JP2008253871A - Co-fermentation method - Google Patents
Co-fermentation method Download PDFInfo
- Publication number
- JP2008253871A JP2008253871A JP2007095725A JP2007095725A JP2008253871A JP 2008253871 A JP2008253871 A JP 2008253871A JP 2007095725 A JP2007095725 A JP 2007095725A JP 2007095725 A JP2007095725 A JP 2007095725A JP 2008253871 A JP2008253871 A JP 2008253871A
- Authority
- JP
- Japan
- Prior art keywords
- fermentation
- sludge
- water treatment
- methane fermentation
- treatment facility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000855 fermentation Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 39
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 80
- 230000004151 fermentation Effects 0.000 claims abstract description 53
- 239000010802 sludge Substances 0.000 claims abstract description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000010815 organic waste Substances 0.000 claims abstract description 21
- 238000000926 separation method Methods 0.000 claims abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 34
- 229910021529 ammonia Inorganic materials 0.000 claims description 17
- 230000001079 digestive effect Effects 0.000 claims description 10
- 239000010813 municipal solid waste Substances 0.000 claims description 9
- 239000002699 waste material Substances 0.000 claims description 8
- 239000010794 food waste Substances 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 4
- 244000144972 livestock Species 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 description 15
- 239000010865 sewage Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000002028 Biomass Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000945 filler Substances 0.000 description 5
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- NNKKTZOEKDFTBU-YBEGLDIGSA-N cinidon ethyl Chemical compound C1=C(Cl)C(/C=C(\Cl)C(=O)OCC)=CC(N2C(C3=C(CCCC3)C2=O)=O)=C1 NNKKTZOEKDFTBU-YBEGLDIGSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Processing Of Solid Wastes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Activated Sludge Processes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は共発酵方法に関し、詳しくは安定した発酵が可能で、発酵速度が大きく、バイオガス発生率が高い共発酵方法に関する。 The present invention relates to a co-fermentation method, and more particularly to a co-fermentation method that enables stable fermentation, has a high fermentation rate, and a high biogas generation rate.
従来、下水は、好気性生物処理工程を有する水処理施設において処理されている。水処理施設で発生した余剰汚泥は、焼却したり、コンポスト化したりしていたが、近年では有用物質の回収を目的として下水汚泥を嫌気発酵する手法が試みられている。 Conventionally, sewage is treated in a water treatment facility having an aerobic biological treatment process. Excess sludge generated in water treatment facilities has been incinerated or composted. In recent years, an attempt has been made to anaerobically ferment sewage sludge for the purpose of recovering useful substances.
しかし、原水汚泥を嫌気発酵させても得られるバイオガス量は10〜15(L/L−原料)と少なく、実用的ではなかった。 However, the amount of biogas obtained even when the raw water sludge is subjected to anaerobic fermentation is as small as 10 to 15 (L / L-raw material), which is not practical.
非特許文献1には、食品廃棄物、食品加工残渣、生ごみ、緑農廃棄物または畜産廃棄物のような水処理施設外で発生する有機性廃棄物を下水汚泥に混入して嫌気発酵する方法が開示されている。 In Non-Patent Document 1, organic waste generated outside water treatment facilities such as food waste, food processing residue, garbage, green farm waste or livestock waste is mixed with sewage sludge and subjected to anaerobic fermentation. A method is disclosed.
しかし、この手法によると、メタン発酵効率が上昇するが依然として十分な発生量とは言えなかった。
そこで、本発明の課題は、安定した発酵が可能で、発酵速度が大きく、バイオガス発生率が高い共発酵方法を提供することにある。 Therefore, an object of the present invention is to provide a co-fermentation method that enables stable fermentation, a high fermentation rate, and a high biogas generation rate.
本発明の他の課題は以下の記載によって明らかとなる。 The other subject of this invention becomes clear by the following description.
上記課題は以下の各発明によって解決される。 The above problems are solved by the following inventions.
(請求項1)
好気性生物処理工程を有する水処理施設において発生する濃縮汚泥を返送汚泥と余剰汚泥とに分割し、該余剰汚泥に、該水処理施設外から搬入した有機性廃棄物を混合して50℃以上の高温型のメタン発酵槽でメタン発酵処理を行い、該メタン発酵によって生成した残渣の固液分離処理を行い、分離した液側成分を前記水処理施設の前記好気性生物処理工程に送液することを特徴とする共発酵方法。
(Claim 1)
The concentrated sludge generated in a water treatment facility having an aerobic biological treatment process is divided into return sludge and surplus sludge, and the surplus sludge is mixed with organic waste carried from outside the water treatment facility to be 50 ° C or higher. A methane fermentation process is performed in a high-temperature methane fermentation tank, a solid-liquid separation process is performed on the residue generated by the methane fermentation, and the separated liquid-side components are sent to the aerobic biological treatment process of the water treatment facility. A co-fermentation method characterized by that.
(請求項2)
水処理施設外から搬入する有機性廃棄物が、食品廃棄物、食品加工残渣、生ごみ、緑農廃棄物または畜産廃棄物から選ばれる少なくとも1種であり、該有機性廃棄物の異物を除去する工程及び又は破砕処理工程後に、該有機性廃棄物と、前記高温型のメタン発酵槽内の消化液の一部と、前記水処理施設から移送される濃縮汚泥とを定量的に混合して高温型のメタン発酵槽に送ることを特徴とする請求項1記載の共発酵方法。
(Claim 2)
Organic waste brought in from outside the water treatment facility is at least one selected from food waste, food processing residue, garbage, green farm waste or livestock waste, and removes foreign matter from the organic waste After the step of carrying out and / or the crushing treatment step, the organic waste, a part of the digestive liquid in the high-temperature methane fermentation tank, and the concentrated sludge transferred from the water treatment facility are quantitatively mixed. The co-fermentation method according to claim 1, wherein the co-fermentation method is sent to a high-temperature methane fermenter.
(請求項3)
前記有機性廃棄物と、前記高温型のメタン発酵槽内の消化液の一部と、前記水処理施設から移送される濃縮汚泥とを定量的に混合して高温型のメタン発酵槽に送る際に、前記水処理施設の初沈汚泥を混入することを特徴とする請求項2記載の共発酵方法。
(Claim 3)
When the organic waste, a part of the digested liquid in the high-temperature methane fermentation tank, and the concentrated sludge transferred from the water treatment facility are quantitatively mixed and sent to the high-temperature methane fermentation tank The co-fermentation method according to
(請求項4)
前記高温型メタン発酵槽から排出される消化液をアンモニアストリッピングにより脱窒処理し、その後、前記水処理施設の前記好気性生物処理工程に送液することを特徴とする請求項1〜3の何れかに記載の共発酵方法。
(Claim 4)
The digested liquid discharged | emitted from the said high temperature type | mold methane fermenter denitrifies by ammonia stripping, and is sent to the aerobic biological treatment process of the said water treatment plant | facility after that. The co-fermentation method according to any one of the above.
本発明によれば、安定した発酵が可能で、発酵速度が大きく、バイオガス発生率が高い共発酵方法を提供することができ、しかも消化液をアンモニアストリッピングすると下水処理施設の高度処理の負荷が大きく低減でき、良好な放流水質を維持できる。 According to the present invention, it is possible to provide a co-fermentation method capable of stable fermentation, high fermentation rate, high biogas generation rate, and high digestion load of sewage treatment facility when the digestion liquid is stripped with ammonia. Can be greatly reduced, and good discharged water quality can be maintained.
以下、本発明の実施の形態を説明する。 Embodiments of the present invention will be described below.
図1は、本発明の共発酵方法を実現する装置の一例を示すフローシートであり、同図において、1は下水に含まれる夾雑物を除去する夾雑物除去手段であり、例えば粗目スクリーンや微細目スクリーンなどが用いられる。夾雑物が除去された下水は初沈槽2に送られ、固液分離される。固液分離された下水は好気性生物処理工程の実現手段である反応槽3に送られ、好気性微生物による生物的な処理が実施される。反応槽3で生物反応された下水は微生物汚泥と共に重力沈降式の終沈槽4に送られて汚泥と処理水に固液分離される。処理水は高度処理手段5に送られ、更に活性炭処理、殺菌処理などの高度処理が施される。
FIG. 1 is a flow sheet showing an example of an apparatus for realizing the co-fermentation method of the present invention. In FIG. 1, reference numeral 1 denotes a contaminant removal means for removing contaminants contained in sewage, for example, a coarse screen or a fine screen. An eye screen or the like is used. The sewage from which impurities have been removed is sent to the
本発明に用いられる好気性生物処理工程を有する水処理施設は、標準活性汚泥法や、その変法による施設、オキシデーションディッチによる施設などが挙げられ、いずれの処理法を採用してもよい。 Examples of the water treatment facility having an aerobic biological treatment process used in the present invention include a standard activated sludge method, a facility based on a modified method thereof, a facility based on oxidation ditch, and the like, and any treatment method may be adopted.
終沈槽4で分離された濃縮汚泥は、返送汚泥と余剰汚泥とに分割し、返送汚泥は返送管40を介して反応槽3に返送される。
The concentrated sludge separated in the
濃縮汚泥は含水率95〜98%の範囲が好ましく、必要により鉄系の薬剤を添加したりすることもできる。なお、後段のメタン発酵のために、高分子系、アルミニウム系の薬剤は好ましくない。 The concentrated sludge preferably has a moisture content in the range of 95 to 98%, and an iron-based chemical can be added as necessary. In addition, because of the latter methane fermentation, polymer-based and aluminum-based chemicals are not preferable.
一方、本発明において、該水処理施設外から搬入する有機性廃棄物は、食品廃棄物、食品加工残渣、生ごみ、緑農廃棄物または畜産廃棄物から選ばれる少なくとも1種であることが好ましく、2種以上を混合してもよい。 On the other hand, in the present invention, the organic waste carried from outside the water treatment facility is preferably at least one selected from food waste, food processing residue, garbage, green farm waste, or livestock waste. Two or more kinds may be mixed.
水処理施設外で発生する有機性廃棄物をメタン発酵のバイオマスとして受け入れるが、その際、まず、前処理手段6で、固形分の破砕、摩砕、異物除去を行う。メタン発酵に支障のない性状とするためである。 Organic waste generated outside the water treatment facility is accepted as biomass for methane fermentation. At this time, first, the pretreatment means 6 crushes, grinds, and removes foreign matter. It is for making it the property which does not have trouble in methane fermentation.
異物除去では金属片、高分子化合物(プラスチック類)、ガラス片や電池などを自動的に必要によって人為的に排除する。 In foreign matter removal, metal pieces, polymer compounds (plastics), glass pieces, batteries, etc. are automatically removed artificially if necessary.
破砕、摩砕工程では有機廃棄物の固形分の粒径を平均して1mm未満、好ましくは0.1mm未満までに粉砕する。 In the crushing and grinding steps, the average particle size of the organic waste is pulverized to less than 1 mm, preferably less than 0.1 mm.
粉砕後の有機性廃棄物の性状は、含水率やC/N比からして、その種類によってまちまちであり、安定したメタン発酵を行うためには、バイオマス源として調整が必要である。 The properties of the organic waste after pulverization vary depending on the moisture content and the C / N ratio, and it is necessary to adjust the biomass source in order to perform stable methane fermentation.
この調整は貯蔵タンク7内で行う。本発明に用いられる貯蔵タンクの役割は次のとおりである。 This adjustment is performed in the storage tank 7. The role of the storage tank used in the present invention is as follows.
第1に、バイオマスとしての有機性廃棄物を濃縮汚泥と定量的に混合するための量的なバッファータンクとして機能する。第2に、メタン発酵槽9内の消化液の一部を混合して前発酵処理を行うタンクとして機能する。このとき酸発酵が進んでタンク内が過剰に酸性化することを防ぐために、消化液のpH緩衝性を利用することも重要である。貯蔵タンク7はメタン発酵槽9と同様に保温し、好ましくは温度制御することが求められる。
First, it functions as a quantitative buffer tank for quantitatively mixing organic waste as biomass with concentrated sludge. 2ndly, it functions as a tank which mixes a part of digestive liquid in the
消化液の混合量を制御する方法は、安定して均質な有機性廃棄物が搬入されるときは単に定量ポンプによる混合のみでも良いが、pHが低下傾向(例えば5〜4を下回っていくときなど)にあるときは、消化液混合量を増加する処置をとることが好ましい。 The method of controlling the amount of digestive juice mixed may be just mixing with a metering pump when stable and homogeneous organic waste is carried in, but the pH tends to decrease (for example, when it falls below 5-4) Etc.), it is preferable to take measures to increase the digestive juice mixture amount.
また、貯蔵タンク7の容量は有機性廃棄物のタンク内滞留時間が少なくとも5時間以上になるように設計することが好ましい。 The capacity of the storage tank 7 is preferably designed so that the residence time of the organic waste in the tank is at least 5 hours.
貯蔵タンク7内で調整された有機性廃棄物は、ミキシング部8に送られ、濃縮汚泥の一部である余剰汚泥と混合する。ミキシング部8におけるミキシング手段は特に限定されない。
The organic waste adjusted in the storage tank 7 is sent to the
本発明では、このミキシング部8に初沈槽2の初沈汚泥を混入することは好ましいことである。下水処理施設で発生する汚泥を有機資源として利用できるのみならず、濃縮汚泥単独よりもバイオガス発生量が増加する効果もあるからである。
In the present invention, it is preferable to mix the first settling sludge of the
本発明において、ミキシング部8にミキシングされたバイオマス原料はメタン発酵槽9に送られ、メタン発酵処理される。
In this invention, the biomass raw material mixed by the mixing
本発明におけるメタン発酵温度は、50℃以上好ましくは55℃以上であり、いわゆる高温発酵である。非特許文献1のような35℃の低温発酵ではバイオガス発生量が少ない問題があるが、本発明では高温発酵であるため、バイオガス発生量が多い効果を発揮する。バイオマス原料が、濃縮汚泥、水処理施設外で発生する有機性廃棄物、終沈汚泥が混合されているので、共発酵により、安定した発酵が可能となる。また発酵速度が大きく、バイオガス発生率が高い高温型の発酵が可能となる。メタン発酵温度を55℃以上に維持する手法は特に限定されない。 The methane fermentation temperature in this invention is 50 degreeC or more, Preferably it is 55 degreeC or more, and is what is called high temperature fermentation. In low temperature fermentation at 35 ° C. as in Non-Patent Document 1, there is a problem that the amount of biogas generated is small. Since the biomass material is mixed with concentrated sludge, organic waste generated outside the water treatment facility, and final sludge, stable fermentation is possible by co-fermentation. Also, high-temperature fermentation with a high fermentation rate and high biogas generation rate is possible. The method for maintaining the methane fermentation temperature at 55 ° C. or higher is not particularly limited.
メタン発酵後に生成する消化液は固液分離手段10に送られ、消化液と固形分に分離され、消化液は送液ライン100を介して好気性生物処理工程に返送され、処理される。図示の例では、反応槽3の前段に返送されている。 The digested liquid produced after the methane fermentation is sent to the solid-liquid separation means 10 and separated into the digested liquid and the solid content. In the illustrated example, it is returned to the previous stage of the reaction vessel 3.
本発明では、消化液を反応槽3に送る過程で、アンモニアストリッピングにより脱窒処理し、その後、前記水処理施設の前記好気性生物処理工程に送液することが好ましい。消化液をアンモニアストリッピングすると下水処理施設の高度処理の負荷が大きく低減でき、良好な放流水質を維持できるからである。 In the present invention, in the process of sending the digested liquid to the reaction tank 3, it is preferable to denitrify by ammonia stripping and then send it to the aerobic biological treatment step of the water treatment facility. This is because ammonia stripping of the digested liquid can greatly reduce the load of advanced treatment at the sewage treatment facility and maintain good discharged water quality.
以下に、アンモニアストリッピングを行う好ましい装置の一例を図2に基づいて説明する。 Below, an example of the preferable apparatus which performs ammonia stripping is demonstrated based on FIG.
消化液は、ポンプ101によって循環タンク102に導入される。循環タンク102は架台103の上に設置され、該循環タンク102の上方にアンモニア放散塔104が設けられ、タワー形式に構成できる。
The digestive fluid is introduced into the
アンモニア放散塔104の例としては、内部に多孔板105が設けられ、多孔板105上に樹脂、金属、セラミックで形成される各種の充填材106が充填される。
As an example of the
充填材106の上方にはスプレーノズル107が設けられ、消化液を充填材106に散布可能に構成されている。
A
スプレーノズル107は配管108を介して循環ポンプ109に接続されている。充填材106に散布された消化液は、図2においては接続管110を介して循環タンク102に貯留され、循環ポンプ109でスプレーノズル107に送られ、循環するように構成されているが、循環タンクを経ずに排出される場合もある。
The
111は、アンモニア放散塔に空気を導入するコンプレッサまたはブロワである。
アンモニアストリッピング装置でアンモニア成分を除いた消化液は脱窒消化液として排出され、反応槽3の前段に返送される。 The digested liquid from which the ammonia component has been removed by the ammonia stripping device is discharged as a denitrifying digested liquid and returned to the front stage of the reaction tank 3.
以下に本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。 Examples of the present invention will be described below, but the present invention is not limited to such examples.
実施例1
標準活性汚泥法による下水処理施設の初沈汚泥および終沈汚泥を採取した。初沈汚泥および終沈汚泥の固形分濃度と強熱減量とpHは下記表1に示す結果であった。
Example 1
Initial sludge and final sludge were collected from the sewage treatment plant using the standard activated sludge method. The solid content concentration, ignition loss, and pH of the primary sedimentation sludge and final sedimentation sludge were the results shown in Table 1 below.
一方、家庭生ごみを油圧式の生ごみ圧縮分別機(油研工業(株))でペースト化した。このペーストの固形分濃度(105℃恒量化)は18wt%、600℃強熱減量減少率は87wt%であった。 On the other hand, household garbage was made into a paste with a hydraulic garbage compression sorter (Yuken Industry Co., Ltd.). The solid content concentration (105 ° C. constant weight) of this paste was 18 wt%, and the 600 ° C. ignition loss reduction rate was 87 wt%.
搾乳牛糞尿を入れた10L完全混合型高温(55℃)メタン発酵実験槽に初沈汚泥、終沈汚泥、生ごみを一日一回合計量600mlずつ加えていく実験を行った。(生ごみ40%、初沈汚泥20%、終沈汚泥40%) An experiment was conducted in which initial sludge, final sludge, and garbage were added to a 10 L fully mixed high temperature (55 ° C.) methane fermentation experiment tank containing milking cow manure once in a total amount of 600 ml once a day. (40% food waste, 20% primary sludge, 40% final sludge)
本発酵槽は600mlのバイオマス投入によって槽内の過剰量は自然溢流によって槽外に流出する構造になっている。15〜20日間のメタン発酵試験におけるバイオガス発生量は図3の結果となった。 The main fermenter has a structure in which 600 ml of biomass is introduced and excess amount in the tank flows out of the tank due to natural overflow. The amount of biogas generated in the methane fermentation test for 15 to 20 days was as shown in FIG.
比較のために以下の実験を行った。 The following experiment was performed for comparison.
比較実験1
実施例1において、高温型(55℃)で、生ごみのみを投与して、メタン発酵実験を行った。その結果を図3に示す。
Comparative experiment 1
In Example 1, a methane fermentation experiment was conducted by administering only garbage in a high temperature type (55 ° C.). The result is shown in FIG.
比較実験2
実施例1において、高温型(55℃)で、終沈汚泥のみを投与して、メタン発酵実験を行った。その結果を図3に示す。
In Example 1, a high temperature type (55 ° C.) was used, and only the final sludge was administered to conduct a methane fermentation experiment. The result is shown in FIG.
比較実験3
実施例1において、発酵温度を37℃に代えた以外は同様にしてメタン発酵実験を行った。その結果を図3に示す。
Comparative experiment 3
In Example 1, a methane fermentation experiment was conducted in the same manner except that the fermentation temperature was changed to 37 ° C. The result is shown in FIG.
図3より、比較実験1の生ごみのみの投入では、pHがテスト10日後から急激に低下(7.5から5以下)し、15日目からバイオマス投入を停止しても、最終的に4.0まで低下してメタン発酵が停止した。 From FIG. 3, in the case of charging only garbage in the comparative experiment 1, the pH drops rapidly after 10 days of the test (7.5 to 5 or less), and even if the biomass charging is stopped from the 15th day, it is finally 4 The methane fermentation stopped after dropping to 0.0.
比較実験2の終沈汚泥の系では、pHを7.5程度に維持し、メタン発酵は継続しえたが発生バイオガス量は大きく低下した。
In the final sludge system of
比較実験3の中温(37℃)発酵では、発生バイオガス量は十分でなかった。 In the medium temperature (37 ° C.) fermentation of Comparative Experiment 3, the amount of generated biogas was not sufficient.
これに対して、本発明の場合には、発生バイオガス量は安定して高いことがわかる。 In contrast, in the present invention, the amount of generated biogas is found to be stable and high.
実施例2
実施例1において、消化液をアンモニアストリッピングする実験を行った。高温型のメタン発酵であるため、アンモニアストリッピングによる脱窒効率が向上した。
Example 2
In Example 1, an experiment for stripping the digestive fluid with ammonia was performed. Denitrification efficiency by ammonia stripping improved because of high temperature methane fermentation.
従って、消化液をアンモニアストリッピングすると下水処理施設の高度処理の負荷が大きく低減でき、良好な放流水質を維持できる。 Therefore, when the digested liquid is stripped of ammonia, the load of advanced treatment at the sewage treatment facility can be greatly reduced, and good discharged water quality can be maintained.
これに対して、比較実験3の消化液をアンモニアストリッピングしたが、温度が低いので、脱窒効率が実施例2に比べ30%程度劣っていた。 On the other hand, the digested liquid of Comparative Experiment 3 was subjected to ammonia stripping, but the denitrification efficiency was inferior to that of Example 2 by about 30% because the temperature was low.
1:夾雑物除去手段
2:初沈槽
3:反応槽
4:終沈槽
5:高度処理手段
6:前処理手段
7:貯蔵タンク
8:ミキシング部
9:メタン発酵
10:固液分離手段
100:送液ライン
101:ポンプ
102:循環タンク
103:架台
104:アンモニア放散塔
105:多孔板
106:充填材
107:スプレーノズル
108:配管
109:循環ポンプ
110:接続管
111:コンプレッサ、ブロワ
1: Contaminant removing means 2: Initial sedimentation tank 3: Reaction tank 4: Final sedimentation tank 5: Advanced treatment means 6: Pretreatment means 7: Storage tank 8: Mixing unit 9: Methane fermentation 10: Solid-liquid separation means 100: Liquid feed line 101: pump 102: circulation tank 103: mount 104: ammonia diffusion tower 105: perforated plate 106: filler 107: spray nozzle 108: pipe 109: circulation pump 110: connection pipe 111: compressor, blower
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095725A JP5301788B2 (en) | 2007-03-30 | 2007-03-30 | Co-fermentation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095725A JP5301788B2 (en) | 2007-03-30 | 2007-03-30 | Co-fermentation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008253871A true JP2008253871A (en) | 2008-10-23 |
JP5301788B2 JP5301788B2 (en) | 2013-09-25 |
Family
ID=39978020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007095725A Active JP5301788B2 (en) | 2007-03-30 | 2007-03-30 | Co-fermentation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5301788B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012192351A (en) * | 2011-03-17 | 2012-10-11 | Mitsubishi Kakoki Kaisha Ltd | Method and device for treating organic waste |
JP2015013779A (en) * | 2013-07-05 | 2015-01-22 | 中部エコテック株式会社 | Compost, and method for manufacturing the compost |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10286592A (en) * | 1997-04-16 | 1998-10-27 | Ataka Kogyo Kk | Waste treatment method |
JPH10337594A (en) * | 1997-04-09 | 1998-12-22 | Ataka Kogyo Kk | Apparatus for waste disposal |
JPH11239781A (en) * | 1998-02-26 | 1999-09-07 | Sumitomo Heavy Ind Ltd | Waste treatment apparatus |
JPH11285698A (en) * | 1998-04-06 | 1999-10-19 | Kubota Corp | Biological dephosphorization method |
JPH11309438A (en) * | 1998-05-01 | 1999-11-09 | Ataka Constr & Eng Co Ltd | Waste treating method |
JP2000005797A (en) * | 1998-06-23 | 2000-01-11 | Mitsubishi Heavy Ind Ltd | Method for recovering metahne from organic solid |
JP2001000998A (en) * | 1999-06-22 | 2001-01-09 | Mitsubishi Heavy Ind Ltd | Apparatus and method for methane fermentation of organic waste |
JP2001062495A (en) * | 1999-08-30 | 2001-03-13 | Kubota Corp | Combined collection treatment of organic waste and night soil |
JP2001070744A (en) * | 1999-09-02 | 2001-03-21 | Mitsubishi Heavy Ind Ltd | Malodor treatment method of composting apparatus and system therefor |
JP2002326071A (en) * | 2001-05-02 | 2002-11-12 | Chugoku Electric Power Co Inc:The | Method of and system for recycling circulating resource such as waste food |
JP2002336825A (en) * | 2001-05-17 | 2002-11-26 | Kubota Corp | Method for recycling organic waste |
JP2003024912A (en) * | 2001-07-19 | 2003-01-28 | Takuma Co Ltd | Anaerobic fermentation method and system |
JP2005034828A (en) * | 2003-06-27 | 2005-02-10 | Jfe Engineering Kk | Operational system of wastewater treatment facility equipped with digester tank |
JP2005152838A (en) * | 2003-11-27 | 2005-06-16 | Mitsubishi Heavy Ind Ltd | Method and facility for treating organic waste compositely |
JP2005254166A (en) * | 2004-03-12 | 2005-09-22 | Maezawa Ind Inc | Sludge treatment apparatus |
JP2005270853A (en) * | 2004-03-25 | 2005-10-06 | Ataka Construction & Engineering Co Ltd | Waste treatment apparatus |
JP2007326070A (en) * | 2006-06-09 | 2007-12-20 | Mitsubishi Heavy Ind Ltd | Waste treatment method and system |
JP2008253872A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Co-fermentation method |
JP2008253875A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Biogas system |
JP2008253870A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Methane fermentation control system |
-
2007
- 2007-03-30 JP JP2007095725A patent/JP5301788B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337594A (en) * | 1997-04-09 | 1998-12-22 | Ataka Kogyo Kk | Apparatus for waste disposal |
JPH10286592A (en) * | 1997-04-16 | 1998-10-27 | Ataka Kogyo Kk | Waste treatment method |
JPH11239781A (en) * | 1998-02-26 | 1999-09-07 | Sumitomo Heavy Ind Ltd | Waste treatment apparatus |
JPH11285698A (en) * | 1998-04-06 | 1999-10-19 | Kubota Corp | Biological dephosphorization method |
JPH11309438A (en) * | 1998-05-01 | 1999-11-09 | Ataka Constr & Eng Co Ltd | Waste treating method |
JP2000005797A (en) * | 1998-06-23 | 2000-01-11 | Mitsubishi Heavy Ind Ltd | Method for recovering metahne from organic solid |
JP2001000998A (en) * | 1999-06-22 | 2001-01-09 | Mitsubishi Heavy Ind Ltd | Apparatus and method for methane fermentation of organic waste |
JP2001062495A (en) * | 1999-08-30 | 2001-03-13 | Kubota Corp | Combined collection treatment of organic waste and night soil |
JP2001070744A (en) * | 1999-09-02 | 2001-03-21 | Mitsubishi Heavy Ind Ltd | Malodor treatment method of composting apparatus and system therefor |
JP2002326071A (en) * | 2001-05-02 | 2002-11-12 | Chugoku Electric Power Co Inc:The | Method of and system for recycling circulating resource such as waste food |
JP2002336825A (en) * | 2001-05-17 | 2002-11-26 | Kubota Corp | Method for recycling organic waste |
JP2003024912A (en) * | 2001-07-19 | 2003-01-28 | Takuma Co Ltd | Anaerobic fermentation method and system |
JP2005034828A (en) * | 2003-06-27 | 2005-02-10 | Jfe Engineering Kk | Operational system of wastewater treatment facility equipped with digester tank |
JP2005152838A (en) * | 2003-11-27 | 2005-06-16 | Mitsubishi Heavy Ind Ltd | Method and facility for treating organic waste compositely |
JP2005254166A (en) * | 2004-03-12 | 2005-09-22 | Maezawa Ind Inc | Sludge treatment apparatus |
JP2005270853A (en) * | 2004-03-25 | 2005-10-06 | Ataka Construction & Engineering Co Ltd | Waste treatment apparatus |
JP2007326070A (en) * | 2006-06-09 | 2007-12-20 | Mitsubishi Heavy Ind Ltd | Waste treatment method and system |
JP2008253872A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Co-fermentation method |
JP2008253875A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Biogas system |
JP2008253870A (en) * | 2007-03-30 | 2008-10-23 | Mitsui Eng & Shipbuild Co Ltd | Methane fermentation control system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012192351A (en) * | 2011-03-17 | 2012-10-11 | Mitsubishi Kakoki Kaisha Ltd | Method and device for treating organic waste |
JP2015013779A (en) * | 2013-07-05 | 2015-01-22 | 中部エコテック株式会社 | Compost, and method for manufacturing the compost |
Also Published As
Publication number | Publication date |
---|---|
JP5301788B2 (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110951789B (en) | Kitchen waste treatment method and system | |
US9809481B2 (en) | Treatment of waste products with anaerobic digestion | |
JP2009255074A (en) | Anaerobic integration process apparatus for organic waste treatment | |
JP4729718B2 (en) | Organic waste treatment methods | |
Sillero et al. | Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage | |
JP6662424B2 (en) | Anaerobic digestion method and apparatus for sewage sludge | |
US20110272350A1 (en) | Methods for Treatment of Waste Activated Sludge | |
KR100972178B1 (en) | Apparatus for anaerobic treatment of organic waste and method there of | |
JP2009214043A (en) | Biological treatment method for organic waste liquid, and treatment device therefor | |
JP2012183510A (en) | Treatment method and treatment apparatus of organic waste | |
JP7228653B2 (en) | Anaerobic digestion tank start-up method and anaerobic digestion system | |
JP4864339B2 (en) | Organic waste processing apparatus and processing method | |
JP2020157261A (en) | Organic sludge treatment method and treatment apparatus | |
CN204417278U (en) | Culturing wastewater processing system | |
JP6432226B2 (en) | Method and apparatus for anaerobic digestion of sewage treatment sludge | |
JP5301788B2 (en) | Co-fermentation method | |
JP4917507B2 (en) | Methane gas generation system that generates methane gas from organic waste such as garbage | |
JP7105136B2 (en) | ORGANIC WASTE TREATMENT METHOD AND ORGANIC WASTE TREATMENT SYSTEM | |
JP5230243B2 (en) | Method and system for methane fermentation treatment of organic waste | |
CN111362505A (en) | Treatment process of pig farm wastewater | |
Pinho et al. | Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring | |
CN204369720U (en) | Culturing wastewater processing system | |
Bong et al. | Review on the characteristic and feasibility of leachate for biogas production by anaerobic digestion | |
Uludag-Demirer et al. | Techno-economic analysis and life cycle assessment of algal cultivation on liquid anaerobic digestion effluent for algal biomass production and wastewater treatment | |
CN105505996A (en) | Biogas residue thermal cracking solid product and application method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110127 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5301788 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |