝気処理後の消化汚泥に高分子凝集剤を添加して凝集汚泥を形成する凝集槽と、
前記曝気槽に供給する酸素含有気体の曝気速度を調整する風量制御装置と、
前記凝集汚泥を蒸気吹込みで供給蒸気圧力0.15~0.25MPaで加温脱水処理して脱水汚泥を得る脱水装置と、
前記脱水汚泥を蒸気吹込みで乾燥処理する乾燥装置と、
前記脱水装置および前記乾燥装置に供給する蒸気の吹込み速度を調整すると共に前記曝気処理後の消化汚泥の粘度に基づいて前記脱水装置への蒸気吹込み量を調整する制御装置と
を具備することを特徴とする有機性汚泥の処理装置。
Anaerobic treatment of organic sludge to form hard-to-dewater digested sludge having a TS concentration of 20 g/L or more, a sludge viscosity of 200 to 2000 mPa s , and a coarse suspended matter content of 3 to 20 wt% relative to SS. a sex treatment tank;
an aeration tank for aerating the hard-to-dehydrate digested sludge with an oxygen-containing gas;
a flocculation tank in which a polymer flocculant is added to digested sludge after aeration treatment to form flocculated sludge;
an air volume control device that adjusts the aeration speed of the oxygen-containing gas supplied to the aeration tank;
a dehydrator for obtaining dehydrated sludge by heating and dehydrating the flocculated sludge by steam blowing at a supply steam pressure of 0.15 to 0.25 MPa;
a drying device for drying the dewatered sludge by blowing steam;
a control device that adjusts the blowing speed of the steam supplied to the dehydrator and the drying device and adjusts the amount of steam blown into the dehydrator based on the viscosity of the digested sludge after the aeration treatment; An organic sludge treatment device characterized by:
前記嫌気性処理により得られるガスを燃料として焼却処理する焼却処理施設、下水汚泥処理施設またはバイオマスメタン発酵施設の少なくとも1以上のボイラ設備から得られる蒸気または発電設備から得られる熱を変換した蒸気を供給する蒸気供給ラインを備えることを特徴とする請求項7に記載の有機性汚泥の処理装置。 Steam obtained from at least one boiler facility of an incineration facility that burns the gas obtained by the anaerobic treatment, a sewage sludge treatment facility, or a biomass methane fermentation facility, or steam obtained by converting heat obtained from a power generation facility 8. The organic sludge treatment apparatus according to claim 7, further comprising a steam supply line for supplying the organic sludge. 前記曝気処理を行うことにより前記難脱水性消化汚泥の汚泥粘度を70~120mPa・sに低減させた汚泥を前記加温脱水処理することを特徴とする請求項1~6のいずれか1項に記載の有機性汚泥の処理方法。 7. The method according to any one of claims 1 to 6, wherein the aeration treatment reduces the sludge viscosity of the hard-to-dewater digested sludge to 70 to 120 mPa s, and the sludge is subjected to the heating dehydration treatment. A method for treating organic sludge as described.
JP2019061775A 2019-03-27 2019-03-27 Method and apparatus for treating organic sludge Active JP7254580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061775A JP7254580B2 (en) 2019-03-27 2019-03-27 Method and apparatus for treating organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061775A JP7254580B2 (en) 2019-03-27 2019-03-27 Method and apparatus for treating organic sludge

Publications (2)

Publication Number Publication Date
JP2020157261A JP2020157261A (en) 2020-10-01
JP7254580B2 true JP7254580B2 (en) 2023-04-10

Family

ID=72640959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061775A Active JP7254580B2 (en) 2019-03-27 2019-03-27 Method and apparatus for treating organic sludge

Country Status (1)

Country Link
JP (1) JP7254580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354242A (en) * 2021-05-21 2021-09-07 曲阜中联水泥有限公司 Sludge treatment system and treatment method
CN113277697A (en) * 2021-06-25 2021-08-20 上海城市水资源开发利用国家工程中心有限公司 Device and method for drying sludge by combining microbubble ozonation with low temperature
CN113912255B (en) * 2021-11-05 2023-05-02 烟台清泉实业有限公司 Sludge semi-drying treatment system and treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043505A1 (en) 2000-10-13 2002-04-18 Fkc Co., Ltd. Sludge dewatering and pasteurization system and method
JP2009034569A (en) 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge
JP2012187449A (en) 2011-03-08 2012-10-04 Yoshiro Aoyama Thermal dehydration of sludge
JP2016107265A (en) 2014-12-04 2016-06-20 水ing株式会社 Dewatering system and method
WO2016111324A1 (en) 2015-01-09 2016-07-14 水ing株式会社 Organic sludge treatment method and treatment device
WO2017014004A1 (en) 2015-07-21 2017-01-26 水ing株式会社 Method for processing and device for processing organic matter
WO2017043232A1 (en) 2015-09-07 2017-03-16 水ing株式会社 Dehydration device, dehydration system, and dehydration method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209100A (en) * 1985-03-13 1986-09-17 Kawasaki Steel Corp Dehydration pretreatment of sludge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043505A1 (en) 2000-10-13 2002-04-18 Fkc Co., Ltd. Sludge dewatering and pasteurization system and method
JP2009034569A (en) 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge
JP2012187449A (en) 2011-03-08 2012-10-04 Yoshiro Aoyama Thermal dehydration of sludge
JP2016107265A (en) 2014-12-04 2016-06-20 水ing株式会社 Dewatering system and method
WO2016111324A1 (en) 2015-01-09 2016-07-14 水ing株式会社 Organic sludge treatment method and treatment device
WO2017014004A1 (en) 2015-07-21 2017-01-26 水ing株式会社 Method for processing and device for processing organic matter
WO2017043232A1 (en) 2015-09-07 2017-03-16 水ing株式会社 Dehydration device, dehydration system, and dehydration method

Also Published As

Publication number Publication date
JP2020157261A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US8568591B2 (en) System and method for thermophilic anaerobic digester process
JP7254580B2 (en) Method and apparatus for treating organic sludge
US9809481B2 (en) Treatment of waste products with anaerobic digestion
US9409806B2 (en) System and method for thermophilic anaerobic digester process
KR101616323B1 (en) Manufacturing system for power and fertilizer using livestock eretion
JP6868679B2 (en) Organic sludge treatment method and treatment equipment
JP6909878B2 (en) Organic matter processing method and processing equipment
US10005995B2 (en) System and method for thermophilic anaerobic digester process
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
KR101123854B1 (en) Wet-dry serial parallel anaerobic digestion apparatus and method for treating organic waste
JP5726576B2 (en) Method and apparatus for treating organic waste
JP3651836B2 (en) Organic waste treatment methods
JP6239327B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
KR20070119462A (en) Methane fermentation system
JP3303905B2 (en) Anaerobic digestion of livestock manure
JP6633943B2 (en) Sludge treatment system and sludge treatment method
JP5061404B2 (en) Treatment method of dry methane fermentation sludge
JP5301788B2 (en) Co-fermentation method
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP2003154400A (en) Dehydration method utilizing carbonized sludge and dehydrator therefor
JP3434433B2 (en) Composting method of anaerobic digested sludge
JP6164878B2 (en) Organic wastewater treatment method
JP2024006246A (en) Treatment method for organic waste using hydrothermal carbonization treatment method, and treatment facility for organic waste using hydrothermal carbonization treatment
Lee et al. Introduction to sludge treatment
JP2000079399A (en) Treatment of highly concentrated waste solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150