JP3835930B2 - Organic waste treatment methods - Google Patents

Organic waste treatment methods Download PDF

Info

Publication number
JP3835930B2
JP3835930B2 JP18953398A JP18953398A JP3835930B2 JP 3835930 B2 JP3835930 B2 JP 3835930B2 JP 18953398 A JP18953398 A JP 18953398A JP 18953398 A JP18953398 A JP 18953398A JP 3835930 B2 JP3835930 B2 JP 3835930B2
Authority
JP
Japan
Prior art keywords
organic waste
phosphorus
sludge
crushing
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18953398A
Other languages
Japanese (ja)
Other versions
JP2000015229A (en
Inventor
正史 師
祐二 添田
哲也 山本
敏行 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18953398A priority Critical patent/JP3835930B2/en
Publication of JP2000015229A publication Critical patent/JP2000015229A/en
Application granted granted Critical
Publication of JP3835930B2 publication Critical patent/JP3835930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、性状や濃度が異なる複数種類の有機性廃棄物を同一処理系で処理し、有用物質を回収する有機性廃棄物の処理方法に関する。
【0002】
【従来の技術】
従来より有機性廃棄物の再資源化が図られており、たとえば特開平9−201699号には、し尿、浄化槽汚泥、下水汚泥、農集汚泥、家畜ふん尿、生ごみ、食品廃棄物など、性状や濃度が異なる有機性廃棄物を同一システムにおいて処理して有用物質を回収し、資源化する方法が開示されている。
【0003】
この方法は、図3に示したようなものであり、し尿、浄化槽汚泥、農集汚泥、下水汚泥、家畜ふん尿を除渣工程#31において除渣し、固液分離工程#32において液状廃棄物31と脱水汚泥32とに分離し、液状廃棄物31は、生物処理工程#33でBOD分解並びに必要に応じて脱窒素し、固液分離工程#34で浮遊物を除去し、高度処理工程#35でCODや色素成分や鉄・マンガンなどの重金属類を除去し、消毒して放流水または再利用水としている。
【0004】
一方、生ごみや食品廃棄物は、破砕・分別工程#36において破砕し、プラスチック袋やトレーなどを分別した後に、上記した脱水汚泥32と混合して、嫌気性発酵工程#37において発酵させ、発生したメタンガス33を回収して、発電工程#38などにより電気や熱の形態として使用に供するとともに、消化汚泥34を脱水工程#39で脱水汚泥35とし、コンポスト化工程#40などに送って肥料や固形燃料や乾燥汚泥として回収しており、脱水濾液36は生物処理工程#33へ送って処理している。
【0005】
【発明が解決しようとする課題】
しかしながら、上記したような嫌気性発酵工程#37で発生した消化汚泥34には有機性成分が少ないため、それを脱水した脱水汚泥35をコンポスト化する際に熱量と肥効成分が不足することがある。一方、リンは脱水濾液36側に移行するため、脱水濾液36を処理する生物処理工程#33あるいはその他の水処理工程でリン除去操作を行わなくてはならない。
【0006】
また、破砕・分別した生ごみ、食品廃棄物には魚の骨等の小さな嫌気性発酵不適物が多量に含まれており、それらが発酵槽内に蓄積してしまうという問題がある。
【0007】
本発明は上記問題を解決するもので、リンや魚の骨等の嫌気性発酵不適物を効率よく分離することができ、分離したリンの有効利用、ならびに処理の効率化を図れる有機性廃棄物の処理方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記問題を解決するために、本発明の請求項1記載の有機性廃棄物の処理方法は、性状や濃度が異なる複数種類の有機性廃棄物を同一処理系で処理し、有用物質を回収するに際して、生ごみなどの固形の有機性廃棄物を破砕工程に導いて破砕し、この破砕物をし尿、浄化槽汚泥などのスラッジ状の有機性廃棄物との混合物として、少なくとも一方がリン凝集効果を有する2種類の凝集剤を添加する二液凝集脱水工程に導いて、混合物中に含まれたリンを凝集させ、凝集リンを含んだ固形物と脱離液とに分離し、分離したリン含有固形物をコンポスト化工程に導いて、好気性条件下で発酵させ、コンポストとして回収するとともに、脱離液を嫌気性発酵工程に導いて、嫌気性条件下で発酵させ、発生したメタンなどのバイオガスを回収することを特徴とする。
【0009】
請求項2記載の有機性廃棄物の処理方法は、破砕工程において、微細な破砕排出孔を有し、瞬間的に負荷する高圧により圧縮破砕を行う圧縮破砕機によって、有機性廃棄物を破砕することを特徴とする。
【0010】
請求項3記載の有機性廃棄物の処理方法は、生物分解率の低い有機性廃棄物を二液凝集脱水工程の前段で可溶化処理し、液状化させることを特徴とする。
上記した請求項1記載の構成によれば、二液凝集脱水を行うことによって混合物中のリンを確実に固形物側に移行させ、このリン含有固形物を好気性条件下で発酵させるので、豊富に存在する有機物が多量の熱を発生しながら効率よく発酵することになり、肥効成分としての窒素およびリンを十分に含んだ良好なコンポストが得られる。また、リンが除去された脱離液を嫌気性条件下で発酵させるので、発生した消化汚泥から脱離する脱水濾液についてのリン除去操作は不要である。
【0011】
請求項2記載の構成によれば、従来は破砕困難であった有機性廃棄物も、負荷される高圧により破砕排出孔において微細に破砕されつつ排出されるが、魚の骨等の発酵不適物は高圧によっても破砕排出孔に侵入できないため装置内に残留し、自動的に分別される。微細に破砕された有機性廃棄物は効率よく発酵し、有機成分が高率にて回収される。
【0012】
請求項3記載の構成によれば、生物分解率の低い有機性廃棄物を予め液状化させるので、この液状化した有機性廃棄物を、二液凝集脱水工程を経て、嫌気性発酵工程とコンポスト化工程のいずれかで効率よく発酵させることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1に、し尿、浄化槽汚泥、下水汚泥、農集汚泥、家畜ふん尿、生ごみ、食品廃棄物などの有機性廃棄物を同一処理系で処理して、有用物質を回収し、資源化するフローを示す。
【0014】
し尿、浄化槽汚泥、下水汚泥、農集汚泥、家畜ふん尿などのスラッジ状の有機性廃棄物を濃縮工程#1に導き、性状によっては有機高分子凝集剤1を添加して固液分離して、濃縮汚泥2と分離液3とする。この濃縮工程#1は、所望の汚泥含水率に応じて、造粒濃縮、スクリーン濃縮などによって行えばよく、必要のない場合は省略可能である。濃縮工程#1の前段に除渣工程を設けてもよい。
【0015】
分離液3を生物処理工程#2へ導入して、BOD分解および必要に応じて脱窒素し、生物処理水4は図示を省略した後段の処理に導く。
生物処理工程#2で発生した余剰汚泥5は適宜に引き抜くが、生物分解性が低いので、他の低生物分解性有機性廃棄物とともに可溶化工程#3に導き、可溶化処理することによって、液状化、低分子量化する。可溶化処理としては、約70〜80℃で3日間維持する;70℃,0.3MPa程度の高温高圧に維持する;苛性ソーダや消石灰等のアルカリを添加して70℃程度に維持する;オゾンガスを吹き込む;130〜175℃に維持するなどの種々の手法が挙げられる。この可溶化工程#3は必ずしも行う必要はないが、液状化、低分子量化することで生物分解性を高めることができる。得られた液状化物6は、濃縮工程#1を経て生物処理工程#2へ送って処理するか、あるいは濃縮工程#1がない場合には後述するようにして処理する。
【0016】
一方、生ごみ、食品廃棄物など、プラスチック類などの発酵不適物を含んでいたり、不均質な固形分を含んでいたりする、その他の有機性廃棄物は、破砕・分別工程#4において圧縮破砕する。
【0017】
使用する破砕機はたとえば図2に示したような圧縮破砕機であり、投入口111より投入されフィーダー112によってチャンバー113の内部へ送り出された破砕対象物を、性状によっては万遍なく圧力がかかるように希釈水で調整したうえで、油圧シリンダー114により瞬間的に負荷する200〜250kg/cm2 の高圧にて圧縮し、スリット状に形成された微細な破砕排出孔(図示せず)より押し出すことで細粒子状(破砕対象物の性状によりペースト状あるいはフレークス状となる)に破砕して、破砕物排出口115を通じて排出し、残留物は別途に残留物排出口116より取り出すように構成されている。
【0018】
このため、生ごみ等の有機性廃棄物は、粒径1〜2mm以下の流動可能な細粒子状物7となって排出され、破砕不能なプラスチック類、金属類、石・砂、魚の骨などの発酵不適物8は残留することで自動的に同時に分別される。発酵不適物8の含水率は低く、発酵不適物8への有機性廃棄物の付着も非常に少ない。生ごみ、食品廃棄物の性状によっては粗破砕工程を設けることで、圧縮破砕機への投入量を増大し、処理量を増大することも可能である。
【0019】
次に、この細粒子状物7と上記した濃縮汚泥2(場合によってはスラッジ状有機性廃棄物あるいは液状化物6)とを混合し、混合物9を二液凝集脱水工程#5に導いて、遠心脱水機、ベルトプレス、フィルタープレス、スクリュープレスなどの脱水機に導入するとともに、導入路の混合物9に2種類の凝集剤10,11を順次添加し、混合して、脱水する。
【0020】
このとき、一方の凝集剤10はリン凝集効果を有することが必須であり、他方の凝集剤11はリン凝集効果を有しても有さなくてもよい。凝集剤10としては、硫酸バンド、塩化アルミニウム、硫酸アルミニウム、TKフロック等のアルミニウム系凝集剤、ポリ鉄、硫酸第1鉄、硫酸第2鉄、塩化第2鉄等の鉄系凝集剤、塩化マグネシウム、消石灰等の無機凝集剤、凝集剤11としては、両性ポリマー、カチオンポリマー等の有機高分子凝集剤を好適に使用できる。このような2種類の凝集剤10,11を添加することで、混合物9中に含まれるリンが確実に凝集し、混合物9の脱水性が向上し、凝集リンを含んだ固形物12と脱離液13とに良好に分離される。
【0021】
分離されたリン含有固形物12をコンポスト化工程#6に導いて、好気性条件下で発酵させ、コンポスト14として回収する。その際、細粒子状物7が、上記したように圧縮破砕によって細粒子化されるだけでなく、細胞膜も一部破壊されているために、生物分解性が非常に大きく、また従来は破砕困難であるとして排除されていた有機性廃棄物や、発酵不適物8に付着して排除されていた有機性廃棄物も細粒子状物7の中に含まれており、また生ごみ、食品廃棄物と、し尿、浄化槽汚泥などとが有する互いに異質の成分、たとえば微量元素(Fe,Ni,Co等)が混合されることによる効果もあって、豊富に存在する有機物が多量の熱を発生しながら効率よく発酵し、肥効成分としての窒素およびリンを十分に含んだ良好なコンポスト14が得られる。
【0022】
分離した脱離液13は嫌気性発酵工程#7に導いて、酸発酵槽、次いで嫌気性条件下のメタン発酵槽で発酵させるが、固形分を含んでいない脱離液13を原料とするため、酸発酵、メタン発酵とも速度が大きい。メタン発酵槽で発生したメタンなどのバイオガス15は回収し、脱硫などした後、従来と同様にして使用に供する。
【0023】
メタン発酵槽で発生した発酵汚泥16は、脱水工程#8に導いて脱水し、脱水ケーキ17として回収して、従来と同様に固形燃料などとするか、あるいは、リン含有固形物12と混合してコンポスト化してもよい。脱離液18は生物処理工程#2に返送して処理するが、リンが含まれていないため、従来のようなリン除去操作は不要である。
【0024】
なお、嫌気性発酵工程#7へ供給する有機物負荷は、二液凝集脱水工程#5における脱水率を加減することで調整することができ、したがって発酵槽の小型化も可能である。
【0025】
また、嫌気性発酵工程#7では、発酵槽内のメタン菌の濃度を高めることで発酵をより促進することができ、たとえばUASB法(上向流式スラッジブランケット法)の実施や、膜分離型発酵槽の使用などが可能である。
【0026】
【発明の効果】
以上のように、本発明によれば、生ごみなどを破砕した破砕物と、し尿、浄化槽汚泥などとの混合物を二液凝集脱水工程に導いて、混合物中に含まれたリンを凝集させ、凝集リンを含んだ固形物と脱離液とに分離し、リン含有固形物を好気性条件下で発酵させるので、豊富に存在する有機物が多量の熱を発生しながら効率よく発酵することになり、肥効成分としての窒素およびリンを十分に含んだ良好なコンポストが得られるとともに、発酵環境を整えるために外部から供給する熱量も低減できる。また、リンが除去された脱離液を嫌気性条件下で発酵させるので、その消化汚泥から脱離する脱水濾液についてはリン除去操作は不要である。
【0027】
また、圧縮破砕機を使用するようにしたので、従来は破砕困難であった有機性廃棄物も微細に破砕して、効率よく発酵させることができ、有機成分を高率で回収できるとともに、魚の骨等の発酵不適物を自動的に同時に分別することができ、発酵不適物の酸発酵槽やメタン発酵槽への移送、槽内での蓄積を防止できることもあって、各槽の小型化も可能である。
【0028】
また、生物分解率の低い有機性廃棄物を二液凝集脱水工程の前段で可溶化処理し、液状化させるようにしたので、この液状化した有機性廃棄物を、二液凝集脱水工程を経て、嫌気性発酵工程とコンポスト化工程のいずれかで、効率よく発酵させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における有機性廃棄物の処理方法を説明するフローチャートである。
【図2】図1に示した有機性廃棄物の処理方法で使用される圧縮破砕機の概略構成を示した説明図である。
【図3】従来の有機性廃棄物の処理フローを示したフローチャートである。
【符号の説明】
5 余剰汚泥
6 液状化物
7 破砕物
9 混合物
10,11 凝集剤
12 固形物
13 脱離液
14 コンポスト
15 バイオガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating organic waste in which a plurality of types of organic waste having different properties and concentrations are treated in the same treatment system, and useful substances are recovered.
[0002]
[Prior art]
Conventionally, organic waste has been recycled. For example, JP-A-9-201699 describes properties such as human waste, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, garbage, food waste, etc. In other words, a method is disclosed in which organic wastes having different concentrations are processed in the same system to recover useful materials and recycle them.
[0003]
This method is as shown in FIG. 3. Human waste, septic tank sludge, agricultural sludge, sewage sludge, and livestock manure are removed in the debris process # 31, and liquid waste is obtained in the solid-liquid separation process # 32. 31 and the dehydrated sludge 32, and the liquid waste 31 is subjected to BOD decomposition in the biological treatment step # 33 and denitrified as necessary, and suspended matter is removed in the solid-liquid separation step # 34, and the advanced treatment step # In 35, heavy metals such as COD, pigment components and iron / manganese are removed and disinfected to be discharged or reused.
[0004]
On the other hand, food waste and food waste are crushed in the crushing / sorting step # 36, and after separating plastic bags, trays, etc., mixed with the dehydrated sludge 32 described above, fermented in the anaerobic fermentation step # 37, The generated methane gas 33 is collected and used in the form of electricity or heat by the power generation process # 38, etc., and the digested sludge 34 is converted to the dewatered sludge 35 in the dehydration process # 39 and sent to the composting process # 40, etc. In addition, it is recovered as solid fuel or dry sludge, and the dehydrated filtrate 36 is sent to the biological treatment step # 33 for processing.
[0005]
[Problems to be solved by the invention]
However, since the digested sludge 34 generated in the anaerobic fermentation process # 37 as described above has few organic components, the amount of heat and fertilizing components may be insufficient when composting the dewatered sludge 35 that has been dehydrated. is there. On the other hand, since phosphorus moves to the dehydrated filtrate 36 side, the phosphorus removal operation must be performed in the biological treatment process # 33 for treating the dehydrated filtrate 36 or other water treatment process.
[0006]
Moreover, there is a problem that food waste and food waste that has been crushed and sorted contain a large amount of small anaerobic fermentation inadequate materials such as fish bones, which accumulate in the fermenter.
[0007]
The present invention solves the above problems, and can efficiently separate anaerobic fermentation inadequate materials such as phosphorus and fish bones. Organic waste that can effectively use separated phosphorus and increase the efficiency of processing can be achieved. The object is to provide a processing method.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, the organic waste processing method according to claim 1 of the present invention treats a plurality of types of organic waste having different properties and concentrations in the same processing system, and recovers useful substances. At this time, solid organic waste such as garbage is led to a crushing process and crushed, and the crushed material is mixed with sludge-like organic waste such as urine and septic tank sludge. Leading to a two-component coagulation dehydration process in which two types of coagulant are added, the phosphorus contained in the mixture is aggregated, separated into a solid substance containing aggregated phosphorus and a desorbed liquid, and separated phosphorus-containing solid Biomass such as methane generated by introducing the product into the composting process, fermenting it under aerobic conditions, collecting it as compost, introducing the effluent into the anaerobic fermentation process, fermenting it under anaerobic conditions To collect And it features.
[0009]
The organic waste processing method according to claim 2, in the crushing step, crushes organic waste by a compression crusher that has a fine crushing discharge hole and performs crushing by high pressure that is instantaneously loaded. It is characterized by that.
[0010]
The method for treating organic waste according to claim 3 is characterized in that organic waste having a low biodegradation rate is solubilized and liquefied before the two-component coagulation dehydration step.
According to the configuration of claim 1 described above, the two-component coagulation dehydration is performed, so that the phosphorus in the mixture is surely transferred to the solid side, and this phosphorus-containing solid is fermented under aerobic conditions. The organic matter present in the fermented material efficiently fermented while generating a large amount of heat, and a good compost sufficiently containing nitrogen and phosphorus as fertilizing components can be obtained. Further, since the desorbed liquid from which phosphorus has been removed is fermented under anaerobic conditions, a phosphorus removing operation for the dehydrated filtrate desorbed from the generated digested sludge is unnecessary.
[0011]
According to the configuration of claim 2, organic waste that has been difficult to be crushed in the past is also discharged while being crushed finely in the crushing discharge hole by a high pressure to be applied. Since it cannot enter the crushing discharge hole even under high pressure, it remains in the apparatus and is automatically separated. Finely crushed organic waste is efficiently fermented and organic components are recovered at a high rate.
[0012]
According to the configuration of claim 3, since the organic waste having a low biodegradation rate is liquefied in advance, the liquefied organic waste is subjected to a two-component coagulation dehydration step and an anaerobic fermentation step and compost. It can be efficiently fermented in any of the conversion steps.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Fig. 1 shows the flow of recovering useful materials by recycling organic waste such as human waste, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, garbage, food waste, etc. in the same treatment system. Indicates.
[0014]
Sludge-like organic waste such as human waste, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, etc. is led to the concentration step # 1, and depending on the nature, organic polymer flocculant 1 is added and solid-liquid separated. Concentrated sludge 2 and separated liquid 3 are used. This concentration step # 1 may be performed by granulation concentration, screen concentration or the like according to the desired sludge moisture content, and can be omitted if not necessary. A debris process may be provided before the concentration process # 1.
[0015]
The separation liquid 3 is introduced into the biological treatment step # 2, and BOD decomposition and denitrification are performed as necessary, and the biologically treated water 4 is guided to the subsequent treatment, not shown.
The excess sludge 5 generated in the biological treatment step # 2 is appropriately extracted, but since the biodegradability is low, it is led to the solubilization step # 3 together with other low biodegradable organic wastes, and solubilized. Liquefaction and low molecular weight. As the solubilization treatment, maintain at about 70 to 80 ° C. for 3 days; maintain at 70 ° C. and high temperature and high pressure of about 0.3 MPa; add alkali such as caustic soda and slaked lime and maintain at about 70 ° C .; Various methods such as blowing; maintaining at 130 to 175 ° C. are exemplified. This solubilization step # 3 is not necessarily performed, but biodegradability can be enhanced by liquefaction and low molecular weight. The obtained liquefied product 6 is sent to the biological treatment step # 2 through the concentration step # 1 for processing, or when there is no concentration step # 1, it is processed as described later.
[0016]
On the other hand, other organic wastes that contain unfit fermentation materials such as food waste, food waste, etc., or that contain inhomogeneous solids, are compressed and crushed in the crushing / sorting step # 4. To do.
[0017]
The crusher to be used is, for example, a compression crusher as shown in FIG. 2, and the crushing object introduced from the inlet 111 into the chamber 113 by the feeder 112 is uniformly applied with pressure depending on the properties. After being adjusted with dilution water as described above, it is compressed at a high pressure of 200 to 250 kg / cm 2 that is instantaneously loaded by the hydraulic cylinder 114, and extruded from a fine crushing discharge hole (not shown) formed in a slit shape. In this way, it is crushed into fine particles (becomes paste or flakes depending on the properties of the object to be crushed), discharged through the crushed discharge port 115, and the residue is separately taken out from the residue discharge port 116. ing.
[0018]
For this reason, organic waste such as garbage is discharged as fine particles 7 that are flowable and have a particle size of 1 to 2 mm, and cannot be crushed, such as plastics, metals, stones / sand, fish bones, etc. The unsuitable fermentation product 8 is automatically separated at the same time by remaining. The moisture content of the unsuitable fermentation material 8 is low, and organic waste adheres to the unsuitable fermentation material 8 very little. Depending on the properties of food waste and food waste, a rough crushing step can be provided to increase the input amount to the compression crusher and increase the processing amount.
[0019]
Next, this fine particulate matter 7 and the above-described concentrated sludge 2 (in some cases, sludge-like organic waste or liquefied matter 6) are mixed, and the mixture 9 is guided to the two-component coagulation dehydration step # 5 and centrifuged. While introducing into dehydrators, such as a dehydrator, a belt press, a filter press, and a screw press, two kinds of flocculants 10 and 11 are sequentially added to the mixture 9 in the introduction path, mixed, and dehydrated.
[0020]
At this time, it is essential that one flocculant 10 has a phosphorous aggregating effect, and the other flocculant 11 may or may not have a phosphorous aggregating effect. Examples of the flocculant 10 include sulfuric acid bands, aluminum flocculants such as aluminum chloride, aluminum sulfate, and TK floc, iron-based flocculants such as polyiron, ferrous sulfate, ferric sulfate, and ferric chloride, magnesium chloride. As the inorganic flocculant such as slaked lime and the flocculant 11, organic polymer flocculants such as amphoteric polymers and cationic polymers can be suitably used. By adding such two kinds of flocculants 10, 11, the phosphorus contained in the mixture 9 is reliably agglomerated, the dehydrating property of the mixture 9 is improved, and the solids 12 containing the agglomerated phosphorus are detached. The liquid 13 is well separated.
[0021]
The separated phosphorus-containing solid material 12 is led to the composting step # 6, fermented under aerobic conditions, and recovered as compost 14. At that time, the fine particulate matter 7 is not only finely divided by compression crushing as described above, but also part of the cell membrane is destroyed, so that the biodegradability is very large, and conventionally, crushing is difficult. Organic waste that has been excluded as being, and organic waste that has been eliminated by adhering to the unsuitable fermentation 8 are also included in the fine particulate matter 7, as well as garbage and food waste In addition, there is an effect of mixing different components of human waste, septic tank sludge, etc., such as trace elements (Fe, Ni, Co, etc.), while abundant organic matter generates a large amount of heat. Fermentation efficiently, and good compost 14 sufficiently containing nitrogen and phosphorus as fertilizing components is obtained.
[0022]
The separated effluent 13 is introduced into an anaerobic fermentation step # 7 and fermented in an acid fermentation tank and then in a methane fermentation tank under anaerobic conditions, but the detachment liquid 13 containing no solid content is used as a raw material. Both acid fermentation and methane fermentation are fast. The biogas 15 such as methane generated in the methane fermenter is recovered, desulfurized, etc., and then used in the same manner as before.
[0023]
The fermented sludge 16 generated in the methane fermenter is guided to the dehydration step # 8 and dehydrated and recovered as a dehydrated cake 17 to be used as solid fuel or the like as before, or mixed with the phosphorus-containing solid material 12. May be composted. The detachment liquid 18 is returned to the biological treatment step # 2 for processing. However, since phosphorus is not contained, a conventional phosphorus removal operation is unnecessary.
[0024]
In addition, the organic substance load supplied to the anaerobic fermentation process # 7 can be adjusted by adjusting the dehydration rate in the two-component agglomeration dehydration process # 5, and thus the size of the fermenter can be reduced.
[0025]
In the anaerobic fermentation process # 7, the fermentation can be further promoted by increasing the concentration of methane bacteria in the fermenter. For example, the UASB method (upward flow sludge blanket method) or the membrane separation type can be used. A fermenter can be used.
[0026]
【The invention's effect】
As described above, according to the present invention, a mixture of crushed material obtained by crushing garbage and human waste, septic tank sludge, etc. is guided to a two-liquid coagulation dehydration step to aggregate phosphorus contained in the mixture, Separation into solids containing aggregated phosphorus and detachment liquid, and the phosphorus-containing solids are fermented under aerobic conditions, so abundant organic matter will be efficiently fermented while generating a large amount of heat. In addition to obtaining good compost that sufficiently contains nitrogen and phosphorus as fertilizing components, the amount of heat supplied from the outside for adjusting the fermentation environment can also be reduced. Further, since the desorbed liquid from which phosphorus has been removed is fermented under anaerobic conditions, the phosphorus removal operation is not necessary for the dehydrated filtrate desorbed from the digested sludge.
[0027]
In addition, since the compression crusher was used, organic waste, which was difficult to crush in the past, can be finely crushed and efficiently fermented, and organic components can be recovered at a high rate. Inferior fermentation materials such as bones can be automatically separated at the same time, and transfer of inappropriate fermentation materials to acid and methane fermentation tanks and accumulation in the tank can be prevented. Is possible.
[0028]
In addition, organic waste with a low biodegradation rate was solubilized and liquefied before the two-liquid coagulation dehydration process, so this liquefied organic waste was subjected to the two-liquid coagulation dehydration process. In either an anaerobic fermentation process or a composting process, the fermentation can be carried out efficiently.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a method for treating organic waste according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a schematic configuration of a compression crusher used in the organic waste processing method shown in FIG. 1;
FIG. 3 is a flowchart showing a conventional organic waste processing flow.
[Explanation of symbols]
5 Excess sludge 6 Liquefaction material 7 Crushed material 9 Mixture
10,11 flocculant
12 Solid
13 Release liquid
14 Compost
15 Biogas

Claims (3)

性状や濃度が異なる複数種類の有機性廃棄物を同一処理系で処理し、有用物質を回収するに際して、生ごみなどの固形の有機性廃棄物を破砕工程に導いて破砕し、この破砕物をし尿、浄化槽汚泥などのスラッジ状の有機性廃棄物との混合物として、少なくとも一方がリン凝集効果を有する2種類の凝集剤を添加する二液凝集脱水工程に導いて、混合物中に含まれたリンを凝集させ、凝集リンを含んだ固形物と脱離液とに分離し、分離したリン含有固形物をコンポスト化工程に導いて、好気性条件下で発酵させ、コンポストとして回収するとともに、脱離液を嫌気性発酵工程に導いて、嫌気性条件下で発酵させ、発生したメタンなどのバイオガスを回収することを特徴とする有機性廃棄物の処理方法。When processing multiple types of organic wastes with different properties and concentrations in the same treatment system and collecting useful materials, solid organic wastes such as garbage are led to the crushing process and crushed. As a mixture with sludge-like organic waste such as human waste, septic tank sludge, etc., at least one leads to a two-liquid coagulation dehydration process in which two types of coagulant having a phosphorus coagulation effect are added, and the phosphorus contained in the mixture Is separated into solids containing aggregated phosphorus and desorbed liquid, the separated phosphorus-containing solids are introduced into the composting process, fermented under aerobic conditions, recovered as compost, and desorbed A method for treating organic waste, characterized in that a liquid is introduced into an anaerobic fermentation process, fermented under anaerobic conditions, and biogas such as methane generated is recovered. 破砕工程において、微細な破砕排出孔を有し、瞬間的に負荷する高圧により圧縮破砕を行う圧縮破砕機によって、有機性廃棄物を破砕することを特徴とする請求項1記載の有機性廃棄物の処理方法。2. The organic waste according to claim 1, wherein in the crushing step, the organic waste is crushed by a compression crusher having a fine crushing discharge hole and performing crushing by high pressure that is instantaneously loaded. Processing method. 生物分解率の低い有機性廃棄物を二液凝集脱水工程の前段で可溶化処理し、液状化させることを特徴とする請求項1記載の有機性廃棄物の処理方法。The organic waste processing method according to claim 1, wherein organic waste having a low biodegradation rate is solubilized and liquefied before the two-component coagulation dehydration step.
JP18953398A 1998-07-06 1998-07-06 Organic waste treatment methods Expired - Fee Related JP3835930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18953398A JP3835930B2 (en) 1998-07-06 1998-07-06 Organic waste treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18953398A JP3835930B2 (en) 1998-07-06 1998-07-06 Organic waste treatment methods

Publications (2)

Publication Number Publication Date
JP2000015229A JP2000015229A (en) 2000-01-18
JP3835930B2 true JP3835930B2 (en) 2006-10-18

Family

ID=16242903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18953398A Expired - Fee Related JP3835930B2 (en) 1998-07-06 1998-07-06 Organic waste treatment methods

Country Status (1)

Country Link
JP (1) JP3835930B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940994B4 (en) * 1999-08-28 2004-02-26 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Process for the removal of sewage sludge
KR100453418B1 (en) * 2001-12-20 2004-10-20 김고정 Disposal device for livestock waste
CA2416690C (en) 2003-01-20 2008-08-12 Alberta Research Council Inc. Process for removal and recovery of nutrients from digested manure or other organic wastes
KR100609572B1 (en) * 2004-07-19 2006-08-08 대한민국(관리부서:농촌진흥청) Piggery Slurry Purification System Integrated Composting Biofiltration and Aggregation Process
US7927491B2 (en) 2007-12-21 2011-04-19 Highmark Renewables Research Limited Partnership Integrated bio-digestion facility
RU2444502C1 (en) * 2010-08-31 2012-03-10 Денис Александрович Пашнюк Method of producing organic fertiliser from residual products of fish waste processing
CN111229792A (en) * 2020-03-15 2020-06-05 上海龙马环境科技有限公司 Novel comprehensive treatment system and process for kitchen waste
CN111632995A (en) * 2020-05-29 2020-09-08 蔚复来(浙江)科技股份有限公司 Resourceful treatment method and system for kitchen waste
CN115213192A (en) * 2022-06-06 2022-10-21 新疆青疆生物科技有限公司 Separation process for decomposing residual membrane based on crop straw microorganisms

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351997A (en) * 1986-08-22 1988-03-05 Toshihiko Hashimoto System for mixing and treating night soil and garbage
JPH0777640B2 (en) * 1986-09-26 1995-08-23 福岡市 Dephosphorization device
JPH01164500A (en) * 1987-12-18 1989-06-28 Pub Works Res Inst Ministry Of Constr Anaerobic digestion process
JP2777984B2 (en) * 1995-12-26 1998-07-23 農林水産省畜産試験場長 Organic slurry processing method and processing apparatus
JP3452439B2 (en) * 1996-01-26 2003-09-29 株式会社クボタ Recovery and recycling of useful substances from organic waste
JPH09220593A (en) * 1996-02-16 1997-08-26 Kurita Water Ind Ltd Treatment of ammonia nitrogen-containing organic waste liquid
JP3533064B2 (en) * 1997-02-07 2004-05-31 株式会社荏原製作所 Method and apparatus for treating night soil, kitchen waste and sludge
JP3673072B2 (en) * 1997-04-09 2005-07-20 アタカ工業株式会社 Waste treatment equipment
JP3445464B2 (en) * 1997-04-16 2003-09-08 アタカ工業株式会社 Waste treatment method
JP3400292B2 (en) * 1997-04-16 2003-04-28 アタカ工業株式会社 Waste treatment method
JPH11197636A (en) * 1998-01-13 1999-07-27 Kubota Corp Method for treatment of organic waste
JPH11197639A (en) * 1998-01-19 1999-07-27 Kubota Corp Treatment of organic waste
JPH11221548A (en) * 1998-02-05 1999-08-17 Kubota Corp Treatment of organic waste
JPH11221551A (en) * 1998-02-10 1999-08-17 Kubota Corp Solubilizing treatment of organic waste product
JP3755982B2 (en) * 1998-02-10 2006-03-15 株式会社クボタ Recycling method of organic waste
JPH11277099A (en) * 1998-03-27 1999-10-12 Kubota Corp Dephosphorizing method
JP3835925B2 (en) * 1998-03-27 2006-10-18 株式会社クボタ Dephosphorization method
JP3835924B2 (en) * 1998-03-27 2006-10-18 株式会社クボタ Dephosphorization method
JPH11277096A (en) * 1998-03-27 1999-10-12 Kubota Corp Dephosphorizing method
JPH11285698A (en) * 1998-04-06 1999-10-19 Kubota Corp Biological dephosphorization method
JPH11290827A (en) * 1998-04-14 1999-10-26 Kubota Corp Method for heating organic waste in fermentation tank
JPH11300323A (en) * 1998-04-23 1999-11-02 Kubota Corp Treatment of organic waste
JP3835927B2 (en) * 1998-04-23 2006-10-18 株式会社クボタ Organic waste treatment methods
JPH11309493A (en) * 1998-04-30 1999-11-09 Kubota Corp Dry methane fermentation method
JP3570888B2 (en) * 1998-05-01 2004-09-29 アタカ工業株式会社 Waste treatment method
JPH11319782A (en) * 1998-05-22 1999-11-24 Kubota Corp Methane fermentation process
JPH11333416A (en) * 1998-05-27 1999-12-07 Kubota Corp Method for recycling resource from organic waste
JP3572199B2 (en) * 1998-06-23 2004-09-29 三菱重工業株式会社 Organic solid matter methane recovery method
JP3442288B2 (en) * 1998-07-06 2003-09-02 株式会社クボタ Methane fermentation method for organic waste
JP2000015230A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for removing ammonia
JP2000015228A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for fermenting organic waste

Also Published As

Publication number Publication date
JP2000015229A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP3755982B2 (en) Recycling method of organic waste
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP4865828B2 (en) Anaerobic integrated process equipment for organic waste treatment
JP3442288B2 (en) Methane fermentation method for organic waste
KR20060059919A (en) The process and operation of using enzymatic pre- treatment of the suspended solids for the anaerobic bioreactor of food wastes using hammer milling and centrifuge
JP4367876B2 (en) Waste treatment method and apparatus
JPH11197636A (en) Method for treatment of organic waste
JP3835930B2 (en) Organic waste treatment methods
JP3609332B2 (en) Treatment method for oil-containing waste
JP3554689B2 (en) Waste disposal method
CN112974471A (en) Method for treating municipal domestic waste
KR101185686B1 (en) Complex method of foodwaste using the pulpwastewater engineering
KR200425442Y1 (en) The facilities of pre-treatment of food wastes using hammer milling, centrifuge, and enzymatic process
JP3570888B2 (en) Waste treatment method
JP3835927B2 (en) Organic waste treatment methods
JPH11309493A (en) Dry methane fermentation method
JPH11300323A (en) Treatment of organic waste
KR101977701B1 (en) Apparatus for treating anaerobic digestion of organic waste and method thereof
JPH11197639A (en) Treatment of organic waste
JP2000015230A (en) Method for removing ammonia
JPH11333416A (en) Method for recycling resource from organic waste
JPH11319782A (en) Methane fermentation process
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
KR20090026843A (en) The equipment and method of foodwaste digestion and bio-gas production using uasb
JPH11221548A (en) Treatment of organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees