JP6239327B2 - Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus - Google Patents

Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus Download PDF

Info

Publication number
JP6239327B2
JP6239327B2 JP2013195514A JP2013195514A JP6239327B2 JP 6239327 B2 JP6239327 B2 JP 6239327B2 JP 2013195514 A JP2013195514 A JP 2013195514A JP 2013195514 A JP2013195514 A JP 2013195514A JP 6239327 B2 JP6239327 B2 JP 6239327B2
Authority
JP
Japan
Prior art keywords
sludge
separation liquid
sending
tank
mixed sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013195514A
Other languages
Japanese (ja)
Other versions
JP2015058413A (en
JP2015058413A5 (en
Inventor
正宏 若菜
正宏 若菜
勝子 楠本
勝子 楠本
隆 八代
隆 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2013195514A priority Critical patent/JP6239327B2/en
Publication of JP2015058413A publication Critical patent/JP2015058413A/en
Publication of JP2015058413A5 publication Critical patent/JP2015058413A5/ja
Application granted granted Critical
Publication of JP6239327B2 publication Critical patent/JP6239327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機性廃水処理方法及び装置に関する。特に、屎尿と浄化槽汚泥などの有機性汚泥を含有する有機性廃水の処理方法及び装置並びに当該有機性廃水処理から化成肥料を製造する方法及び装置に関する。   The present invention relates to an organic wastewater treatment method and apparatus. In particular, the present invention relates to a method and apparatus for treating organic wastewater containing organic sludge such as manure and septic tank sludge, and a method and apparatus for producing chemical fertilizer from the organic wastewater treatment.

屎尿及び家庭用浄化槽で発生する有機性汚泥を含む有機性廃水の生物処理が行われている。屎尿及び家庭用浄化槽由来の有機性廃水には、夾雑物が多量に含まれるため、夾雑物を除去して脱水処理を行い、分離液を生物処理に供する。脱水処理により多量の有機性汚泥の脱水ケーキが発生するため、脱水ケーキの減容化が種々検討されている。また、脱水ケーキを助燃剤や堆肥として再利用するために、含水率の低減化が必要とされている。このため、有機性廃水に凝集剤を添加して、凝集フロックとして凝集させた後に脱水処理が行われている。   Biological treatment of organic wastewater containing organic sludge generated in sewage and household septic tanks is performed. Since organic wastewater derived from manure and domestic septic tanks contains a large amount of impurities, the impurities are removed and dehydrated, and the separated liquid is subjected to biological treatment. Since a large amount of dehydrated cake of organic sludge is generated by dehydration, various attempts have been made to reduce the volume of dehydrated cake. Further, in order to reuse the dehydrated cake as a combustion aid or compost, it is necessary to reduce the water content. For this reason, a dehydration process is performed after adding a flocculant to organic wastewater and making it coagulate | flocculate as a coagulation floc.

また、生物処理に先立つ脱水処理において、屎尿及び有機性汚泥を含む有機性廃水は全量が凝集剤添加後に脱水されるため、有機性排水中に含まれている有機物も除去されてしまう。有機性排水中に含まれている有機物は、後続の生物処理において微生物の栄養素となる水素供与体である。有機性廃水の全量脱水処理により、有機物が不足すると、生物処理が不十分となるため、通常はメタノールなどの水素供与体を多量に添加することが必要となる。   In addition, in the dehydration process prior to the biological treatment, the entire amount of organic wastewater containing manure and organic sludge is dehydrated after the addition of the flocculant, so that organic substances contained in the organic wastewater are also removed. The organic matter contained in the organic wastewater is a hydrogen donor that becomes a nutrient for microorganisms in the subsequent biological treatment. When organic matter is insufficient due to the total amount of organic wastewater dehydration treatment, biological treatment becomes insufficient. Therefore, it is usually necessary to add a large amount of a hydrogen donor such as methanol.

したがって、現状の屎尿及び有機性汚泥を含む有機性廃水の処理では、脱水処理に必要な凝集剤及び生物処理に必要な栄養源を多量に添加しなければならず、維持管理費が高額になっている。   Therefore, in the current treatment of organic wastewater containing manure and organic sludge, a large amount of flocculant necessary for dehydration and nutrients necessary for biological treatment must be added, resulting in high maintenance costs. ing.

また、有機性汚泥に含まれているリン及びアンモニウムは化成肥料として再利用できることが周知であり、屎尿及び浄化槽汚泥からのリンを回収する方法及び装置が種々提案されている(特許文献4)。   Moreover, it is well known that phosphorus and ammonium contained in organic sludge can be reused as a chemical fertilizer, and various methods and apparatuses for recovering phosphorus from manure and septic tank sludge have been proposed (Patent Document 4).

特開昭63-7900号公報JP 63-7900 A 特開平6-226290号公報JP-A-6-226290 特開平11-33591号公報JP 11-33591 A 特開2013-13851号公報JP 2013-13851 A

本発明は、脱水処理と生物処理とを組み合わせた有機性廃水の処理において、発生する脱水ケーキの低含水率化及び減容化を達成しながら、維持管理費を低額に抑えることができ、化成肥料として有用なリン酸マグネシウムアンモニウム(以下「MAP」という。)を効率的に回収する処理方法及び装置を提供することを目的とする。   In the treatment of organic wastewater combining dehydration treatment and biological treatment, the present invention can reduce maintenance and maintenance costs while achieving low water content and volume reduction of the dehydrated cake that is generated. It aims at providing the processing method and apparatus which collect | recover efficiently magnesium ammonium phosphate (henceforth "MAP") useful as a fertilizer.

また、本発明は、脱水処理と生物処理とを組み合わせた有機性廃水の処理において、MAPを回収して化成肥料を製造する方法及び装置を提供することを目的とする。   Moreover, this invention aims at providing the method and apparatus which collect | recovers MAP and manufactures a chemical fertilizer in the process of the organic waste water which combined dehydration process and biological treatment.

本発明は、屎尿及び/又は有機性汚泥と、生物処理からの余剰汚泥との混合汚泥を脱水処理した後に生物処理する有機性廃水処理方法において、脱水処理に供する混合汚泥の一部に高分子凝集剤を添加しないことにより、脱水ケーキの低含水率化及び減容化を達成しながら、高分子凝集剤の添加量を削減すると同時に、後続の生物処理に必要な水素供与体の添加量を削減することができ、MAPを効率的に回収できる処理方法を提供する。   The present invention relates to an organic wastewater treatment method in which mixed sludge of manure and / or organic sludge and surplus sludge from biological treatment is dehydrated and then biologically treated. By not adding a flocculant, while reducing the water content and volume of the dehydrated cake, the amount of the polymer flocculant is reduced, and at the same time, the amount of hydrogen donor required for the subsequent biological treatment is reduced. Provided is a processing method that can reduce MAP and efficiently recover MAP.

本発明によれば、高分子凝集剤の添加とMAP回収とを連動させた有機性排水処理方法及び装置並びに化成肥料の製造方法及び装置が提供される。
[1]屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理する有機性廃水処理方法であって、
当該混合汚泥に高分子凝集剤を添加せずに脱水処理して第1分離液を得る工程と、
当該混合汚泥に高分子凝集剤を添加してから脱水処理して第2分離液を得る工程と、
を交互に行い、
前記高分子凝集剤を添加する場合には、脱水処理の際に発生する第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収することを特徴とする有機性廃水処理方法。
[2]前記混合汚泥に高分子凝集剤を添加せずに脱水処理する工程は、高分子凝集剤を添加する工程と添加しない工程との合計時間の60%以下とする、[1]に記載の有機性廃水処理方法。
[3]前記混合汚泥に高分子凝集剤を添加せずに脱水処理することによって得られる第1分離液を生物処理における水素供与体として利用する、[1]又は[2]に記載の有機性廃水処理方法。
[4]前記脱水処理は、高分子凝集剤を添加した混合汚泥を濃縮する濃縮工程と、濃縮した混合汚泥を脱水する脱水工程と、を含み、
前記第2分離液は、当該濃縮工程で得られる、[1]〜[3]のいずれか1項に記載の有機性廃水処理方法。
[5]前記濃縮工程で得られる濃縮物に無機凝集剤をさらに添加した後、脱水処理を行う[4]に記載の有機性排水処理方法。
[6]前記脱水処理後の分離液を生物処理における水素供与体として利用する、[5]に記載の有機性廃水処理方法。
[7]屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理するための有機性廃水処理装置であって、
屎尿及び/又は有機性汚泥と、生物処理からの余剰汚泥とを混合する混合槽と、
当該混合槽の下流に位置づけられ、混合汚泥を脱水する脱水装置と、
当該混合槽と当該脱水装置の間に位置づけられ、当該混合槽からの当該混合汚泥に高分子凝集剤を添加して凝集させる凝集反応槽と、
当該混合槽から、当該凝集反応槽を経由せずに、当該脱水装置に当該混合汚泥を直接送るバイパス経路と、
高分子凝集剤を添加した混合汚泥を脱水して得られる第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収するMAP回収装置と、
当該脱水装置からの分離液及び当該MAP回収装置からの脱離液を貯留する分離液貯留槽と、
当該分離液貯留槽からの分離液を処理する生物処理槽と、
当該生物処理槽の下流に位置づけられている固液分離槽と、
を具備する、有機性廃水処理装置。
[8]前記混合槽からの混合汚泥を前記凝集反応槽に送る経路と、前記凝集反応槽を経由せずに前記混合槽からの混合汚泥を前記脱水装置に直接送るバイパス経路と、の切り替えを行う第1切替弁と、
前記脱水装置からの第1分離液を前記分離液貯留槽に送る経路と、前記脱水装置からの第2分離液を前記MAP回収装置に送る経路と、の切り替えを行う第2切替弁と、
をさらに具備し、当該第1切替弁と第2切替弁とは連動する、[7]に記載の有機性廃水処理装置。
[9]前記脱水装置は、
高分子凝集剤を添加した混合汚泥に対しては濃縮機として作用し、高分子凝集剤を添加していない混合汚泥に対してはしさ分離機として作用するスクリーンと、
当該スクリーンの下流に位置づけられている脱水機と、
を含み、当該スクリーンからの分離水及び当該脱水機からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路に切り替える切替弁をさらに具備する、[7]又は[8]に記載の有機性廃水処理装置。
[10]前記脱水装置は、スクリーンとして機能する濃縮部と、当該濃縮部の後段に圧搾部と、を具備し、当該濃縮部からの分離水及び当該圧搾部からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路に切り替える切替弁をさらに具備する、[7]又は[8]に記載の有機性廃水処理装置。
[11]前記凝集反応槽には、
凝集反応槽への高分子凝集剤の添加を制御する凝集剤添加制御機構と、
高分子凝集剤を添加しない工程の後に開放する自動弁が設けられているドレン配管と、
が接続されている、[7]〜[10]のいずれか1項に記載の有機性排水処理装置。
[12]さらに前記混合槽と前記凝集反応槽との間にラインミキサを設け、当該ラインミキサに高分子凝集剤を添加する凝集剤添加配管が接続されている、[7]〜[11]のいずれか1項に記載の有機性廃水処理装置。
[13]屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理する有機性廃水処理において、
当該混合汚泥に高分子凝集剤を添加せずに脱水処理して第1分離液を得る工程と、
当該混合汚泥に高分子凝集剤を添加してから脱水処理して第2分離液を得る工程と、
を交互に行い、
前記高分子凝集剤を添加する場合には、脱水処理の際に発生する第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収するMAP回収工程を含むことを特徴とする、化成肥料の製造方法。
[14]前記混合汚泥に高分子凝集剤を添加せずに脱水処理する工程は、高分子凝集剤を添加する工程と添加しない工程との合計時間の60%以下とする、[13]に記載の化成肥料の製造方法。
[15]前記混合汚泥に高分子凝集剤を添加せずに脱水処理することによって得られる第1分離液を生物処理における水素供与体として利用する、[13]又は[14]に記載の化成肥料の製造方法。
[16]前記脱水処理は、高分子凝集剤を添加した混合汚泥を濃縮する濃縮工程と、濃縮した混合汚泥を脱水する脱水工程と、を含み、
前記第2分離液は、当該濃縮工程で得られる、[13]〜[15]のいずれか1項に記載の化成肥料の製造方法。
[17]前記濃縮工程で得られる濃縮物に無機凝集剤をさらに添加した後、脱水処理を行う、[16]に記載の化成肥料の製造方法。
[18]前記脱水処理後の分離液を生物処理における水素供与体として利用する、[17]に記載の化成肥料の製造方法。
[19]屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理するための有機性廃水処理において、
屎尿及び/又は有機性汚泥と、生物処理からの余剰汚泥とを混合する混合槽と、
当該混合槽の下流に位置づけられ、混合汚泥を脱水する脱水装置と、
当該混合槽と当該脱水装置の間に位置づけられ、当該混合槽からの当該混合汚泥に高分子凝集剤を添加して凝集させる凝集反応槽と、
当該混合槽から、当該凝集反応槽を経由せずに、当該脱水装置に当該混合汚泥を直接送るバイパス経路と、
高分子凝集剤を添加した混合汚泥を脱水して得られる第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収するMAP回収装置と、
を具備する、化成肥料の製造装置。
当該脱水装置からの分離液及び当該MAP回収装置からの脱離液を貯留する分離液貯留槽と、
当該分離液貯留槽からの分離液を処理する生物処理槽と、
当該生物処理槽の下流に位置づけられている固液分離槽と、
[20]前記混合槽からの混合汚泥を前記凝集反応槽に送る経路と、前記混合槽からの混合汚泥を前記凝集反応槽を経由せずに前記脱水装置に直接送るバイパス経路と、の切り替えを行う第1切替弁と、
前記脱水装置からの第1分離液を前記分離液貯留槽に送る経路と、前記脱水装置からの第2分離液を前記MAP回収装置に送る経路と、の切り替えを行う第2切替弁と、
をさらに具備し、当該第1切替弁と第2切替弁とは連動する、[19]に記載の化成肥料の製造装置。
[21]前記脱水装置は、
高分子凝集剤を添加した混合汚泥に対しては濃縮機として作用し、高分子凝集剤を添加していない混合汚泥に対してはしさ分離機として作用するスクリーンと、
当該スクリーンの下流に位置づけられている脱水機と、
を含み、当該スクリーンからの分離水及び当該脱水機からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路に切り替える切替弁をさらに具備する、[19]又は[20]に記載の化成肥料の製造装置。
[22]前記脱水装置は、スクリーンとして機能する濃縮部と、当該濃縮部の後段に圧搾部と、を具備し、当該濃縮部からの分離水及び当該圧搾部からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路に切り替える切替弁をさらに具備する、[19]又は[20]に記載の化成肥料の製造装置。
[23]前記凝集反応槽には、
凝集反応槽への高分子凝集剤の添加を制御する凝集剤添加制御機構と、
高分子凝集剤を添加しない工程の後に開放する自動弁が設けられているドレン配管と、
が接続されている、[19]〜[22]のいずれか1項に記載の化成肥料の製造装置。
[24]さらに前記混合槽と前記凝集反応槽との間にラインミキサを設け、当該ラインミキサに高分子凝集剤を添加する凝集剤添加配管が接続されている、[19]〜[23]のいずれか1項に記載の化成肥料の製造装置。
According to the present invention, there are provided an organic wastewater treatment method and apparatus and a chemical fertilizer manufacturing method and apparatus in which addition of a polymer flocculant and MAP recovery are linked.
[1] An organic wastewater treatment method for biological treatment after dewatering mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment,
A step of dehydrating the mixed sludge without adding a polymer flocculant to obtain a first separation liquid;
Adding a polymer flocculant to the mixed sludge and then dehydrating to obtain a second separation liquid;
Alternately
An organic wastewater treatment method, wherein when adding the polymer flocculant, magnesium ammonium phosphate (MAP) is recovered from the second separation liquid generated during the dehydration treatment.
[2] The step of dehydrating the mixed sludge without adding a polymer flocculant is 60% or less of the total time of the step of adding the polymer flocculant and the step of not adding the polymer flocculant. Organic wastewater treatment method.
[3] The organic material according to [1] or [2], wherein the first separation liquid obtained by dehydrating the mixed sludge without adding a polymer flocculant is used as a hydrogen donor in biological treatment. Wastewater treatment method.
[4] The dehydration treatment includes a concentration step of concentrating the mixed sludge added with the polymer flocculant, and a dehydration step of dehydrating the concentrated mixed sludge.
The organic wastewater treatment method according to any one of [1] to [3], wherein the second separation liquid is obtained in the concentration step.
[5] The organic wastewater treatment method according to [4], wherein an inorganic flocculant is further added to the concentrate obtained in the concentration step, and then dehydration is performed.
[6] The organic wastewater treatment method according to [5], wherein the separation liquid after the dehydration treatment is used as a hydrogen donor in biological treatment.
[7] An organic wastewater treatment apparatus for biological treatment after dewatering mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment,
A mixing tank for mixing manure and / or organic sludge with surplus sludge from biological treatment;
A dehydrator positioned downstream of the mixing tank and dewatering the mixed sludge;
An agglomeration reaction tank that is positioned between the mixing tank and the dehydrator, and adds and aggregates the polymer flocculant to the mixed sludge from the mixing tank;
A bypass path for directly sending the mixed sludge from the mixing tank to the dehydrator without going through the agglomeration reaction tank;
A MAP recovery device for recovering magnesium ammonium phosphate (MAP) from the second separated liquid obtained by dehydrating the mixed sludge added with the polymer flocculant;
A separation liquid storage tank for storing a separation liquid from the dehydration apparatus and a desorption liquid from the MAP recovery apparatus;
A biological treatment tank for treating the separated liquid from the separated liquid storage tank;
A solid-liquid separation tank positioned downstream of the biological treatment tank;
An organic wastewater treatment apparatus comprising:
[8] Switching between a route for sending the mixed sludge from the mixing tank to the coagulation reaction tank and a bypass route for sending the mixed sludge from the mixing tank directly to the dehydrator without passing through the coagulation reaction tank A first switching valve to perform;
A second switching valve for switching between a route for sending the first separation liquid from the dehydration device to the separation liquid storage tank and a route for sending the second separation liquid from the dehydration device to the MAP recovery device;
The organic wastewater treatment apparatus according to [7], wherein the first switching valve and the second switching valve are interlocked.
[9] The dehydrator
A screen that acts as a concentrator for mixed sludge to which a polymer flocculant has been added, and that acts as a separator for mixed sludge to which no polymer flocculant has been added,
A dehydrator located downstream of the screen;
[7] or [8] further comprising a switching valve for switching between a path for separately sending the separated water from the screen and the separated water from the dehydrator to the path for sending to the MAP recovery device and the path for sending to the separation liquid storage tank. ] The organic waste water treatment apparatus as described in.
[10] The dehydrating apparatus includes a concentrating unit functioning as a screen, and a pressing unit at a subsequent stage of the concentrating unit, and separately separates the separated water from the concentrating unit and the separated water from the pressing unit. The organic wastewater treatment apparatus according to [7] or [8], further comprising a switching valve that switches between a route to be sent to the recovery device and a route to be sent to the separation liquid storage tank.
[11] In the agglomeration reaction tank,
A coagulant addition control mechanism for controlling the addition of the polymer coagulant to the coagulation reaction tank;
A drain pipe provided with an automatic valve that opens after the step of not adding the polymer flocculant;
Is an organic wastewater treatment apparatus according to any one of [7] to [10].
[12] Furthermore, a line mixer is provided between the mixing tank and the aggregation reaction tank, and a flocculant addition pipe for adding a polymer flocculant to the line mixer is connected. [7] to [11] The organic wastewater treatment apparatus according to any one of the above.
[13] In organic wastewater treatment for biological treatment after dewatering mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment,
A step of dehydrating the mixed sludge without adding a polymer flocculant to obtain a first separation liquid;
Adding a polymer flocculant to the mixed sludge and then dehydrating to obtain a second separation liquid;
Alternately
In the case of adding the polymer flocculant, a chemical fertilizer manufacturing method comprising a MAP recovery step of recovering magnesium ammonium phosphate (MAP) from the second separation liquid generated during the dehydration process .
[14] The step of dehydrating the mixed sludge without adding the polymer flocculant is 60% or less of the total time of the step of adding the polymer flocculant and the step of not adding the polymer flocculant. Of chemical fertilizer.
[15] The chemical fertilizer according to [13] or [14], wherein the first separated liquid obtained by dehydrating the mixed sludge without adding a polymer flocculant is used as a hydrogen donor in biological treatment. Manufacturing method.
[16] The dehydration treatment includes a concentration step of concentrating the mixed sludge added with the polymer flocculant, and a dehydration step of dehydrating the concentrated mixed sludge,
The method for producing a chemical fertilizer according to any one of [13] to [15], wherein the second separation liquid is obtained in the concentration step.
[17] The method for producing a chemical fertilizer according to [16], wherein an inorganic flocculant is further added to the concentrate obtained in the concentration step, and then dehydration is performed.
[18] The method for producing a chemical fertilizer according to [17], wherein the separation liquid after the dehydration treatment is used as a hydrogen donor in biological treatment.
[19] In organic wastewater treatment for biological treatment after dewatering mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment,
A mixing tank for mixing manure and / or organic sludge with surplus sludge from biological treatment;
A dehydrator positioned downstream of the mixing tank and dewatering the mixed sludge;
An agglomeration reaction tank that is positioned between the mixing tank and the dehydrator, and adds and aggregates the polymer flocculant to the mixed sludge from the mixing tank;
A bypass path for directly sending the mixed sludge from the mixing tank to the dehydrator without going through the agglomeration reaction tank;
A MAP recovery device for recovering magnesium ammonium phosphate (MAP) from the second separated liquid obtained by dehydrating the mixed sludge added with the polymer flocculant;
An apparatus for producing chemical fertilizer, comprising:
A separation liquid storage tank for storing a separation liquid from the dehydration apparatus and a desorption liquid from the MAP recovery apparatus;
A biological treatment tank for treating the separated liquid from the separated liquid storage tank;
A solid-liquid separation tank positioned downstream of the biological treatment tank;
[20] Switching between a route for sending the mixed sludge from the mixing tank to the coagulation reaction tank and a bypass route for sending the mixed sludge from the mixing tank directly to the dehydrator without passing through the coagulation reaction tank A first switching valve to perform;
A second switching valve for switching between a route for sending the first separation liquid from the dehydration device to the separation liquid storage tank and a route for sending the second separation liquid from the dehydration device to the MAP recovery device;
The chemical fertilizer manufacturing apparatus according to [19], wherein the first switching valve and the second switching valve are interlocked with each other.
[21] The dehydrator includes:
A screen that acts as a concentrator for mixed sludge to which a polymer flocculant has been added, and that acts as a separator for mixed sludge to which no polymer flocculant has been added,
A dehydrator located downstream of the screen;
[19] or [20], further comprising a switching valve for switching between a path for separately sending the separated water from the screen and the separated water from the dehydrator to the MAP recovery device and a path for sending the separated water to the separation liquid storage tank. ]. The chemical fertilizer manufacturing apparatus of description.
[22] The dehydrator includes a concentrating unit functioning as a screen, and a squeezing unit downstream of the concentrating unit, and separately separates the separated water from the concentrating unit and the separated water from the squeezing unit, respectively. The chemical fertilizer manufacturing apparatus according to [19] or [20], further comprising a switching valve that switches between a route to be sent to the recovery device and a route to be sent to the separation liquid storage tank.
[23] In the agglomeration reaction tank,
A coagulant addition control mechanism for controlling the addition of the polymer coagulant to the coagulation reaction tank;
A drain pipe provided with an automatic valve that opens after the step of not adding the polymer flocculant;
The apparatus for producing chemical fertilizer according to any one of [19] to [22], wherein:
[24] Further, a line mixer is provided between the mixing tank and the aggregation reaction tank, and a flocculant addition pipe for adding a polymer flocculant to the line mixer is connected. [19] to [23] The chemical fertilizer manufacturing apparatus of any one of Claims.

本発明の有機性廃水処理方法によれば、発生する脱水ケーキの低含水率化及び減容化を達成しながら、脱水処理に必要な凝集剤添加量及び生物処理に必要な水素供与体としての薬品添加量を削減することができるので、維持管理費を削減できると共に、化成肥料として有用なMAPを効率的に回収することができる。   According to the organic wastewater treatment method of the present invention, while achieving a low water content and volume reduction of the dehydrated cake generated, the amount of flocculant added necessary for dehydration and the hydrogen donor necessary for biological treatment Since the amount of chemicals added can be reduced, maintenance costs can be reduced and MAP useful as a chemical fertilizer can be efficiently recovered.

本発明の有機性廃水の処理装置及び当該処理装置を用いた有機性廃水処理方法のフローの説明図である。It is explanatory drawing of the flow of the organic wastewater processing apparatus of this invention, and the organic wastewater processing method using the said processing apparatus. 本発明の別の実施態様を示す処理装置及び処理方法のフローの説明図である。It is explanatory drawing of the flow of the processing apparatus and processing method which show another embodiment of this invention. 凝集剤添加と無添加との切り替え及び連動するMAP回収への切り替えのタイムチャートの例を示す説明図である。It is explanatory drawing which shows the example of the time chart of the switching to the MAP collection | recovery linked with the change of coagulant addition and non-addition.

好ましい実施形態Preferred embodiment

図1に、本発明の有機性廃水の処理装置の概略と当該処理装置を用いた処理フローの概略を示す。
屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理するための有機性廃水処理装置は、屎尿及び/又は有機性汚泥と、生物処理からの余剰汚泥とを混合する混合槽10と、混合槽10の下流に位置づけられている混合汚泥を脱水する脱水装置40と、混合槽10と脱水装置40の間に位置づけられている混合槽10からの混合汚泥に凝集剤を添加して凝集させる凝集反応槽20と、混合槽10から凝集反応槽20へ混合汚泥を送る経路30と、混合槽10から凝集反応槽20を経由せずに脱水装置40に混合汚泥を直接送るバイパス経路30Aと、脱水装置40からの分離液を貯留する分離液貯留槽50と、分離液貯留槽50からの分離液を処理する生物処理槽60と、生物処理槽60の下流に位置づけられている固液分離槽61と、脱水装置40からの凝集剤を添加した混合汚泥を脱水して得られる第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収するMAP回収装置80と、を具備する。
In FIG. 1, the outline of the processing apparatus of the organic wastewater of this invention and the outline of the processing flow using the said processing apparatus are shown.
Organic wastewater treatment equipment for biological treatment after dehydration of mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment includes human waste and / or organic sludge and biological treatment A mixing tank 10 that mixes excess sludge from the mixing tank 10, a dehydrator 40 that dehydrates the mixed sludge located downstream of the mixing tank 10, and a mixing tank 10 that is positioned between the mixing tank 10 and the dehydrator 40. Dehydration without adding the agglomeration agent 20 to the agglomeration reaction tank 20 from the mixing tank 10 to the agglomeration reaction tank 20, a route 30 for sending the mixed sludge from the agitation tank 10 to the agglomeration reaction tank 20. 30 A of bypass paths which send mixed sludge directly to the apparatus 40, the separation liquid storage tank 50 which stores the separation liquid from the dehydration apparatus 40, the biological treatment tank 60 which processes the separation liquid from the separation liquid storage tank 50, and biological treatment MAP recovery for recovering magnesium ammonium phosphate (MAP) from the solid-liquid separation tank 61 positioned downstream of 60 and the second separation liquid obtained by dehydrating the mixed sludge added with the flocculant from the dehydrator 40 Device 80.

混合槽10は、屎尿及び浄化槽汚泥(有機性汚泥)を受け入れて貯留する中継槽であってもよいし、中継槽とは別に設けてもよい。
図1に示す装置では、バイパス経路30Aに混合汚泥を送るため、混合槽10からの混合汚泥を凝集反応槽20に送る経路30との切り替えを行う第1切替弁V1、V2が経路30及びバイパス経路30Aに設けられている。また、脱水装置40からの第1分離液を分離液貯留槽50に送る経路40aと、脱水装置40からの第2分離液をMAP回収装置80に送る経路40bと、の切り替えを行う第2切替弁Vpが脱水装置40と分離貯留槽50との間の経路43に設けられている。なお、図1において第2切替弁Vpは経路40aと40bの両者に設けられているが、これらをまとめてVpとして説明する。
The mixing tank 10 may be a relay tank that receives and stores human waste and septic tank sludge (organic sludge), or may be provided separately from the relay tank.
In the apparatus shown in FIG. 1, in order to send the mixed sludge to the bypass path 30 </ b> A, the first switching valves V <b> 1 and V <b> 2 that perform switching with the path 30 that sends the mixed sludge from the mixing tank 10 to the aggregation reaction tank 20 include the path 30 and the bypass. It is provided in the path 30A. In addition, a second switching is performed to switch between a path 40a for sending the first separation liquid from the dehydration apparatus 40 to the separation liquid storage tank 50 and a path 40b for sending the second separation liquid from the dehydration apparatus 40 to the MAP recovery apparatus 80. A valve Vp is provided in a path 43 between the dehydrator 40 and the separation storage tank 50. In FIG. 1, the second switching valve Vp is provided in both the paths 40a and 40b, and these are collectively described as Vp.

図1の部分拡大図に示すように、脱水装置40が濃縮用スクリーン41と脱水機42とを含む場合には、スクリーン41からの分離液用配管41aに、MAP回収装置80に送る経路40bと分離液貯留槽50に送る経路40aとに切り替える切替弁Vp1及びVp2が設けられている。   As shown in the partially enlarged view of FIG. 1, when the dehydrating device 40 includes a concentrating screen 41 and a dehydrating device 42, a path 40 b that is sent to the separation liquid pipe 41 a from the screen 41 to the MAP recovery device 80; Switching valves Vp <b> 1 and Vp <b> 2 that switch to the path 40 a that is sent to the separation liquid storage tank 50 are provided.

切替弁V1、V2、Vp、Vp1、Vp2としては、公知の自動切替弁を用いることができ、例えば、空気作動弁、電磁弁、電動弁などを用いることができる。切替弁V1、V2、Vp、Vp1、Vp2は連動しており、V1が「開」、V2が「閉」の場合にVp又はVp1及びVp2は経路40bに切り替え、V1が「閉」、V2が「開」の場合にVp又はVp1及びVp2は経路40aに切り替える。   As the switching valves V1, V2, Vp, Vp1, and Vp2, known automatic switching valves can be used. For example, an air operated valve, an electromagnetic valve, an electric valve, or the like can be used. The switching valves V1, V2, Vp, Vp1, and Vp2 are interlocked. When V1 is “open” and V2 is “closed”, Vp or Vp1 and Vp2 are switched to the path 40b, and V1 is “closed” and V2 is In the case of “open”, Vp or Vp1 and Vp2 are switched to the path 40a.

脱水装置40としては、通常の脱水機、たとえば遠心脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリュープレス型脱水機、ロータリープレス型脱水機、電気浸透式脱水機などを用いることができる。特に、スクリュープレス脱水機は、低動力で低含水率を達成することができるので好ましい。スクリュープレス脱水機は、円筒形外筒の内部に、円筒形外筒と同心のスクリュー軸及びスクリュー羽根を備え、混合汚泥供給側の濃縮部と、円筒形外筒とスクリュー軸との間の空間が混合汚泥の進行方向に向かって次第に狭くなる脱水ケーキ排出側の圧搾部と、が形成されており、円筒形外筒に分離液排出用の複数の開孔を備える。軸摺動型スクリュープレス脱水機は、脱水汚泥出口方向と並行にスクリュー軸が移動し、脱水汚泥を強制排出する機構を有する。これらのスクリュープレス脱水機を用いることで、脱水ケーキの含水率を大幅に低下させることができる。また、スクリーン機能を奏する濃縮部を前段に含みスクリーンと脱水機とが一体化されている脱水装置ばかりでなく、独立したスクリーンと脱水機とを組み合わせてなる脱水装置を用いることもできる。   As the dehydrator 40, a normal dehydrator such as a centrifugal dehydrator, a belt press dehydrator, a filter press dehydrator, a screw press dehydrator, a rotary press dehydrator, an electroosmotic dehydrator, or the like may be used. it can. In particular, a screw press dehydrator is preferable because it can achieve a low water content with low power. The screw press dehydrator includes a screw shaft and screw blades concentric with the cylindrical outer cylinder inside the cylindrical outer cylinder, and a space between the concentrated portion on the mixed sludge supply side and the cylindrical outer cylinder and the screw shaft. Is formed with a pressing portion on the dewatered cake discharge side that gradually narrows in the traveling direction of the mixed sludge, and the cylindrical outer cylinder includes a plurality of openings for discharging the separated liquid. The shaft sliding screw press dehydrator has a mechanism for forcibly discharging dewatered sludge by moving the screw shaft in parallel with the direction of the dewatered sludge outlet. By using these screw press dehydrators, the moisture content of the dehydrated cake can be significantly reduced. Further, not only a dehydrator in which a concentrating unit having a screen function is included in the previous stage and the screen and the dehydrator are integrated, but also a dehydrator in which an independent screen and a dehydrator are combined can be used.

図1に示す装置では、脱水装置40は、凝集剤添加混合汚泥Aに対しては濃縮機として作用し、凝集剤無添加混合汚泥Bに対してはしさ分離機として作用するスクリーン41と、スクリーン41の下流に位置づけられている脱水機42と、を含む。スクリーン41からの分離液を送る経路41aには、MAP回収装置80に送る経路40b又は脱水機42からの分離液を分離液貯留槽50に送る経路43のいずれかに切り替える切替弁Vp1及びVp2が設けられている。   In the apparatus shown in FIG. 1, the dehydrator 40 acts as a concentrator for the flocculant-added mixed sludge A, and acts as a shear separator for the flocculant-free mixed sludge B, 41, and a dehydrator 42 positioned downstream of 41. In the path 41a for sending the separation liquid from the screen 41, switching valves Vp1 and Vp2 for switching to either the path 40b for sending to the MAP recovery device 80 or the path 43 for sending the separation liquid from the dehydrator 42 to the separation liquid storage tank 50 are provided. Is provided.

スクリーン41は、目幅0.7〜6mmを有することが好ましい。目幅が広すぎると、小さな夾雑物を除去できないため、しさ分離機として機能しない。目幅が狭すぎると、目詰まりにより流量負荷が過剰になる。スクリーンとしては、回転式、重力式、加圧式などの通常のスクリーンを用いることができる。   The screen 41 preferably has a mesh width of 0.7 to 6 mm. If the width of the mesh is too wide, small impurities cannot be removed, so it will not function as a thickness separator. If the mesh width is too narrow, the flow load becomes excessive due to clogging. As the screen, a normal screen such as a rotary type, a gravity type, or a pressure type can be used.

凝集反応槽20は、混合汚泥及び添加した高分子凝集剤を撹拌混合して、凝集フロックを形成できればよく、公知の撹拌装置を具備する槽を用いることもできる。混合汚泥と高分子凝集剤との混合は、混合汚泥の細部にまで高分子凝集剤を均一に分散させるために、撹拌することが好ましい。これにより、高分子凝集剤の添加量を削減でき、凝集汚泥が緻密になるため脱水処理後の脱水ケーキの含水率を低減できる。撹拌する手段としては、撹拌翼、シャフト、モーターから構成される通常の撹拌機を好適に挙げることができる。また、凝集反応槽20の直前の配管にラインミキサ11を組み込むこともできる。外部のモーターで回転させる撹拌翼を配管内に設けたラインミキサが好ましい。   The agglomeration reaction tank 20 only needs to form agglomeration floc by stirring and mixing the mixed sludge and the added polymer flocculant, and a tank equipped with a known agitation device can also be used. The mixed sludge and the polymer flocculant are preferably mixed in order to uniformly disperse the polymer flocculant in the details of the mixed sludge. Thereby, the addition amount of the polymer flocculant can be reduced, and the water content of the dehydrated cake after the dehydration treatment can be reduced because the aggregated sludge becomes dense. As a means for stirring, a normal stirrer composed of a stirring blade, a shaft, and a motor can be preferably exemplified. In addition, the line mixer 11 can be incorporated in the piping immediately before the agglomeration reaction tank 20. A line mixer in which a stirring blade rotated by an external motor is provided in the pipe is preferable.

凝集反応槽20には、凝集反応槽20へ高分子凝集剤を添加する凝集剤添加装置が設けられている。凝集剤添加装置は、通常用いられる薬注装置でよいが、凝集剤添加及び無添加の切り替えを行う制御機構を具備することが好ましい。   The agglomeration reaction tank 20 is provided with a flocculant addition device for adding a polymer flocculant to the agglomeration reaction tank 20. The flocculant addition device may be a commonly used chemical injection device, but preferably includes a control mechanism for switching between addition and no addition of the flocculant.

脱水装置40にて分離された第1分離液を貯留する分離液貯留槽50、生物処理槽60及び固液分離槽61は、通常の有機性廃水処理で用いられる装置でよい。分離液貯留槽50には、MAP回収装置80からの脱離液及びプラント内の雑排水も送液され、後段の生物処理に送られるまで一定時間貯留される。分離液貯留槽50は、分離液の組成変動を緩和するために、分離液を少なくとも0.5日間貯留できる容量を有することが好ましい。生物処理槽60は、脱窒素処理、嫌気性処理又は好気性処理を行う装置であることが好ましい。生物処理槽60及び後続の固液分離槽61から生じる余剰汚泥を混合槽10に戻す余剰汚泥送配管62を具備する。また、固液分離槽61からの汚泥を生物処理槽60に戻す汚泥戻し配管62Aを設けてもよい。   The separation liquid storage tank 50, the biological treatment tank 60, and the solid-liquid separation tank 61 that store the first separation liquid separated by the dehydration apparatus 40 may be apparatuses used in ordinary organic wastewater treatment. The separation liquid storage tank 50 is also supplied with the desorbed liquid from the MAP recovery device 80 and miscellaneous wastewater in the plant, and is stored for a certain period of time until it is sent to the biological treatment at the subsequent stage. The separation liquid storage tank 50 preferably has a capacity capable of storing the separation liquid for at least 0.5 days in order to alleviate the composition fluctuation of the separation liquid. The biological treatment tank 60 is preferably a device that performs denitrification treatment, anaerobic treatment, or aerobic treatment. The surplus sludge feed pipe 62 for returning surplus sludge generated from the biological treatment tank 60 and the subsequent solid-liquid separation tank 61 to the mixing tank 10 is provided. Further, a sludge return pipe 62 </ b> A for returning sludge from the solid-liquid separation tank 61 to the biological treatment tank 60 may be provided.

脱水装置40にて得られる含水率70%以下の脱水ケーキは、堆肥及び助燃剤として再利用できるため、用途に応じて適宜振り分ける脱水汚泥振分コンベア70を設けてもよい。   Since the dehydrated cake having a moisture content of 70% or less obtained by the dehydrator 40 can be reused as compost and a combustion aid, a dewatered sludge distribution conveyor 70 that appropriately sorts according to the use may be provided.

MAP回収装置80は、リン酸イオン、アンモニウムイオン及びマグネシウムイオンの反応によって生成するMAPの晶析現象を利用して、リンとアンモニウムイオンを含む汚泥にマグネシウム源(塩化マグネシウム、水酸化マグネシウム等)を添加して、過飽和状態で種晶と接触させ、種晶表面にMAP回収を晶析させて回収する装置であり、マグネシウム源添加手段、pH調整剤添加手段を具備する従来公知の晶析反応槽を用いることができるが、高速処理を可能とする流動式が好ましい。pH調整剤添加手段は、MAP回収装置80に送られる第2分離液のpHをMAP晶析反応に適するpH範囲7.5〜10.0に調節するためにpH調整剤を添加する手段であり、従来公知のものでよい。   The MAP recovery device 80 uses a MAP crystallization phenomenon generated by the reaction of phosphate ions, ammonium ions, and magnesium ions, and supplies a magnesium source (magnesium chloride, magnesium hydroxide, etc.) to sludge containing phosphorus and ammonium ions. Addition, contact with seed crystal in supersaturated state, MAP recovery is crystallized and recovered on the surface of the seed crystal, and a conventionally known crystallization reaction tank equipped with a magnesium source addition means and a pH adjuster addition means However, a fluid type capable of high-speed processing is preferable. The pH adjusting agent adding means is a means for adding a pH adjusting agent to adjust the pH of the second separated liquid sent to the MAP recovery device 80 to a pH range of 7.5 to 10.0 suitable for the MAP crystallization reaction. A conventionally known one may be used.

MAP回収装置80には、MAP又は化成肥料を取り出す製品取出用配管82、及びMAP又は化成肥料を取り出した後の脱離液を分離液貯留槽50に送る脱離液用配管81が設けられている。   The MAP recovery device 80 is provided with a product extraction pipe 82 for taking out MAP or chemical fertilizer, and a desorption liquid pipe 81 for sending the desorption liquid after taking out MAP or chemical fertilizer to the separation liquid storage tank 50. Yes.

図2は、本発明の有機性廃水装置の別の実施形態を示す。図1と同じ構成要素には同じ符号を付して、説明を省略する。
屎尿及び/又は有機性汚泥と、生物処理において発生する余剰汚泥と、の混合汚泥を脱水処理した後に、生物処理するための有機性廃水処理装置は、屎尿及び/又は有機性汚泥と、生物処理からの余剰汚泥とを混合する混合槽10と、当該混合槽10の下流に位置づけられ、混合汚泥を脱水する脱水装置40と、当該混合槽10と当該脱水装置40の間に位置づけられ、当該混合槽10からの当該混合汚泥に凝集剤を添加して凝集させる凝集反応槽20Aと、当該凝集反応槽20Aへの凝集剤の添加を制御する凝集剤添加制御機構と、当該脱水装置40からの分離液を貯留する分離液貯留槽50と、当該分離液貯留槽50からの分離液を処理する生物処理槽60と、生物処理槽60の下流に位置づけられている固液分離槽61と、脱水装置40からの凝集剤を添加した混合汚泥を脱水して得られる第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収するMAP回収装置80と、を具備する。図2に示す有機性廃水処理装置は、図1に示すバイパス経路30Aを含まず、凝集剤添加制御機構によって凝集剤の添加の有無が制御される。
FIG. 2 shows another embodiment of the organic wastewater device of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
Organic wastewater treatment equipment for biological treatment after dehydration of mixed sludge of manure and / or organic sludge and surplus sludge generated in biological treatment includes human waste and / or organic sludge and biological treatment The mixing tank 10 that mixes the excess sludge from the above, the dehydrator 40 that is located downstream of the mixing tank 10 and dehydrates the mixed sludge, and is positioned between the mixing tank 10 and the dehydrator 40, and the mixing Aggregation reaction tank 20A for adding and coagulating the flocculant to the mixed sludge from the tank 10, a flocculant addition control mechanism for controlling the addition of the flocculant to the aggregation reaction tank 20A, and separation from the dehydrator 40 A separation liquid storage tank 50 for storing liquid, a biological treatment tank 60 for processing a separation liquid from the separation liquid storage tank 50, a solid-liquid separation tank 61 positioned downstream of the biological treatment tank 60, and a dehydrator 4 The MAP recovery device 80 for recovering the magnesium ammonium phosphate (MAP) mixing the sludge with added flocculant from the second separated liquid obtained by dehydration of, comprising a. The organic wastewater treatment apparatus shown in FIG. 2 does not include the bypass path 30A shown in FIG. 1, and the presence / absence of addition of the flocculant is controlled by the flocculant addition control mechanism.

凝集反応槽20Aには、凝集剤を添加しない工程の後に開放する自動弁V3が設けられているドレン配管21が接続されている。ドレン配管21は、混合槽10に接続されている。なお、ドレン配管21を設けなくてもよい。   The agglomeration reaction tank 20A is connected to a drain pipe 21 provided with an automatic valve V3 that is opened after the step of not adding the aggregating agent. The drain pipe 21 is connected to the mixing tank 10. The drain pipe 21 may not be provided.

次に、図1に示すフローを用いて、本発明の有機性廃水処理方法を説明する。
処理対象となる有機性廃水は、屎尿及び/又は浄化槽汚泥(有機性汚泥)を含む。通常、屎尿及び浄化槽汚泥は、トイレットペーパーなどの夾雑物を含有しており、まず破砕処理が行われる。従来は、破砕後の夾雑物を除去する前処理が行われていたが、最近では前処理を行わず夾雑物を含有したままの屎尿及び浄化槽汚泥を処理することも行われている。本発明では、夾雑物の含有の有無、屎尿と浄化槽汚泥との混合比率、及び破砕の程度及び有無にかかわらず、屎尿及び/又は浄化槽汚泥を含む有機性廃水を処理対象とすることができる。
Next, the organic wastewater treatment method of the present invention will be described using the flow shown in FIG.
The organic wastewater to be treated includes manure and / or septic tank sludge (organic sludge). Usually, urine and septic tank sludge contain impurities such as toilet paper, and are first crushed. Conventionally, pretreatment for removing the crushed contaminants has been performed, but recently, pretreatment is not performed and the sewage and septic tank sludge containing impurities are also treated. In the present invention, it is possible to treat organic wastewater containing manure and / or septic tank sludge regardless of the presence or absence of impurities, the mixing ratio of manure and septic tank sludge, and the degree and presence of crushing.

有機性廃水は、混合槽10において、生物処理により発生する余剰汚泥と混合されて、混合汚泥となる。次いで、混合汚泥は、経路30を経由して凝集反応槽20に送られ、高分子凝集剤と撹拌混合され、凝集フロックが形成されて凝集剤添加汚泥Aとなる。凝集剤添加汚泥Aは、脱水装置40に送られ、スクリーン41で濃縮され、さらに脱水機42で脱水されて、第2分離液と脱水ケーキとに分けられる。第2分離液は、MAP回収装置80に送られる。MAP回収装置80では、通常のMAP回収と同様に、マグネシウム源が添加された後、晶析法によりMAPを析出させて沈殿物を回収する。回収されたMAPは化成肥料として再利用することができる。   The organic wastewater is mixed with surplus sludge generated by biological treatment in the mixing tank 10 to become mixed sludge. Next, the mixed sludge is sent to the agglomeration reaction tank 20 via the path 30 and is stirred and mixed with the polymer flocculant to form an agglomerate floc and become the flocculant-added sludge A. The flocculant-added sludge A is sent to the dewatering device 40, concentrated by the screen 41, further dehydrated by the dehydrator 42, and divided into the second separated liquid and the dewatered cake. The second separation liquid is sent to the MAP recovery device 80. In the MAP recovery device 80, in the same manner as in the normal MAP recovery, after the magnesium source is added, MAP is precipitated by a crystallization method and the precipitate is recovered. The collected MAP can be reused as a chemical fertilizer.

凝集剤としてさらに無機凝集剤を混合汚泥に添加してもよい。この場合には、スクリーン41の下流側末端で無機凝集剤を添加する。無機凝集剤を添加した場合は、スクリーン41からの分離液だけを第2分離液としてMAP回収装置80に送り、脱水機42からの分離液は第1分離液として分離液貯留槽50に送る。   An inorganic flocculant may be further added to the mixed sludge as a flocculant. In this case, an inorganic flocculant is added at the downstream end of the screen 41. When the inorganic flocculant is added, only the separation liquid from the screen 41 is sent to the MAP recovery device 80 as the second separation liquid, and the separation liquid from the dehydrator 42 is sent to the separation liquid storage tank 50 as the first separation liquid.

一方、バイパス経路30Aを経由して、高分子凝集剤の添加なしに脱水装置40に送られる混合汚泥は、スクリーン41でしさ分離され、脱水機42で脱水されて、第1分離液と脱水ケーキとに分けられる。第1分離液は、分離液貯留槽50に所定時間貯留された後、生物処理槽60に送られ、生物処理された後、固液分離槽61で固液分離される。固液分離された水は浄化水として放流されるか又はさらに高度処理に供された後に放流される。固液分離された汚泥は、返送汚泥として生物処理槽60に戻され、余剰汚泥は有機性廃水との混合に使用するため混合槽10に送られる。   On the other hand, the mixed sludge sent to the dehydrator 40 without addition of the polymer flocculant via the bypass path 30A is separated by the screen 41 and dehydrated by the dehydrator 42, and the first separated liquid and the dehydrated cake. And divided. The first separation liquid is stored in the separation liquid storage tank 50 for a predetermined period of time, then sent to the biological treatment tank 60, subjected to biological treatment, and then solid-liquid separated in the solid-liquid separation tank 61. The solid-liquid separated water is discharged as purified water or discharged after being subjected to advanced treatment. The solid-liquid separated sludge is returned to the biological treatment tank 60 as return sludge, and the excess sludge is sent to the mixing tank 10 for use in mixing with organic waste water.

図2に示すフローでは、屎尿及び/又は有機性汚泥は、生物処理槽60及び固液分離槽61から余剰汚泥送配管62を経由して供給される余剰汚泥と、混合槽10にて混合される。混合汚泥は、経路30を介して凝集反応槽20Aに送られる。   In the flow shown in FIG. 2, manure and / or organic sludge is mixed in the mixing tank 10 with surplus sludge supplied from the biological treatment tank 60 and the solid-liquid separation tank 61 via the surplus sludge feed pipe 62. The The mixed sludge is sent to the agglomeration reaction tank 20A via the path 30.

凝集反応槽20Aにて高分子凝集剤が添加されなかった混合汚泥は、脱水装置40に送られる。混合汚泥は、スクリーン41でしさ分が除去され、脱水機42で脱水されて、第1分離液と脱水ケーキとに分けられる。第1分離液は、分離液貯留槽50に所定時間貯留された後、生物処理槽60に送られ、生物処理された後、固液分離槽61で固液分離される。固液分離された水は浄化水として放流されるか又はさらに高度処理に供された後に放流される。固液分離された汚泥は、返送汚泥として生物処理槽60に戻され、余剰汚泥は有機性廃水との混合に使用するため混合槽10に送られる。   The mixed sludge to which the polymer flocculant has not been added in the aggregation reaction tank 20 </ b> A is sent to the dehydrator 40. The mixed sludge is removed by the screen 41, dehydrated by the dehydrator 42, and divided into the first separated liquid and the dehydrated cake. The first separation liquid is stored in the separation liquid storage tank 50 for a predetermined period of time, then sent to the biological treatment tank 60, subjected to biological treatment, and then solid-liquid separated in the solid-liquid separation tank 61. The solid-liquid separated water is discharged as purified water or discharged after being subjected to advanced treatment. The solid-liquid separated sludge is returned to the biological treatment tank 60 as return sludge, and the excess sludge is sent to the mixing tank 10 for use in mixing with organic waste water.

次いで、凝集反応槽20Aで高分子凝集剤が添加されなかった混合汚泥の残りは、ドレン弁V3を開放してドレン21から抜き出され、混合槽10に戻され、新たに供給される屎尿及び/又は有機性汚泥と新たな余剰汚泥がさらに添加されて、再び凝集反応槽20Aに送られる。凝集反応槽20Aにて凝集剤が添加され、凝集剤添加汚泥Aが形成される。このとき、ドレン弁V3は閉じられており、凝集剤添加汚泥Aは脱水装置40に送られる。凝集剤添加汚泥Aは、スクリーン41で濃縮され、脱水機42で脱水されて、第2分離液と脱水ケーキとに分けられる。第2分離液は、MAP回収装置80に送られる。MAP回収装置80では、通常のMAP回収と同様に、マグネシウム源が添加された後、晶析法によりMAPを析出させて沈殿物を回収する。回収されたMAPは化成肥料として再利用することができる。なお、凝集剤として無機凝集剤を添加する場合は、図1に示す装置における場合と同様に、スクリーン41の下流側末端で無機凝集剤を添加し、無機凝集剤が添加されていないスクリーン41からの分離液だけをMAP回収装置80に送る。   Next, the remainder of the mixed sludge to which the polymer flocculant has not been added in the flocculation reaction tank 20A is extracted from the drain 21 by opening the drain valve V3, returned to the mixing tank 10, and newly supplied urine and / Organic sludge and new surplus sludge are further added and sent again to the agglomeration reaction tank 20A. In the flocculation reaction tank 20A, the flocculating agent is added, and the flocculating agent added sludge A is formed. At this time, the drain valve V3 is closed, and the flocculant-added sludge A is sent to the dehydrator 40. The flocculant-added sludge A is concentrated by the screen 41, dehydrated by the dehydrator 42, and divided into the second separated liquid and the dehydrated cake. The second separation liquid is sent to the MAP recovery device 80. In the MAP recovery device 80, in the same manner as in the normal MAP recovery, after the magnesium source is added, MAP is precipitated by a crystallization method and the precipitate is recovered. The collected MAP can be reused as a chemical fertilizer. When adding an inorganic flocculant as the flocculant, as in the case of the apparatus shown in FIG. 1, the inorganic flocculant is added at the downstream end of the screen 41, and the screen 41 to which no inorganic flocculant is added is added. Only the separated liquid is sent to the MAP recovery device 80.

図1及び図2に示す装置においては、脱水装置40として、スクリーン41と脱水機42との組み合わせを用いているが、前段の濃縮部と後段の圧搾部とを一体化してなるスクリュープレス型脱水機を用いることもできる。この場合は、濃縮部がスクリーン41に相当し、圧搾部が脱水機42に相当する。高分子凝集剤が添加された場合には、濃縮部及び圧搾部からの分離液を第2分離液としてMAP回収装置80に送る。高分子凝集剤に加えて無機凝集剤が添加される場合には、無機凝集剤は濃縮部の後、圧搾部の前で添加される。濃縮部からの分離液が第2分離液としてMAP回収装置80に送られる。高分子凝集剤が添加されなかった場合には、濃縮部からの分離液及び圧搾部からの分離液を第1分離液として分離液貯留槽50及び後段の生物処理槽60に送る。   In the apparatus shown in FIGS. 1 and 2, a combination of a screen 41 and a dehydrator 42 is used as the dehydrating apparatus 40, but a screw press type dehydration formed by integrating a pre-concentration part and a post-squeezing part. A machine can also be used. In this case, the concentration unit corresponds to the screen 41 and the pressing unit corresponds to the dehydrator 42. When the polymer flocculant is added, the separation liquid from the concentration part and the pressing part is sent to the MAP recovery device 80 as the second separation liquid. When an inorganic flocculant is added in addition to the polymer flocculant, the inorganic flocculant is added after the concentration part and before the pressing part. The separation liquid from the concentration unit is sent to the MAP recovery device 80 as the second separation liquid. When the polymer flocculant is not added, the separation liquid from the concentrating part and the separation liquid from the pressing part are sent as the first separation liquid to the separation liquid storage tank 50 and the biological treatment tank 60 in the subsequent stage.

図1及び図2に示す装置において、混合槽10にて形成される混合汚泥を凝集反応槽20又は20Aに送る経路30に、ラインミキサ11を設けてもよい。混合汚泥には、ラインミキサ11にて高分子凝集剤が添加され、さらに凝集反応槽20又は20Aにて高分子凝集剤が添加される。ラインミキサにおける高分子凝集剤の添加量は、処理すべき有機性廃水の性状によっても異なるが、ラインミキサ11にて添加される高分子凝集剤は、凝集反応槽にて添加される高分子凝集剤と同等量以上であることが好ましい。ラインミキサにおける高分子凝集剤の添加がない場合(すなわち、凝集反応槽20又は20Aでの高分子凝集剤の添加のみ)と、ラインミキサにおける高分子凝集剤の添加がある場合(すなわち、ラインミキサ11と凝集反応槽20又は20Aでの高分子凝集剤の添加)との高分子凝集剤の総添加量は、ほぼ同等量とすることができる。ラインミキサ11と凝集反応槽20又は20Aで高分子凝集剤を添加する場合には、無機凝集剤を使用せずに、高分子凝集剤と無機凝集剤との併用の場合と同等の脱水効果を得ることができる。ラインミキサ11での高分子凝集剤の添加及び混合によって、混合汚泥と高分子凝集剤とは、より一層均一に混合される。   In the apparatus shown in FIGS. 1 and 2, the line mixer 11 may be provided in a path 30 for sending the mixed sludge formed in the mixing tank 10 to the aggregation reaction tank 20 or 20A. A polymer flocculant is added to the mixed sludge by the line mixer 11, and further the polymer flocculant is added by the agglomeration reaction tank 20 or 20A. The addition amount of the polymer flocculant in the line mixer varies depending on the properties of the organic waste water to be treated, but the polymer flocculant added in the line mixer 11 is polymer agglomeration added in the agglomeration reaction tank. The amount is preferably equal to or greater than the agent. When there is no addition of the polymer flocculant in the line mixer (that is, only addition of the polymer flocculant in the agglomeration reaction tank 20 or 20A) and when there is addition of the polymer flocculant in the line mixer (that is, the line mixer) 11 and the addition of the polymer flocculant in the agglomeration reaction tank 20 or 20A) can be made substantially equal. When a polymer flocculant is added in the line mixer 11 and the flocculence reaction tank 20 or 20A, an inorganic flocculant is not used, and a dehydration effect equivalent to that in the case of the combined use of the polymer flocculant and the inorganic flocculant is achieved. Can be obtained. By adding and mixing the polymer flocculant in the line mixer 11, the mixed sludge and the polymer flocculant are mixed more uniformly.

上述のように、本発明においては、有機性廃水と余剰汚泥との混合汚泥に高分子凝集剤を添加せずに直接脱水処理する工程を含む。高分子凝集剤の添加と無添加とは任意の長さの時間で交互に行われる。高分子凝集剤無添加の総時間は、高分子凝集剤添加時間との合計の60%以下、好ましくは40%以下、特に好ましくは20%以下とする。60%を越えると、余剰汚泥発生量が多くなり、混合汚泥中の余剰汚泥の比率が多くなるため、脱水ケーキの低含水率化及び脱水ケーキの減容化が達成されない。高分子凝集剤使用量の削減効果を得るためには、高分子凝集剤無添加の総時間は1%以上とすることが好ましく、5%以上がより好ましい。   As described above, the present invention includes a step of directly dehydrating the mixed sludge of organic waste water and excess sludge without adding a polymer flocculant. Addition and non-addition of the polymer flocculant are alternately performed for an arbitrary length of time. The total time without addition of the polymer flocculant is 60% or less, preferably 40% or less, particularly preferably 20% or less of the total time with the polymer flocculant addition time. If it exceeds 60%, the amount of surplus sludge generated increases, and the ratio of surplus sludge in the mixed sludge increases, so that the moisture content of the dehydrated cake and the volume reduction of the dehydrated cake cannot be achieved. In order to obtain the effect of reducing the amount of the polymer flocculant used, the total time without addition of the polymer flocculant is preferably 1% or more, and more preferably 5% or more.

また、本発明においては、高分子凝集剤を添加した場合には、凝集剤添加汚泥Aを脱水して得られる第2分離液をMAP回収に送液し、MAPを回収して化成肥料を製造する。高分子凝集剤を添加しない場合には、混合汚泥中のSS分が多すぎて、MAP回収装置が閉塞してしまうため、凝集剤無添加汚泥Bを脱水して得られる第1分離液はMAP回収に送ることを回避する。また、凝集剤無添加汚泥Bは、有機物を豊富に含むため、後続の生物処理に送り、微生物の栄養素となる水素供与体として利用する。   In the present invention, when a polymer flocculant is added, the second separation liquid obtained by dewatering the flocculant-added sludge A is sent to MAP recovery, and MAP is recovered to produce a chemical fertilizer. To do. When the polymer flocculant is not added, the mixed sludge contains too much SS and the MAP recovery device is blocked. Therefore, the first separation liquid obtained by dewatering the flocculant-free sludge B is MAP. Avoid sending to collection. Moreover, since the flocculant-free sludge B contains abundant organic substances, it is sent to the subsequent biological treatment and used as a hydrogen donor that becomes a nutrient of microorganisms.

高分子凝集剤の添加及び無添加の時間の長さ及び切り替えのタイミングは、生物処理の状態や混合汚泥の性状によって設定することができる。たとえば、屎尿及び/又は有機性汚泥中の水素供与体が多い場合は、凝集剤無添加汚泥Bが少量であっても生物処理に必要な栄養素を提供することができるため、高分子凝集剤の添加時間を長くしてもよい。この場合、MAP回収処理に送る第2分離液の量が増えるため、MAP回収すなわち化成肥料の製造量を増やすことができる。   The length of time of addition and non-addition of the polymer flocculant and the switching timing can be set according to the state of biological treatment and the properties of the mixed sludge. For example, when there is a large amount of hydrogen donor in human waste and / or organic sludge, nutrients necessary for biological treatment can be provided even with a small amount of flocculant-free sludge B. The addition time may be lengthened. In this case, since the amount of the second separation liquid to be sent to the MAP recovery process increases, the amount of MAP recovery, that is, the production of chemical fertilizer can be increased.

高分子凝集剤の添加及びMAP回収経路への切り替えの例を図3に示す。なお、図3に示す凝集剤は高分子凝集剤である。無機凝集剤を添加する場合は、高分子凝集剤の添加のタイミングに合わせて、脱水装置40にて行う。   An example of addition of the polymer flocculant and switching to the MAP recovery route is shown in FIG. The flocculant shown in FIG. 3 is a polymer flocculant. When adding an inorganic flocculant, it is performed by the dehydrator 40 in accordance with the timing of addition of the polymer flocculant.

図3は凝集剤添加時間と無添加時間を任意の異なる長さに設定して交互に行う場合のタイムチャートである。図3(1)〜(3)は、凝集剤添加の切り替えは、図1に示す切替弁V1、V2の開閉をタイマー設定により自動的に切り替え、バイパス経路30Aを利用して行われる。MAP回収経路への切り替えは、切替弁Vp又はVp1及びVp2を切替弁V1に連動させ、凝集剤添加汚泥Aが脱水処理されるタイミングに合わせて切替弁Vp又はVp1及びVp2を作動させて行う。   FIG. 3 is a time chart in the case where the flocculant addition time and the non-addition time are set alternately at different lengths. 3 (1) to 3 (3), the switching of the flocculant addition is automatically performed by switching the switching valves V1 and V2 shown in FIG. 1 according to the timer setting and using the bypass path 30A. Switching to the MAP recovery path is performed by operating the switching valves Vp or Vp1 and Vp2 in synchronization with the timing at which the flocculant-added sludge A is dehydrated by interlocking the switching valves Vp or Vp1 and Vp2 with the switching valve V1.

図3(4)〜(6)は、切替弁V1、V2及びバイパス経路30Aを使用せずに、凝集剤添加制御機構を有する凝集反応槽20Aへの高分子凝集剤の添加及び無添加を交互に行う場合のタイムチャートである。高分子凝集剤の添加は、凝集剤添加装置のON/OFFをタイマー設定により自動的に切り替えることで行うことができる。MAP回収経路への切り替えは、凝集剤添加装置のON/OFFタイマーに連動させ、凝集剤添加汚泥Aが脱水処理されるタイミングに合わせて切替弁Vp又はVp1及びVp2を作動させて行う。   3 (4) to (6) show that the addition of the polymer flocculant and the non-addition of the polymer flocculant to the agglomeration reaction tank 20A having the flocculant addition control mechanism are alternately performed without using the switching valves V1, V2 and the bypass path 30A. It is a time chart in the case of performing to. The addition of the polymer flocculant can be performed by automatically switching ON / OFF of the flocculant addition apparatus by a timer setting. Switching to the MAP recovery path is performed by operating the switching valve Vp or Vp1 and Vp2 in synchronization with the timing at which the flocculant added sludge A is dehydrated in conjunction with the ON / OFF timer of the flocculant adding device.

図3(7)〜(9)は、図2に示す処理装置において、切替弁V1、V2及びバイパス経路30Aを使用せずに、ドレン弁V3の開閉調節及び凝集剤添加制御機構を有する凝集反応槽20Aへの高分子凝集剤の添加の有無を切り替える場合のタイムチャートである。ドレン弁V3の開放は、凝集反応槽20Aへの高分子凝集剤無添加の後に行うことが好ましい。   FIGS. 3 (7) to (9) show the agglomeration reaction in the processing apparatus shown in FIG. 2 that has an open / close adjustment of the drain valve V3 and a coagulant addition control mechanism without using the switching valves V1, V2 and the bypass path 30A. It is a time chart in the case of switching the presence or absence of addition of the polymer flocculant to the tank 20A. The drain valve V3 is preferably opened after the addition of the polymer flocculant to the aggregation reaction tank 20A.

図3(1)〜(9)のいずれにおいても、切替弁Vp又はVp1及びVp2のMAP回収装置80への切り替えは、凝集剤添加汚泥Aを脱水処理するタイミングに合わせて行う。   In any of FIGS. 3 (1) to 3 (9), the switching valve Vp or Vp1 and Vp2 is switched to the MAP recovery device 80 in accordance with the timing of dewatering the flocculant-added sludge A.

なお、ラインミキサ11を具備する装置の場合、高分子凝集剤添加のタイミングは、凝集反応槽20Aへの添加のタイミングと同時である。
後続の脱水処理により含水率70%以下の脱水ケーキを得るためには、高分子凝集剤を添加しない時間は、高分子凝集剤を添加する時間と無添加の時間との合計の60%以下とする。高分子凝集剤を添加しないことにより、有機性廃水中に含まれる有機成分(水素供与体)が脱水処理後の分離液に含まれるため、生物処理に必要な水素供与体(微生物の栄養源)の追加供給を削減することができる。凝集剤の添加と無添加とを交互に行うことにより生じる分離液中有機成分量の変動は、分離液貯留槽50での貯留時間を例えば0.5日以上と長期化することで、相殺することができる。
In the case of an apparatus equipped with the line mixer 11, the timing of addition of the polymer flocculant is the same as the timing of addition to the aggregation reaction tank 20A.
In order to obtain a dehydrated cake having a water content of 70% or less by the subsequent dehydration treatment, the time during which the polymer flocculant is not added is 60% or less of the total of the time during which the polymer flocculant is added and the time when no polymer flocculant is added. To do. By not adding a polymer flocculant, the organic component (hydrogen donor) contained in the organic wastewater is contained in the separated liquid after dehydration treatment, so the hydrogen donor required for biological treatment (microbe nutrient source) The additional supply of can be reduced. The fluctuation in the amount of organic components in the separation liquid caused by alternately adding and not adding the flocculant is offset by extending the storage time in the separation liquid storage tank 50 to, for example, 0.5 days or longer. be able to.

凝集反応槽に添加される凝集剤は、高分子凝集剤である。特にラインミキサを具備する装置を用いる場合には、ラインミキサ及び凝集反応槽に高分子凝集剤のみを添加することができる。脱水効率を向上させるために、高分子凝集剤と無機凝集剤とを併用する場合は、凝集反応槽20又は20Aにて高分子凝集剤を添加した後に、脱水装置40にて脱水される直前、好ましくは濃縮機スクリーン41の下流側末端にて、汚泥に無機凝集剤を添加することが好ましい。高分子凝集剤を先に添加して無機凝集剤を後で添加することにより、脱水性能が向上し、高分子凝集剤の添加量を削減することができる。   The flocculant added to the flocculation reaction tank is a polymer flocculant. In particular, when using an apparatus equipped with a line mixer, only the polymer flocculant can be added to the line mixer and the agglomeration reaction tank. When using a polymer flocculant and an inorganic flocculant in combination to improve the dehydration efficiency, after adding the polymer flocculant in the aggregation reaction tank 20 or 20A, immediately before being dehydrated in the dehydrator 40, Preferably, an inorganic flocculant is added to the sludge at the downstream end of the concentrator screen 41. By adding the polymer flocculant first and adding the inorganic flocculant later, the dewatering performance is improved, and the amount of the polymer flocculant added can be reduced.

高分子凝集剤としては、カチオン系高分子凝集剤、両性高分子凝集剤等が挙げられる。カチオン性高分子凝集剤としては、ジメチルアミノエチルアクリレートの四級化物の重合物、ジメチルアミノエチルアクリレートの四級化物とアクリルアミドとの共重合物などのアクリレート系高分子凝集剤;ジメチルアミノエチルメタクリレートの四級化物の重合物、ジメチルアミノエチルメタクリレートの四級化物とアクリルアミドとの共重合物などのメタクリレート系高分子凝集剤;アミド基、ニトリル基、アミン塩酸塩、ホルムアミド基等を含むポリビニルアミジン;ポリアクリルアミドのマンニッヒ変性物などが挙げられ、例えば市販のエバグロース(水ing株式会社 登録商標)シリーズを用いることができる。両性高分子凝集剤としては、ジメチルアミノメチルアクリレートの四級化物とアクリルアミドとアクリル酸との共重合物、ジメチルアミノメチルメタクリレートの四級化物とアクリルアミドとアクリル酸との共重合物などをあげることができる。高分子凝集剤の添加量は、混合汚泥の性状などによっても異なるが、汚泥中の固形物乾燥重量(DS)に対して0.5〜3.0wt%であることが好ましく、1.0〜2.5wt%であることがより好ましい。   Examples of the polymer flocculant include cationic polymer flocculants and amphoteric polymer flocculants. Cationic polymer flocculants include acrylate-based polymer flocculants such as dimethylaminoethyl acrylate quaternized polymer, dimethylaminoethyl acrylate quaternized acrylamide copolymer, and dimethylaminoethyl methacrylate. Methacrylate-based polymer flocculants such as quaternized polymers, dimethylaminoethyl methacrylate quaternized products and acrylamide copolymers; polyvinylamidines containing amide groups, nitrile groups, amine hydrochlorides, formamide groups, etc .; poly Examples include Mannich modified products of acrylamide. For example, commercially available Ebagulose (registered trademark of Mizuing Inc.) series can be used. Examples of the amphoteric polymer flocculants include dimethylaminomethyl acrylate quaternized products of acrylamide and acrylic acid, dimethylaminomethyl methacrylate quaternized products of acrylamide and acrylic acid, and the like. it can. The addition amount of the polymer flocculant varies depending on the properties of the mixed sludge, but is preferably 0.5 to 3.0 wt% with respect to the solid dry weight (DS) in the sludge, and is 1.0 to More preferably, it is 2.5 wt%.

また、高分子凝集剤の凝集力を低下させることなく、混合汚泥に均一に分散させ、混合汚泥の細部にまで浸透させ、混合汚泥の表面電荷の中和と、高分子の吸着又は架橋作用による凝集とを同時に行わせるため、混合汚泥と凝集剤とを1000回転/分以上の撹拌翼の回転数で撹拌することが好ましい。   Moreover, without reducing the cohesive force of the polymer flocculant, uniformly disperse it in the mixed sludge, penetrate into the details of the mixed sludge, neutralize the surface charge of the mixed sludge, and adsorb or crosslink the polymer In order to perform coagulation simultaneously, it is preferable to stir the mixed sludge and the coagulant at a rotation speed of a stirring blade of 1000 rotations / minute or more.

無機凝集剤としては、ポリ硫酸第二鉄、ポリ塩化第二鉄、塩化第二鉄、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウムを好ましく用いることができる。中でもポリ硫酸第二鉄が特に好ましい。無機凝集剤の添加量は、混合汚泥の性状などによっても異なり、用いる無機凝集剤の種類によっても異なるが、汚泥中の固形物乾燥重量(DS)に対して0.5〜7.0wt%であることが好ましく、特に1.5〜5wt%程度であることがより好ましい。   As the inorganic flocculant, polyferric sulfate, polyferric chloride, ferric chloride, aluminum sulfate, aluminum chloride, and polyaluminum chloride can be preferably used. Of these, polyferric sulfate is particularly preferred. The amount of the inorganic flocculant added varies depending on the properties of the mixed sludge, etc., and also varies depending on the type of the inorganic flocculant used, but is 0.5 to 7.0 wt% with respect to the solid dry weight (DS) in the sludge. It is preferable that the ratio is about 1.5 to 5 wt%.

なお、本発明の処理装置の構成は上述の構成に限定されるものではなく、特許請求の範囲の記載を逸脱しない限りにおいて種々変更してもよい。たとえば、図1及び図2において余剰汚泥送配管62に余剰汚泥貯留槽を設けてもよい。図2において、混合槽10と凝集反応槽20との間にラインミキサを複数台設けてもよい。図2において、凝集反応槽20からのドレン21の接続先は、混合槽10として示しているが、混合槽10の前段にある屎尿及び浄化槽汚泥の受入槽(図示せず)でも、余剰汚泥送配管62に設けられた余剰汚泥貯留槽(図示せず)でもよい。また、図1において、バイパス経路30Aと切替弁V1及びV2を設けているが、バイパス経路30Aを混合槽10に接続させて、切替弁の代わりに専用のポンプ及び破砕装置を設けてもよい。さらに、図1及び図2において、第2切替弁Vpを経路40aと40bの両者にそれぞれ設けているが、経路40aと40bとの切り替え点に3方弁を1個設けてもよい。同様に、スクリーン41からの分離液用配管41aからの経路にも2個の切替弁Vp1及びVp2を設けているが、切り替え点に3方弁を1個設けてもよい。   The configuration of the processing apparatus of the present invention is not limited to the above-described configuration, and various changes may be made without departing from the scope of the claims. For example, an excess sludge storage tank may be provided in the excess sludge feed pipe 62 in FIGS. In FIG. 2, a plurality of line mixers may be provided between the mixing tank 10 and the aggregation reaction tank 20. In FIG. 2, the connection destination of the drain 21 from the agglomeration reaction tank 20 is shown as the mixing tank 10, but surplus sludge is fed also in the waste tank and septic tank sludge receiving tank (not shown) in the previous stage of the mixing tank 10. An excess sludge storage tank (not shown) provided in the pipe 62 may be used. In FIG. 1, the bypass path 30A and the switching valves V1 and V2 are provided. However, the bypass path 30A may be connected to the mixing tank 10 and a dedicated pump and crushing device may be provided instead of the switching valve. Further, in FIGS. 1 and 2, the second switching valve Vp is provided in both the paths 40a and 40b, but one three-way valve may be provided at the switching point between the paths 40a and 40b. Similarly, the two switching valves Vp1 and Vp2 are provided in the path from the separation liquid pipe 41a from the screen 41, but one three-way valve may be provided at the switching point.

以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
破砕したままで夾雑物を除去していない屎尿及び浄化槽汚泥を含む有機性廃水に、生物処理において生じた余剰汚泥を混合して得た混合汚泥50kL/日を本発明の処理方法で処理する場合と、従来方法で処理する場合を比較した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these.
[Example 1]
When processing the mixed sludge 50 kL / day obtained by mixing surplus sludge generated in biological treatment with organic wastewater containing sewage and septic tank sludge that has not been removed with crushed impurities removed, by the treatment method of the present invention Compared with the case of processing by the conventional method.

図1に示す装置を用い、凝集剤の添加及び無添加の切り替え及びMAP回収への切り替えは、図3(1)に示すタイムチャートに従って行い、T1=48分、T2=12分と設定し、混合汚泥の約20%に対して凝集剤を添加しなかった。   Using the apparatus shown in FIG. 1, switching between addition and non-addition of a flocculant and switching to MAP recovery are performed according to the time chart shown in FIG. 3 (1), and T1 = 48 minutes and T2 = 12 minutes are set. No flocculant was added to about 20% of the mixed sludge.

無機凝集剤としてポリ硫酸第二鉄、高分子凝集剤としてエバグロースCS−320(水ing株式会社製カチオン系高分子凝集剤)を用いた。無機凝集剤は、濃縮スクリーン41で高分子凝集剤添加混合汚泥を濃縮した後の濃縮物に添加した。濃縮スクリーン41で分離された分離水は第2分離液としてMAP回収装置80に送った。   Poly ferric sulfate was used as the inorganic flocculant, and Ebagulose CS-320 (cationic polymer flocculant manufactured by Mizuing Co., Ltd.) was used as the polymer flocculant. The inorganic flocculant was added to the concentrate after the polymer flocculant-added mixed sludge was concentrated by the concentration screen 41. The separated water separated by the concentration screen 41 was sent to the MAP recovery device 80 as a second separated liquid.

本実施例では、後続の生物処理を脱窒素処理としたため、窒素(N)の分解を促進させるために、水素供与体としてメタノールを生物処理槽に添加した。
各薬剤の添加量と、脱水ケーキの含水率、処理水の水質を表1及び表2に示す。
In this example, since the subsequent biological treatment was denitrification treatment, methanol was added to the biological treatment tank as a hydrogen donor in order to promote the decomposition of nitrogen (N).
Tables 1 and 2 show the amount of each chemical added, the water content of the dehydrated cake, and the quality of the treated water.

回収したMAPの成分を化成肥料の基準値と比較した試験結果を表3に示す。
[実施例2]
図1に示す装置を用い、高分子凝集剤の添加と無添加との切り替え及びMAP回収への切り替えは図3(1)に示すタイムチャートに従って、T1=39分、T2=21分と設定し、混合汚泥の約35%に対して高分子凝集剤を添加しなかった以外は実施例1と同様に行い、各薬剤の添加量と、脱水ケーキの含水率及び処理水の水質を測定した。結果を表1及び表2に示す。
Table 3 shows the test results comparing the collected MAP components with the reference value of the chemical fertilizer.
[Example 2]
Using the apparatus shown in FIG. 1, the switching between addition and non-addition of the polymer flocculant and switching to MAP recovery are set as T1 = 39 minutes and T2 = 21 minutes according to the time chart shown in FIG. The same procedure as in Example 1 was conducted except that the polymer flocculant was not added to about 35% of the mixed sludge, and the amount of each agent added, the water content of the dehydrated cake, and the quality of the treated water were measured. The results are shown in Tables 1 and 2.

回収したMAPの成分を化成肥料の基準値と比較した試験結果を表3に示す。
[実施例3]
バイパス経路を含まない図2に示す装置を用いて、高分子凝集剤の添加及び無添加の切り替え及びMAP回収への切り替えを図3(4)に示すタイムチャートに従って、T1=39分、T2=21分と設定し、混合汚泥の約35%に対して高分子凝集剤を添加しなかった以外は実施例1と同様に行い、各薬剤の添加量と、脱水ケーキの含水率及び処理水の水質を測定した。結果を表1及び表2に示す。
Table 3 shows the test results comparing the collected MAP components with the reference value of the chemical fertilizer.
[Example 3]
Using the apparatus shown in FIG. 2 that does not include the bypass route, switching of addition and non-addition of the polymer flocculant and switching to MAP recovery are performed according to the time chart shown in FIG. 3 (4), T1 = 39 minutes, T2 = It was set as 21 minutes, and was performed in the same manner as in Example 1 except that the polymer flocculant was not added to about 35% of the mixed sludge. The amount of each agent added, the water content of the dehydrated cake, and the treated water Water quality was measured. The results are shown in Tables 1 and 2.

[実施例4]
図2に示す装置を用いて、高分子凝集剤の添加及び無添加の切り替え及びMAP回収への切り替えを図3(7)に示すタイムチャートに従って、T1=39分、T2=21分、T3=3分と設定し、混合汚泥の約35%に対して高分子凝集剤を添加しなかった以外は実施例1と同様に行い、各薬剤の添加量と、脱水ケーキの含水率及び処理水の水質を測定した。結果を表1及び表2に示す。
[Example 4]
Using the apparatus shown in FIG. 2, switching between addition and non-addition of a polymer flocculant and switching to MAP recovery is performed according to the time chart shown in FIG. 3 (7), T1 = 39 minutes, T2 = 21 minutes, T3 = Set as 3 minutes, except that the polymer flocculant was not added to about 35% of the mixed sludge, the same as in Example 1, the amount of each agent added, the water content of the dehydrated cake and the treated water Water quality was measured. The results are shown in Tables 1 and 2.

[比較例]
図1に示す装置を用いて、高分子凝集剤の添加の切り替えを行わず、全量を脱水した。
[Comparative example]
Using the apparatus shown in FIG. 1, the entire amount was dehydrated without switching the addition of the polymer flocculant.

処理水の水質を表2に示す。   Table 2 shows the quality of the treated water.

各検査項目の検査方法は以下の通りである。
水素イオン濃度:JIS K 0102-12.1
生物化学的酸素要求量(BOD):JIS K-0102-21及び-32.1
化学的酸素要求量(CODMn):JIS K-0102-17
浮遊物質量(SS):昭和46年環境庁告示第59号付表8
全窒素:JIS K-0102-45.1
全リン:JIS K-0102-46.3.3
色度:平成4年厚生省令第69号 45
大腸菌群数:昭和37年厚生省・建設省令第1号
The inspection method for each inspection item is as follows.
Hydrogen ion concentration: JIS K 0102-12.1
Biochemical oxygen demand (BOD): JIS K-0102-21 and -32.1
Chemical oxygen demand (COD Mn ): JIS K-0102-17
Suspended solids (SS): 1986 Environment Agency Notification No. 59, Appendix 8
Total nitrogen: JIS K-0102-45.1
Total phosphorus: JIS K-0102-46.3.3
Chromaticity: Ministry of Health and Welfare Ordinance No. 69 45
Number of coliforms: Ministry of Health and Welfare Ordinance No. 1 in 1957

混合汚泥の20%に対して凝集剤を添加しなかった場合(実施例1)の薬剤の添加量は、混合汚泥の全量に凝集剤を添加した場合に比較して、無機凝集剤を約55%、高分子凝集剤を約20%、メタノールを約50%削減できた。混合汚泥の35%に対して凝集剤を添加しなかった場合(実施例2)の薬剤の添加量の削減率は、無機凝集剤が約61%、高分子凝集剤が約35%、メタノールが約86%、同じく実施例3では、無機凝集剤が約66%、高分子凝集剤が約36%、メタノールが約86%、ラインミキサを用いて高分子凝集剤のみを添加した場合(実施例4)の薬剤の添加量の削減率は、無機凝集剤が100%、高分子凝集剤が約30%、メタノールが約86%であった。各実施例とも脱水ケーキの含水率は70%以下を達成し、処理水は放流水質基準を達成した。   When the flocculant is not added to 20% of the mixed sludge (Example 1), the amount of the chemical added is about 55 compared with the case where the flocculant is added to the total amount of the mixed sludge. %, The polymer flocculant was reduced by about 20%, and the methanol was reduced by about 50%. When the flocculant is not added to 35% of the mixed sludge (Example 2), the reduction rate of the added amount of the chemical is about 61% for the inorganic flocculant, about 35% for the polymer flocculant, and methanol. About 86%, also in Example 3, the inorganic flocculant is about 66%, the polymer flocculant is about 36%, methanol is about 86%, and only the polymer flocculant is added using a line mixer (Example) The reduction rate of the added amount of the agent in 4) was 100% for the inorganic flocculant, about 30% for the polymer flocculant, and about 86% for methanol. In each example, the moisture content of the dewatered cake was 70% or less, and the treated water achieved the discharged water quality standard.

本発明の処理方法によれば、凝集剤無添加処理の総時間が凝集剤添加時と無添加時との合計時間の60%以下となるように凝集剤の添加と無添加とを切り替えることにより、脱水ケーキの含水率70%及び処理水の水質基準を達成しながら、メタノール、無機凝集剤、高分子凝集剤のいずれも添加量を削減できた。   According to the treatment method of the present invention, by switching between addition and non-addition of the flocculant so that the total time of the flocculant-free addition treatment is 60% or less of the total time when the flocculant is added and when no flocculant is added. In addition, while achieving the moisture content of the dehydrated cake of 70% and the water quality standard of the treated water, the amounts of addition of methanol, inorganic flocculant, and polymer flocculant could be reduced.

本方法により回収したMAPは、化成肥料としての基準値を満たすことが確認できた。   It was confirmed that the MAP collected by this method satisfies the standard value as a chemical fertilizer.

脱水処理と生物処理とを併用する屎尿及び浄化槽汚泥を含む有機性廃水の処理における凝集剤及び生物処理における栄養源となる薬剤の使用量を削減できると共に、回収したMAPを化成肥料として再利用できる。   It is possible to reduce the amount of coagulant used in the treatment of organic wastewater including manure and septic tank sludge that use dehydration and biological treatment in combination, and the nutrient source in biological treatment, and the recovered MAP can be reused as a chemical fertilizer. .

Claims (12)

屎尿及び/又は有機性汚泥を含む有機性廃水を生物処理する有機性廃水処理方法であって
当該生物処理において発生する余剰汚泥を返送して、屎尿及び/又は有機性汚泥との混合汚泥を形成し
当該混合汚泥に高分子凝集剤を添加せずに脱水処理して第1分離液を得て、当該第1分離液を、リン酸マグネシウムアンモニウム(MAP)を回収する工程を経ずに直接、生物処理における水素供与体として利用するために分離液貯留槽に送る工程と、
当該混合汚泥に高分子凝集剤を添加してから脱水処理して第2分離液を得て、当該第2分離液を、リン酸マグネシウムアンモニウム(MAP)を回収する工程に送る工程と、
を交互に行ない、
当該混合汚泥を脱水処理した後の第1分離液と、当該第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収した後の脱離液と、を生物処理することを特徴とする有機性廃水処理方法。
An organic wastewater treatment method for biologically treating organic wastewater containing manure and / or organic sludge,
Return the excess sludge generated in the biological treatment, to form a mixed sludge of sewage and / or organic sludge,
The mixed sludge is dehydrated without adding a polymer flocculant to obtain a first separation liquid, and the first separation liquid is directly biological without passing through the step of recovering magnesium ammonium phosphate (MAP). Sending to a separate liquid reservoir for use as a hydrogen donor in the process;
Adding a polymer flocculant to the mixed sludge and then dehydrating to obtain a second separation liquid, and sending the second separation liquid to a process of collecting magnesium ammonium phosphate (MAP) ;
Alternately
Organic wastewater characterized by biologically treating a first separation liquid after dehydrating the mixed sludge and a desorption liquid after recovering magnesium ammonium phosphate (MAP) from the second separation liquid Processing method.
前記混合汚泥に高分子凝集剤を添加せずに脱水処理する工程は、高分子凝集剤を添加する工程と添加しない工程との合計時間の60%以下とする、請求項1に記載の有機性廃水処理方法。 The organic property according to claim 1, wherein the step of dehydrating the mixed sludge without adding the polymer flocculant is 60% or less of the total time of the step of adding the polymer flocculant and the step of not adding the polymer flocculant. Wastewater treatment method. 前記脱水処理は、高分子凝集剤を添加した混合汚泥を濃縮する濃縮工程と、濃縮した混合汚泥を脱水する脱水工程と、を含み、
前記第2分離液は、当該濃縮工程で得られる、請求項1又は2に記載の有機性廃水処理方法。
The dehydration treatment includes a concentration step of concentrating the mixed sludge added with the polymer flocculant, and a dehydration step of dehydrating the concentrated mixed sludge,
The organic wastewater treatment method according to claim 1 or 2, wherein the second separation liquid is obtained in the concentration step.
前記濃縮工程で得られる濃縮物に無機凝集剤をさらに添加して、脱水する請求項3に記載の有機性排水処理方法。 The organic waste water treatment method according to claim 3, wherein an inorganic flocculant is further added to the concentrate obtained in the concentration step to dehydrate. 前記脱水処理は、高分子凝集剤を添加しなかった混合汚泥を濃縮する濃縮工程と、濃縮した混合汚泥を脱水する脱水工程と、を含み、The dehydration treatment includes a concentration step of concentrating the mixed sludge to which the polymer flocculant has not been added, and a dehydration step of dehydrating the concentrated mixed sludge,
前記第1分離液は、当該濃縮工程及び当該脱水工程で得られる、請求項1又は2に記載の有機性廃水処理方法。The organic wastewater treatment method according to claim 1 or 2, wherein the first separation liquid is obtained in the concentration step and the dehydration step.
混合槽と、凝集反応槽と、脱水装置と、分離液貯留槽と、生物処理槽と、MAP回収装置と、を具備する屎尿及び/又は有機性汚泥を含む有機性廃水を生物処理する有機性廃水処理装置であって、
当該混合槽には、当該生物処理槽からの余剰汚泥を返送する余剰汚泥配管と、余剰汚泥と屎尿及び/又は有機性汚泥との混合汚泥を当該凝集反応槽に送る経路と、が接続されており、
当該凝集反応槽には、当該凝集反応槽に送られて高分子凝集剤が添加された当該混合汚泥を当該脱水装置に送る経路が接続されており、
当該凝集反応槽を経由せずに、当該混合槽と当該脱水装置との間を直接連通させるバイパス経路が設けられており、
当該脱水装置には、当該バイパス経路からの混合汚泥を当該脱水装置で脱水して得られる第1分離液を当該分離液貯留槽に送る経路、又は当該凝集反応槽からの高分子凝集剤を添加した混合汚泥を当該脱水装置で脱水して得られる第2分離液を当該MAP回収装置に送る経路のいずれかに送る切替弁を有する経路が接続されており、
当該分離液貯留槽には、第1分離液を当該生物処理槽に送る経路が接続されており、
当該混合槽からの混合汚泥を当該凝集反応槽に送る経路と、当該バイパス経路と、の切り替えを行う第1切替弁と、
当該脱水装置からの第1分離液を当該分離液貯留槽に送る経路と、当該脱水装置からの第2分離液を当該MAP回収装置に送る経路と、の切り替えを行う第2切替弁と、
を具備し、
当該第1切替弁と第2切替弁とは連動し、当該第1切替弁により混合汚泥を当該凝集反応槽に送る経路に切り換える際には、当該第2切替弁により第2分離液を当該MAP回収装置に送る経路に切り換え、当該第1切替弁により混合汚泥を当該バイパス経路に送る際には、当該第2切替弁により第1分離液を当該分離液貯留槽に送る経路に切り換えることを特徴とする、有機性廃水処理装置。
Organically treating organic wastewater containing manure and / or organic sludge comprising a mixing tank, an agglomeration reaction tank, a dehydration device, a separation liquid storage tank, a biological treatment tank, and a MAP recovery device A wastewater treatment device,
The mixing tank is connected to a surplus sludge pipe for returning surplus sludge from the biological treatment tank and a route for sending the mixed sludge of surplus sludge and manure and / or organic sludge to the agglomeration reaction tank. And
The agglomeration reaction tank is connected to a route for sending the mixed sludge, to which the polymer flocculant is added, sent to the agglomeration reaction tank, to the dehydrator,
Without passing through the agglomeration reaction tank, a bypass path is provided for direct communication between the mixing tank and the dehydrator,
To the dehydrator, a polymer flocculant from the path for sending the first separation liquid obtained by dehydrating the mixed sludge from the bypass path to the separation liquid storage tank or the coagulation reaction tank is added. A path having a switching valve for sending the second separated liquid obtained by dehydrating the mixed sludge to the MAP recovery apparatus is connected to the MAP recovery apparatus,
A path for sending the first separation liquid to the biological treatment tank is connected to the separation liquid storage tank,
A first switching valve for switching between a path for sending the mixed sludge from the mixing tank to the aggregation reaction tank and the bypass path;
A second switching valve for switching between a route for sending the first separation liquid from the dehydration device to the separation liquid storage tank and a route for sending the second separation liquid from the dehydration device to the MAP recovery device;
Comprising
The first switching valve and the second switching valve are interlocked, and when the first switching valve is switched to a route for sending mixed sludge to the agglomeration reaction tank, the second switching valve causes the second separation liquid to flow to the MAP. When switching to the path for sending to the recovery device and sending the mixed sludge to the bypass path by the first switching valve, the second switching valve switches to the path for sending the first separation liquid to the separation liquid storage tank. to, organic waste water treatment device.
前記分離液貯留槽には、前記MAP回収装置からの脱離液を送る経路が接続されている、請求項6に記載の有機性排水処理装置。The organic waste water treatment apparatus according to claim 6, wherein a path for sending the desorbed liquid from the MAP recovery apparatus is connected to the separation liquid storage tank. 前記脱水装置は、
高分子凝集剤を添加した混合汚泥に対しては濃縮機として作用し、高分子凝集剤を添加していない混合汚泥に対してはしさ分離機として作用するスクリーンと、
当該スクリーンの下流に位置づけられている脱水機と、
を含み、当該スクリーンからの分離水及び当該脱水機からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路とに切り替える切替弁をさらに具備する、請求項6又は7に記載の有機性廃水処理装置。
The dehydrator is
A screen that acts as a concentrator for mixed sludge to which a polymer flocculant has been added, and that acts as a separator for mixed sludge to which no polymer flocculant has been added,
A dehydrator located downstream of the screen;
Hints, further comprising a switching valve for switching to a path for sending the separated liquid reservoir separated water and the separated water from the dehydrator and route sent to separately MAP recovery device each from the screen, according to claim 6 or 7 Organic wastewater treatment equipment described in 1.
前記脱水装置は、スクリーンとして機能する濃縮部と、当該濃縮部の後段に圧搾部と、を具備し、当該濃縮部からの分離水及び当該圧搾部からの分離水をそれぞれ別個にMAP回収装置に送る経路と分離液貯留槽に送る経路とに切り替える切替弁をさらに具備する、請求項6又は7に記載の有機性廃水処理装置。 The dehydrating device includes a concentrating unit functioning as a screen, and a squeezing unit downstream of the concentrating unit, and separately separates the separated water from the concentrating unit and the separated water from the squeezing unit into a MAP recovery device. The organic wastewater treatment apparatus according to claim 6 or 7 , further comprising a switching valve for switching between a sending route and a sending route to the separation liquid storage tank. さらに前記混合槽と前記凝集反応槽との間にラインミキサを設け、当該ラインミキサに高分子凝集剤を添加する凝集剤添加配管が接続されている、請求項6〜9のいずれか1項に記載の有機性廃水処理装置。 Furthermore, the line mixer is provided between the said mixing tank and the said coagulation reaction tank, The flocculent addition piping which adds a polymer flocculent to the said line mixer is connected to any one of Claims 6-9 The organic wastewater treatment apparatus as described. 屎尿及び/又は有機性汚泥を含む有機性廃水を生物処理する有機性廃水処理において、
当該生物処理において発生する余剰汚泥を返送して、屎尿及び/又は有機性汚泥との混合汚泥を形成し
当該混合汚泥に高分子凝集剤を添加せずに脱水処理して第1分離液を得て、当該第1分離液を、リン酸マグネシウムアンモニウム(MAP)を回収する工程を経ずに直接、生物処理における水素供与体として利用するために分離液貯留槽に送る工程と、
当該混合汚泥に高分子凝集剤を添加してから脱水処理して第2分離液を得て、当該第2分離液を、リン酸マグネシウムアンモニウム(MAP)を回収して化成肥料を製造する工程に送る工程と、
を交互に行ない、
当該混合汚泥を脱水処理した後の第1分離液と、当該第2分離液からリン酸マグネシウムアンモニウム(MAP)を回収した後の脱離液と、を生物処理することを特徴とする、化成肥料の製造方法。
In organic wastewater treatment for biological treatment of organic wastewater containing manure and / or organic sludge,
Return surplus sludge generated in the biological treatment to form mixed sludge with manure and / or organic sludge ,
The mixed sludge is dehydrated without adding a polymer flocculant to obtain a first separation liquid, and the first separation liquid is directly biological without passing through the step of recovering magnesium ammonium phosphate (MAP). Sending to a separate liquid reservoir for use as a hydrogen donor in the process;
To obtain a second separation liquid is dehydrated after the addition of polymeric flocculant to the mixed sludge, the second separated liquid, we produce recovered and fertilizer magnesium ammonium phosphate (MAP) process The process of sending to
No line alternately,
Chemical fertilizer characterized by biologically treating the first separation liquid after dehydrating the mixed sludge and the desorption liquid after recovering magnesium ammonium phosphate (MAP) from the second separation liquid Manufacturing method.
屎尿及び/又は有機性汚泥を含む有機性廃水を生物処理する有機性廃水処理において化成肥料を製造する装置であって、An apparatus for producing chemical fertilizer in organic wastewater treatment for biologically treating organic wastewater containing manure and / or organic sludge,
混合槽と、凝集反応槽と、脱水装置と、分離液貯留槽と、生物処理槽と、MAP回収装置と、を具備し、A mixing tank, an agglomeration reaction tank, a dehydration device, a separation liquid storage tank, a biological treatment tank, and a MAP recovery device,
当該混合槽には、当該生物処理槽からの余剰汚泥を返送する余剰汚泥配管と、余剰汚泥と屎尿及び/又は有機性汚泥との混合汚泥を当該凝集反応槽に送る経路と、が接続されており、The mixing tank is connected to a surplus sludge pipe for returning surplus sludge from the biological treatment tank and a route for sending the mixed sludge of surplus sludge and manure and / or organic sludge to the agglomeration reaction tank. And
当該凝集反応槽には、当該凝集反応槽に送られて高分子凝集剤が添加された当該混合汚泥を当該脱水装置に送る経路が接続されており、The agglomeration reaction tank is connected to a route for sending the mixed sludge, to which the polymer flocculant is added, sent to the agglomeration reaction tank, to the dehydrator,
当該凝集反応槽を経由せずに、当該混合槽と当該脱水装置との間を直接連通させるバイパス経路が設けられており、Without passing through the agglomeration reaction tank, a bypass path is provided for direct communication between the mixing tank and the dehydrator,
当該脱水装置には、当該バイパス経路からの混合汚泥を当該脱水装置で脱水して得られる第1分離液を当該分離液貯留槽に送る経路、又は当該凝集反応槽からの高分子凝集剤を添加した混合汚泥を当該脱水装置で脱水して得られる第2分離液を当該MAP回収装置に送る経路のいずれかに送る切替弁を有する経路が接続されており、To the dehydrator, a polymer flocculant from the path for sending the first separation liquid obtained by dehydrating the mixed sludge from the bypass path to the separation liquid storage tank or the coagulation reaction tank is added. A path having a switching valve for sending the second separated liquid obtained by dehydrating the mixed sludge to the MAP recovery apparatus is connected to the MAP recovery apparatus,
当該分離液貯留槽には、第1分離液を当該生物処理槽に送る経路が接続されており、A path for sending the first separation liquid to the biological treatment tank is connected to the separation liquid storage tank,
さらに、当該混合槽からの混合汚泥を当該凝集反応槽に送る経路と、当該バイパス経路と、の切り替えを行う第1切替弁と、Furthermore, a first switching valve for switching between a path for sending the mixed sludge from the mixing tank to the aggregation reaction tank, and the bypass path;
当該脱水装置からの第1分離液を当該分離液貯留槽に送る経路と、当該脱水装置からの第2分離液を当該MAP回収装置に送る経路と、の切り替えを行う第2切替弁と、A second switching valve for switching between a route for sending the first separation liquid from the dehydration device to the separation liquid storage tank and a route for sending the second separation liquid from the dehydration device to the MAP recovery device;
を具備し、Comprising
当該第1切替弁と第2切替弁とは連動し、当該第1切替弁により混合汚泥を当該凝集反応槽に送る経路に切り換える際には、当該第2切替弁により第2分離液を当該MAP回収装置に送る経路に切り換え、当該第1切替弁により混合汚泥を当該バイパス経路に送る際には、当該第2切替弁により第1分離液を当該分離液貯留槽に送る経路に切り換えることを特徴とする、化成肥料の製造装置。The first switching valve and the second switching valve are interlocked, and when the first switching valve is switched to a route for sending mixed sludge to the agglomeration reaction tank, the second switching valve causes the second separation liquid to flow to the MAP. When switching to the path for sending to the recovery device and sending the mixed sludge to the bypass path by the first switching valve, the second switching valve switches to the path for sending the first separation liquid to the separation liquid storage tank. And manufacturing equipment for chemical fertilizer.
JP2013195514A 2013-09-20 2013-09-20 Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus Active JP6239327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195514A JP6239327B2 (en) 2013-09-20 2013-09-20 Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195514A JP6239327B2 (en) 2013-09-20 2013-09-20 Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus

Publications (3)

Publication Number Publication Date
JP2015058413A JP2015058413A (en) 2015-03-30
JP2015058413A5 JP2015058413A5 (en) 2016-10-06
JP6239327B2 true JP6239327B2 (en) 2017-11-29

Family

ID=52816378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195514A Active JP6239327B2 (en) 2013-09-20 2013-09-20 Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP6239327B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236668B (en) * 2015-07-14 2017-08-11 南昌大学 A kind of biogas slurry pretreatment method of the biological deamination of magnesium monohydrogen phosphate auxiliary
CN105254153A (en) * 2015-11-23 2016-01-20 湖南大学 Potassium permanganate lysis/ferric chloride flocculation/biological carbon skeleton combined conditioning method for municipal sludge
JP6632485B2 (en) * 2016-07-07 2020-01-22 水ing株式会社 Phosphorus recovery method and phosphorus recovery device
JP6687473B2 (en) * 2016-07-07 2020-04-22 水ing株式会社 Phosphorus recovery method and phosphorus recovery apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231564A (en) * 1975-08-13 1977-03-10 Advadan Harvey As Purification method of waste water and device for executing this method
JPS54139046U (en) * 1978-03-09 1979-09-27
JPS6261700A (en) * 1985-09-13 1987-03-18 Kurita Water Ind Ltd Apparatus for treating sewage of excretion system
JP3364918B2 (en) * 1997-01-14 2003-01-08 株式会社石垣 Sludge flocculation equipment
JP3559822B2 (en) * 1998-04-22 2004-09-02 株式会社クボタ Water treatment method and apparatus
JP2002273453A (en) * 2001-03-16 2002-09-24 Ebara Corp Method and device for removing phosphor in water
JP2004141747A (en) * 2002-10-23 2004-05-20 Jfe Engineering Kk Night soil treatment apparatus
JP4412657B2 (en) * 2004-08-20 2010-02-10 三菱レイヨン株式会社 Organic wastewater treatment method
JP2007229545A (en) * 2006-02-27 2007-09-13 Kobelco Eco-Solutions Co Ltd Sludge concentration facility and method for concentrating sludge
JP4759593B2 (en) * 2008-06-19 2011-08-31 株式会社奥村組 Sludge dewatering equipment
JP2012000556A (en) * 2010-06-16 2012-01-05 Mitsubishi Paper Mills Ltd Anaerobic treatment method and anaerobic treatment apparatus
JP5439439B2 (en) * 2011-07-04 2014-03-12 水ing株式会社 Sludge treatment apparatus, phosphorus production method and sludge treatment method

Also Published As

Publication number Publication date
JP2015058413A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6209046B2 (en) Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
Kurade et al. Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability
JP6909878B2 (en) Organic matter processing method and processing equipment
JP6239327B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP2020062640A (en) Processing method and apparatus for organic sludge
JP4533232B2 (en) Sludge dewatering method and apparatus
JP2021151654A (en) Deodorization treatment system and organic matter treatment method
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP7254580B2 (en) Method and apparatus for treating organic sludge
JP2013233509A (en) Method and apparatus of dehydration of organic sludge
JP6395877B2 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
JP6362305B2 (en) Sludge treatment method and apparatus
JP6193716B2 (en) Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP6670192B2 (en) Organic sludge processing method and processing apparatus
JP6633943B2 (en) Sludge treatment system and sludge treatment method
JP6362304B2 (en) Sludge treatment method and apparatus
JP6164878B2 (en) Organic wastewater treatment method
JP6164864B2 (en) Organic wastewater treatment method and apparatus
JP6566563B2 (en) Anaerobic treatment device
JP5723916B2 (en) Method and apparatus for dewatering organic sludge
JP6406981B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JPS60206498A (en) Treatment of excretion sewage
JPH03123699A (en) Treatment of sludge
JP2023080648A (en) Liquid waste concentration method and apparatus
JPH0141399B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250