JPH11285698A - Biological dephosphorization method - Google Patents

Biological dephosphorization method

Info

Publication number
JPH11285698A
JPH11285698A JP9212498A JP9212498A JPH11285698A JP H11285698 A JPH11285698 A JP H11285698A JP 9212498 A JP9212498 A JP 9212498A JP 9212498 A JP9212498 A JP 9212498A JP H11285698 A JPH11285698 A JP H11285698A
Authority
JP
Japan
Prior art keywords
sludge
fermentation
biological
stage
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9212498A
Other languages
Japanese (ja)
Inventor
Yuji Soeda
祐二 添田
Masashi Moro
正史 師
Tetsuya Yamamoto
哲也 山本
Toshiyuki Shibata
敏行 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9212498A priority Critical patent/JPH11285698A/en
Publication of JPH11285698A publication Critical patent/JPH11285698A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the addition of a flocculant, to diminish the the generation of sludge and to prevent the inhibition of methane fermentation at the time of treating org. waste in the treating system having a biological treating stage and an anaerobic fermentation stage. SOLUTION: A part of the excess sludge 5a generated in a biological treating stage #3 is introduced into an anaerobic fermentation stage #5 and transferred to an aerobic nitrification stage #6 along with digestion sludge 8, hence phosphorus is ingested by the facultative anaerobe contained in the excess sludge 5a, and the excess sludge 11 contg. the facultative anaerobe is separated. As a result of such biological dephosphorization, the addition of a flocculant in the subsequent stage of the anaerobic fermentation stage #5 and the generation of sludge are reduced, and fermentation is not inhibited by the returned flocculant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、性状や濃度が異な
る複数種類の有機性廃棄物を生物処理工程と嫌気性発酵
工程とを有した処理系で処理して有用物質を回収する際
の生物学的脱リン方法に関する。
[0001] The present invention relates to a method for recovering useful substances by treating a plurality of types of organic wastes having different properties and concentrations in a treatment system having a biological treatment step and an anaerobic fermentation step. The present invention relates to a biological dephosphorization method.

【0002】[0002]

【従来の技術】従来より有機性廃棄物の再資源化が図ら
れており、たとえば特開平9−201699号には、し
尿、浄化槽汚泥、下水汚泥、農集汚泥、家畜ふん尿、生
ごみ、食品廃棄物など、性状や濃度が異なる有機性廃棄
物を同一システムにおいて処理して有用物質を回収し、
資源化する方法が開示されている。
2. Description of the Related Art Conventionally, organic waste has been recycled. For example, Japanese Patent Application Laid-Open No. Hei 9-201699 discloses that human waste, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, garbage and foods are disclosed. Organic waste with different properties and concentrations, such as waste, is treated in the same system to collect useful substances,
A method for recycling is disclosed.

【0003】この方法は、図3に示したようなものであ
り、し尿、浄化槽汚泥、農集汚泥、下水汚泥、家畜ふん
尿を除渣工程#31において除渣し、固液分離工程#3
2において液状廃棄物31と脱水汚泥32とに分離し、
液状廃棄物31は、生物処理工程#33でBOD分解並
びに必要に応じて脱窒素し、固液分離工程#34で浮遊
物を除去し、高度処理工程#35でCODや色素成分や
鉄・マンガンなどの重金属類を除去し、消毒して放流水
または再利用水としている。
This method is as shown in FIG. 3. In this method, human waste, septic tank sludge, agricultural sludge, sewage sludge, and livestock manure are removed in a removing step # 31, and a solid-liquid separation step # 3 is performed.
In 2, the liquid waste 31 and the dewatered sludge 32 are separated,
The liquid waste 31 is subjected to BOD decomposition and denitrification as necessary in the biological treatment step # 33, and suspended matter is removed in the solid-liquid separation step # 34. COD, pigment components, iron and manganese are removed in the advanced treatment step # 35. Heavy metals such as are removed and disinfected for effluent or reused water.

【0004】一方、生ごみや食品廃棄物は、破砕・分別
工程#36において破砕し、プラスチック袋やトレーな
どを分別した後に、上記した脱水汚泥32と混合して、
嫌気性発酵工程#37においてメタン発酵させ、発生し
たメタンガス33を回収して、発電工程#38などによ
り電気や熱の形態として使用に供するとともに、消化汚
泥34を脱水工程#39で脱水汚泥35とし、コンポス
ト化工程#40などに送って肥料や固形燃料や乾燥汚泥
として回収しており、脱水濾液36は生物処理工程#3
3へ送って処理している。
On the other hand, garbage and food waste are crushed in a crushing / separating step # 36, plastic bags and trays are separated, and then mixed with the above-mentioned dewatered sludge 32.
In the anaerobic fermentation step # 37, methane fermentation is performed, and the generated methane gas 33 is collected and used in the form of electricity or heat in the power generation step # 38 and the like, and the digested sludge 34 is converted into dehydrated sludge 35 in the dehydration step # 39. And sent to the composting process # 40, etc. to collect it as fertilizer, solid fuel or dry sludge.
3 to be processed.

【0005】[0005]

【発明が解決しようとする課題】ところで、生ごみや食
品廃棄物中に含まれているリンは、嫌気性発酵工程#3
7の後段で消化汚泥34に凝集剤を添加することによっ
て脱水汚泥35側に移行させ、系外へ導出するようにし
ているが、この凝集剤処理によって、脱水汚泥35の発
生量が増大してしまうという問題がある。
By the way, phosphorus contained in garbage and food waste is removed from the anaerobic fermentation step # 3.
7, the coagulant is added to the digested sludge 34 to transfer it to the dewatered sludge 35 side and to be taken out of the system. However, the coagulant treatment increases the amount of the dewatered sludge 35 generated. Problem.

【0006】また、脱水濾液36を生物処理工程#33
へ送っているので、通常はこの生物処理工程#33から
固液分離工程#32を経て嫌気性発酵工程#37へ導入
される余剰汚泥に含まれて、嫌気性発酵工程#37に凝
集剤が持ち込まれることになり、リン凝集効果の高いA
l系、Fe系の凝集剤の場合にはメタン発酵が阻害され
るという問題がある。
Further, the dehydrated filtrate 36 is subjected to a biological treatment step # 33.
Is usually contained in excess sludge introduced from the biological treatment step # 33 through the solid-liquid separation step # 32 into the anaerobic fermentation step # 37, and the flocculant is added to the anaerobic fermentation step # 37. A with high phosphorus aggregation effect
In the case of l-type or Fe-type flocculants, there is a problem that methane fermentation is inhibited.

【0007】本発明は上記問題を解決するもので、凝集
剤の添加量を低減し、汚泥発生量を低減できるととも
に、メタン発酵の阻害を防止できるようにすることを目
的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to reduce the amount of a flocculant added, to reduce the amount of sludge generated, and to prevent the inhibition of methane fermentation.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に、本発明の生物学的脱リン方法は、し尿、浄化槽汚
泥、生ごみなど、性状や濃度が異なる有機性廃棄物を、
液状の有機性廃棄物を生物処理する生物処理工程と、固
形分を含んだ有機性廃棄物を嫌気性条件下でメタン発酵
させてメタンガスを回収する嫌気性発酵工程とを有した
処理系で処理するに際し、前記生物処理工程で発生した
汚泥の一部を嫌気性発酵工程に導入し、嫌気性発酵工程
で発生した消化汚泥とともに、好気性条件下に生物学的
脱窒素を行う好気性脱窒素工程へ移送して、消化汚泥中
に含まれる有機物の一部を分解し、脱窒素する状態にお
いて、生物処理工程より導入した汚泥中に含まれる通性
嫌気性菌にリンを摂取させ、この通性嫌気性菌を含んだ
余剰汚泥を分離するようにしたものである。
Means for Solving the Problems To solve the above problems, the biological dephosphorization method of the present invention is a method for removing organic waste having different properties and concentrations, such as human waste, septic tank sludge, and garbage.
Treated with a treatment system that has a biological treatment process for biologically treating liquid organic waste and an anaerobic fermentation process for recovering methane gas by methane fermentation of organic waste containing solids under anaerobic conditions In doing so, a part of the sludge generated in the biological treatment step is introduced into an anaerobic fermentation step, and digested sludge generated in the anaerobic fermentation step is subjected to aerobic denitrification under aerobic conditions. Transfer to the process, decompose part of the organic matter contained in the digested sludge, and in a state of denitrification, let the facultative anaerobic bacteria contained in the sludge introduced from the biological treatment process take up phosphorus, and Excess sludge containing anaerobic bacteria is separated.

【0009】一般に、生物処理工程で発生する汚泥には
通性嫌気性菌が含まれており、この通性嫌気性菌は、B
OD豊富な嫌気性条件下で体内のリンを放出し、好気性
条件下でリンを過剰に摂取する性質がある。一方、メタ
ン発酵を行う嫌気性発酵工程には通常、通性嫌気性菌は
存在しない。
Generally, the sludge generated in the biological treatment step contains facultative anaerobic bacteria, and the facultative anaerobic bacteria are B-type anaerobic bacteria.
It releases phosphorus in the body under anaerobic conditions rich in OD, and has the property of ingesting excessive phosphorus under aerobic conditions. On the other hand, facultative anaerobic bacteria do not usually exist in the anaerobic fermentation step in which methane fermentation is performed.

【0010】このため、生物処理工程で発生した汚泥を
嫌気性発酵工程に導入すると、汚泥中に含まれる通性嫌
気性菌はリン飢餓状態となり、このリン飢餓状態の通性
嫌気性菌が、その後に導入される好気性脱窒素工程にお
いて、消化汚泥によって持ち込まれるリンを過剰に取り
込む。したがって、この通性嫌気性菌を含んだ余剰汚泥
を分離することで、処理系からリンを除去できる。
[0010] Therefore, when the sludge generated in the biological treatment step is introduced into the anaerobic fermentation step, the facultative anaerobic bacteria contained in the sludge are phosphorus-starved, and the phosphorus-starved facultative anaerobic bacteria are: In a subsequent aerobic denitrification step, phosphorus introduced by digested sludge is taken in excessively. Therefore, phosphorus can be removed from the treatment system by separating the excess sludge containing the facultative anaerobic bacteria.

【0011】このような生物学的脱リン方法によれば、
嫌気性発酵工程の後段における凝集剤の添加量および汚
泥発生量を低減することができ、返送される凝集剤に起
因するメタン発酵の阻害も防止できる。
According to such a biological dephosphorization method,
The amount of coagulant added and the amount of sludge generated in the latter stage of the anaerobic fermentation process can be reduced, and the inhibition of methane fermentation caused by the returned coagulant can be prevented.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しながら説明する。図1において、し尿、浄化槽汚
泥、下水汚泥、農集汚泥、家畜ふん尿などのスラリー状
の有機性廃棄物は、除渣工程#1において、含まれるし
渣の大きさに応じた適当なスクリーンで除渣する。この
除渣工程#1は後段の脱水機等の保護のために行うもの
で、必要のない場合は省略可能である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, organic waste in the form of slurry, such as night soil, septic tank sludge, sewage sludge, agricultural sludge, livestock manure, etc., is subjected to an appropriate screen according to the size of the sediment contained in the sediment removal step # 1. Remove the residue. This residue removal step # 1 is performed for protection of a dehydrator and the like at a later stage, and can be omitted when unnecessary.

【0013】除渣した有機性廃棄物1を固液分離工程#
2に導き、性状によっては有機高分子凝集剤2を添加し
て固液分離し、脱水汚泥3と分離液4とする。ここで、
固液分離工程#2は、所望の汚泥含水率に応じて、遠心
脱水機、ベルトプレス型脱水機、フィルタープレス、回
転円盤型脱水機等の脱水機、あるいは濃縮スクリーンや
重力濃縮槽などによって行うもので、必要のない場合は
省略可能である。
[0013] Solid-liquid separation step #
2, and depending on the properties, an organic polymer flocculant 2 is added to perform solid-liquid separation to obtain a dehydrated sludge 3 and a separated liquid 4. here,
The solid-liquid separation step # 2 is performed by a dehydrator such as a centrifugal dehydrator, a belt press type dehydrator, a filter press, a rotating disk type dehydrator, etc., or a concentration screen or a gravity concentration tank according to a desired sludge moisture content. And can be omitted if not necessary.

【0014】分離液4(あるいは液状の有機性廃棄物
1’)を生物処理工程#3へ導入して、BOD分解およ
び必要に応じて脱窒素し、生物処理水5を図示を省略し
た後段の処理に導く。
The separation liquid 4 (or the liquid organic waste 1 ') is introduced into the biological treatment step # 3, BOD is decomposed and, if necessary, denitrified. Lead to processing.

【0015】一方、生ごみ、食品廃棄物など、プラスチ
ック類などの発酵不適物を含んでいたり、不均質であっ
たりする、その他の有機性廃棄物は、破砕・分別工程#
4において破砕し、プラスチック袋やトレーなどを分別
する。
[0015] On the other hand, other organic wastes containing non-fermentable substances such as plastics, such as garbage and food waste, or being heterogeneous, are subjected to a crushing / separation step #.
Crush in step 4 and separate plastic bags and trays.

【0016】破砕分別した破砕物6と上記した脱水汚泥
3とを混合し、TS(全蒸発残留物)濃度を調整し、嫌
気性発酵工程#5に導入して、発酵槽内に10〜15日
間滞留させる状態においてメタン発酵させ、発生したメ
タンガス7を回収する。
The crushed material 6 obtained by crushing and separation is mixed with the above-mentioned dewatered sludge 3 to adjust the concentration of TS (total evaporation residue), introduced into the anaerobic fermentation step # 5, and introduced into the fermenter 10 to 15 minutes. The methane fermentation is performed in a state where the methane gas is retained for a day, and the generated methane gas 7 is collected.

【0017】このとき、生物処理工程#3で発生した余
剰汚泥5aの一部を、槽内滞留日数が1〜2日間となる
ように、発酵槽内に浸漬設置した内筒の内部を通過させ
る。そして、この余剰汚泥5aを含んで槽外へ排出され
る消化汚泥8(ほぼ液状)を後述する脱水濾液9で希釈
し、好気性脱窒素工程#6へ移送して、好気性条件下で
微生物の作用によって水溶性有機物を分解し、脱窒素す
る状態において、余剰汚泥5a中の通性嫌気性菌にリン
を摂取させる。脱窒素処理水10は生物処理水5と同様
にして処理する。
At this time, a part of the excess sludge 5a generated in the biological treatment step # 3 is passed through the inside of the inner cylinder immersed and installed in the fermentation tank so that the number of days of stay in the tank is 1-2 days. . Then, the digested sludge 8 (substantially liquid) discharged out of the tank including the excess sludge 5a is diluted with a dehydrated filtrate 9 described below and transferred to the aerobic denitrification step # 6, where the microorganisms are removed under aerobic conditions. In a state where the water-soluble organic matter is decomposed and denitrified by the action of, the facultative anaerobic bacteria in the surplus sludge 5a ingest phosphorus. The denitrified water 10 is treated in the same manner as the biologically treated water 5.

【0018】リン摂取した通性嫌気性菌を含んだ余剰汚
泥11は適宜に引き抜き、脱水工程7へ導いて、無機凝
集剤12,有機高分子凝集剤13を添加し、遠心脱水
機、ベルトプレス型脱水機、フィルタープレス、回転円
盤型脱水機等の脱水機で脱水して、脱水汚泥14と上述
した脱水濾液9とに分離する。脱水汚泥14は従来と同
様にして処理する。
Excess sludge 11 containing the facultatively anaerobic bacteria ingested with phosphorus is appropriately extracted and led to a dehydration step 7, where an inorganic coagulant 12 and an organic polymer coagulant 13 are added, and a centrifugal dehydrator, a belt press The dewatered sludge 14 and the above-mentioned dehydrated filtrate 9 are separated by dewatering with a dehydrator such as a mold dehydrator, a filter press, and a rotating disk dehydrator. The dewatered sludge 14 is treated in the same manner as in the prior art.

【0019】上記したような生物学的脱リン方法によれ
ば、無機凝集剤12,有機高分子凝集剤13の添加量お
よび脱水汚泥14の発生量を低減することができる。別
法として、生物処理工程#3を、好気性脱窒素を行うよ
うに構成している場合には、図2に示したように、消化
汚泥8を生物処理工程#3に導入してもよい。
According to the above-described biological dephosphorization method, the amount of the inorganic coagulant 12 and the amount of the organic polymer coagulant 13 added and the amount of dewatered sludge 14 generated can be reduced. Alternatively, if biological treatment step # 3 is configured to perform aerobic denitrification, digested sludge 8 may be introduced into biological treatment step # 3, as shown in FIG. .

【0020】この場合、生物学的脱リンを行うことで、
無機凝集剤12,有機高分子凝集剤13の添加量および
脱水汚泥14の発生量を低減できるのは上記と同様であ
り、逆に、無機凝集剤12,有機高分子凝集剤13とし
て、従来のように脱リン効果の高いものを多量に添加す
る必要がないので、脱水濾液9を生物処理工程#3へ返
送しても嫌気性発酵を阻害する凝集剤が持ち込まれる恐
れは少なく、生物処理工程#3の余剰汚泥5aを上記し
たようにして嫌気性発酵工程#5へ導入できる。脱水濾
液9を、嫌気性発酵工程#5の濃度調整や、破砕・分別
工程#4の圧力調整のための希釈水として使用すること
もできる。
In this case, by performing biological dephosphorization,
The amount of the inorganic flocculant 12 and the organic polymer flocculant 13 and the amount of the dewatered sludge 14 can be reduced in the same manner as described above. Since it is not necessary to add a large amount of a substance having a high dephosphorizing effect as described above, even if the dehydrated filtrate 9 is returned to the biological treatment step # 3, there is little possibility that a flocculant that inhibits anaerobic fermentation will be introduced. The excess sludge 5a of # 3 can be introduced into the anaerobic fermentation step # 5 as described above. The dehydrated filtrate 9 can also be used as dilution water for adjusting the concentration in the anaerobic fermentation step # 5 and adjusting the pressure in the crushing / sorting step # 4.

【0021】なお、生物処理工程#3や好気性脱窒素工
程#6のための装置としては、セラミック管状膜や平板
状有機膜などの膜エレメントを有する外圧型膜分離装置
を生物処理槽内に浸漬設置したタイプのものが、微生物
を高濃度に維持でき、清澄な処理水が得られ、後段の沈
殿池などによる固液分離工程が不要になるため好都合で
あるが、種々変更可能である。
As an apparatus for the biological treatment step # 3 or the aerobic denitrification step # 6, an external pressure type membrane separation apparatus having a membrane element such as a ceramic tubular membrane or a flat organic membrane is installed in the biological treatment tank. The immersion-installed type is advantageous because it can maintain microorganisms at a high concentration, obtain clear treated water, and eliminate the need for a solid-liquid separation step using a subsequent sedimentation basin or the like, but can be variously modified.

【0022】嫌気性発酵工程#5では、破砕物6と脱水
汚泥3とが、互いに異質の成分、たとえば微量元素(F
e,Ni,Co等)が混合されることによる効果もあっ
て、短い日数で効率よくメタン発酵するが、これらの前
処理は、上記した方法に限定されることなく、処理対象
物の性状に応じて適宜に変更可能である。しかしなが
ら、破砕・分別工程#4において、有機性廃棄物を、一
軸破砕機などの粗破砕機で粗破砕し、次いで圧縮破砕機
で200〜250kg/cm2 の高圧にて圧縮破砕する
のが望ましい。その場合には、生ごみ、食品廃棄物など
だけでなく、除渣工程#1で分離したし渣を混合しても
よく、上記した脱水汚泥3をこの段階で混合することも
可能である。
In the anaerobic fermentation step # 5, the crushed material 6 and the dewatered sludge 3 are composed of components different from each other, for example, trace elements (F
e, Ni, Co, etc.), and the methane fermentation can be performed efficiently in a short number of days due to the effect of mixing. However, these pretreatments are not limited to the above-described methods, but may be performed according to the properties of the object to be treated. It can be changed as needed. However, in the crushing / separation step # 4, it is preferable that the organic waste is coarsely crushed by a coarse crusher such as a uniaxial crusher and then compressed and crushed by a compression crusher at a high pressure of 200 to 250 kg / cm 2. . In this case, not only garbage and food waste, but also the residue separated in the residue removing step # 1 may be mixed, and the above-described dewatered sludge 3 may be mixed at this stage.

【0023】この方法によれば、有機性廃棄物やそれに
随伴するプラスチック類等は、一軸破砕機で粒径20〜
100mm以下に粗破砕された後に、圧縮破砕機で高圧
にて圧縮破砕されて、破砕排出孔の孔径に応じた粒径1
〜2mm以下の細粒子状の破砕物と、破砕不能なし渣、
プラスチック類、金属類、石・砂などの発酵不適物とに
自動的に分別される。
According to this method, the organic wastes and the plastics accompanying the organic wastes have a particle size of 20 to 200 with a uniaxial crusher.
After being coarsely crushed to 100 mm or less, the crushed material is compressed and crushed by a compression crusher at a high pressure, and has a particle size of 1 corresponding to the diameter of the crushing discharge hole.
Fine particle crushed material of ~ 2 mm or less, and non-crushable residue
It is automatically classified as unsuitable for fermentation such as plastics, metals, stones and sand.

【0024】分別された破砕物は細粒子化され、細胞膜
も一部破壊されているため、生物分解性が非常に大きく
なり、従来は破砕困難であったために排除されていた有
機性廃棄物や、発酵不適物に付着して排除されていた有
機性廃棄物も破砕物の中に含まれることもあって、メタ
ンガスなどとしての有機成分の回収率が非常に高くな
る。
The separated crushed material is reduced to fine particles and the cell membrane is partially destroyed, so that the biodegradability becomes extremely large. In addition, the organic waste that has been removed by being adhered to the unsuitable fermentation material may be included in the crushed material, and the recovery rate of organic components such as methane gas becomes extremely high.

【0025】嫌気性発酵工程#5における有機性廃棄物
の濃度は、発酵槽内で流動性を保つことができる程度で
あればよく、したがって、たとえば消化汚泥8の一部を
脱水機や槽内外に配置した濾過膜などで濃縮して発酵槽
内へ返送(残留)させることでメタン菌濃度を高めた
り、あるいは脱水汚泥3を約70〜80℃で3日間維持
すること等によって可溶化しておけば、発酵効率はより
高まる。
The concentration of the organic waste in the anaerobic fermentation step # 5 may be such that the fluidity can be maintained in the fermentation tank. The methane bacteria concentration is increased by concentrating with a filtration membrane and the like and returned to the fermenter (residual), or solubilized by maintaining the dehydrated sludge 3 at about 70 to 80 ° C. for 3 days. If you do, the fermentation efficiency will increase.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、生物処
理工程で発生した汚泥の一部を嫌気性発酵工程に導入
し、嫌気性発酵工程で発生した消化汚泥を好気性脱窒素
工程へ導入することにより、微生物の性質を有効に利用
して脱リンすることができ、凝集剤を用いる従来の脱リ
ン方法に比べて、嫌気性発酵工程の後段での凝集剤の添
加量を低減し、汚泥発生量を低減できるとともに、返送
によって嫌気性発酵工程へ持ち込まれる凝集剤量を低減
できるため、メタン発酵の阻害を防止できる。
As described above, according to the present invention, a part of the sludge generated in the biological treatment step is introduced into the anaerobic fermentation step, and the digested sludge generated in the anaerobic fermentation step is removed from the aerobic denitrification step. Dephosphorization can be carried out by effectively utilizing the properties of microorganisms, and the amount of coagulant added at the later stage of the anaerobic fermentation process can be reduced compared to conventional dephosphorization methods using coagulants However, the amount of sludge generated can be reduced, and the amount of coagulant brought into the anaerobic fermentation step by return can be reduced, so that methane fermentation can be prevented from being inhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における生物学的脱リン
方法を説明するフローチャートである。
FIG. 1 is a flowchart illustrating a biological phosphorus removal method according to a first embodiment of the present invention.

【図2】本発明の第2実施形態における生物学的脱リン
方法を説明するフローチャートである。
FIG. 2 is a flowchart illustrating a biological dephosphorization method according to a second embodiment of the present invention.

【図3】従来の有機性廃棄物の処理フローを示したフロ
ーチャートである。
FIG. 3 is a flowchart showing a conventional organic waste treatment flow.

【符号の説明】[Explanation of symbols]

5a 余剰汚泥 7 メタンガス 8 消化汚泥 11 余剰汚泥 5a Excess sludge 7 Methane gas 8 Digested sludge 11 Excess sludge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 敏行 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Shibata 2-47 Shishitsu Higashi, Naniwa-ku, Osaka-shi, Osaka Kubota Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 し尿、浄化槽汚泥、生ごみなど、性状や
濃度が異なる有機性廃棄物を、液状の有機性廃棄物を生
物処理する生物処理工程と、固形分を含んだ有機性廃棄
物を嫌気性条件下でメタン発酵させてメタンガスを回収
する嫌気性発酵工程とを有した処理系で処理するに際
し、前記生物処理工程で発生した汚泥の一部を嫌気性発
酵工程に導入し、嫌気性発酵工程で発生した消化汚泥と
ともに、好気性条件下に生物学的脱窒素を行う好気性脱
窒素工程へ移送して、消化汚泥中に含まれる有機物の一
部を分解し、脱窒素する状態において、生物処理工程よ
り導入した汚泥中に含まれる通性嫌気性菌にリンを摂取
させ、この通性嫌気性菌を含んだ余剰汚泥を分離するこ
とを特徴とする生物学的脱リン方法。
An organic waste having different properties and concentrations, such as night soil, septic tank sludge, and garbage, a biological treatment step of biologically treating a liquid organic waste, and an organic waste containing solids. When treating in a treatment system having an anaerobic fermentation step of recovering methane gas by methane fermentation under anaerobic conditions, a part of the sludge generated in the biological treatment step is introduced into the anaerobic fermentation step, Along with the digested sludge generated in the fermentation process, it is transferred to the aerobic denitrification process where biological denitrification is performed under aerobic conditions, in which some of the organic matter contained in the digested sludge is decomposed and denitrified. A method of biologically removing phosphorus, comprising ingesting phosphorus into facultative anaerobic bacteria contained in sludge introduced from a biological treatment step, and separating excess sludge containing the facultative anaerobic bacteria.
JP9212498A 1998-04-06 1998-04-06 Biological dephosphorization method Pending JPH11285698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212498A JPH11285698A (en) 1998-04-06 1998-04-06 Biological dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9212498A JPH11285698A (en) 1998-04-06 1998-04-06 Biological dephosphorization method

Publications (1)

Publication Number Publication Date
JPH11285698A true JPH11285698A (en) 1999-10-19

Family

ID=14045691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212498A Pending JPH11285698A (en) 1998-04-06 1998-04-06 Biological dephosphorization method

Country Status (1)

Country Link
JP (1) JPH11285698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300311A (en) * 1998-04-23 1999-11-02 Kubota Corp Treatment of organic waste
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
JP2005169165A (en) * 2003-12-08 2005-06-30 Fuji Electric Holdings Co Ltd Treatment method for organic waste and its system
US7094350B2 (en) 2002-11-13 2006-08-22 Roche Company Method of sludge recycling
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300311A (en) * 1998-04-23 1999-11-02 Kubota Corp Treatment of organic waste
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
US7094350B2 (en) 2002-11-13 2006-08-22 Roche Company Method of sludge recycling
US7141159B2 (en) 2002-11-13 2006-11-28 Tsuguo Inaba Method of sludge recycling
US7198720B2 (en) 2002-11-13 2007-04-03 Tsuguo Inaba Method of sludge recycling
US7235174B2 (en) 2002-11-13 2007-06-26 Tsuguo Inaba Method of sludge recycling
JP2005169165A (en) * 2003-12-08 2005-06-30 Fuji Electric Holdings Co Ltd Treatment method for organic waste and its system
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP3442288B2 (en) Methane fermentation method for organic waste
JP3755982B2 (en) Recycling method of organic waste
US20200165172A1 (en) Method for dry biological treatment of organic waste
JPH11197636A (en) Method for treatment of organic waste
JP3835927B2 (en) Organic waste treatment methods
JP3554689B2 (en) Waste disposal method
JPH10216785A (en) Treatment of night soil, garbage and sludge
JP3570888B2 (en) Waste treatment method
JP3835930B2 (en) Organic waste treatment methods
JPH11309493A (en) Dry methane fermentation method
JPH11300323A (en) Treatment of organic waste
JP2000015230A (en) Method for removing ammonia
JPH11197639A (en) Treatment of organic waste
JPH09262599A (en) Dephosphorization apparatus
JPH11333416A (en) Method for recycling resource from organic waste
JP3276139B2 (en) Organic waste treatment method
JPH11221548A (en) Treatment of organic waste
JPH11285698A (en) Biological dephosphorization method
JPH11319782A (en) Methane fermentation process
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
JP3835925B2 (en) Dephosphorization method
JPH11277096A (en) Dephosphorizing method
JP3970163B2 (en) Organic waste treatment method and apparatus
JP3727178B2 (en) Methane fermentation method