JP2008253872A - Co-fermentation method - Google Patents

Co-fermentation method Download PDF

Info

Publication number
JP2008253872A
JP2008253872A JP2007095726A JP2007095726A JP2008253872A JP 2008253872 A JP2008253872 A JP 2008253872A JP 2007095726 A JP2007095726 A JP 2007095726A JP 2007095726 A JP2007095726 A JP 2007095726A JP 2008253872 A JP2008253872 A JP 2008253872A
Authority
JP
Japan
Prior art keywords
fermentation
methane
temperature
sludge
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095726A
Other languages
Japanese (ja)
Other versions
JP4709798B2 (en
Inventor
Takayuki Marumoto
隆之 丸本
Takuya Misaki
卓也 三崎
Osamu Hamamoto
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007095726A priority Critical patent/JP4709798B2/en
Publication of JP2008253872A publication Critical patent/JP2008253872A/en
Application granted granted Critical
Publication of JP4709798B2 publication Critical patent/JP4709798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a co-fermentation method which can enhance the methane producing efficiency in a methane fermentation tank by reducing fermentation inhibiting properties such as temperature stress, oxidation stress, ammonia stress, etc. and can efficiently perform fermentation treatment of garbage or the like difficult to ferment at a high temperature according to circumstances. <P>SOLUTION: The excretion of a ruminant originating from the paunch (lumen) is mixed with food waste in a volume of 10-30% to prepare a fermentation raw material. This fermentation raw material is introduced into the fermentation tank 3 and the temperature in the fermentation tank 3 is adjusted to 60-90°C to perform methane fermentation. Alternatively, the fermentation raw material prepared by mixing 10-30 vol.% of the excretion of the ruminant originating from the paunch (lumen) with organic sludge and food waste is introduced into the methane fermentation tank 3 and the temperature in the methane fermentation tank 3 is set to 60-90°C to perform co-fermentation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は共発酵方法に関し、詳しくは温度ストレスを防止してメタン発酵槽内の昇温効果を上げることができ、生ごみなどを効果的に発酵処理できる共発酵方法に関する。   The present invention relates to a co-fermentation method, and more particularly, to a co-fermentation method that can prevent temperature stress and increase the temperature rise effect in a methane fermentation tank, and can effectively ferment garbage.

下水処理汚泥(下水汚泥)、し尿処理汚泥(し尿汚泥)、生ごみなどの有機性廃棄物をバイオマス原料としてメタン発酵する手法は、生成されたメタンガスがバイオガス発電などに利用でき、付加価値に優れるために、注目されている。   Sewage treatment sludge (sewage sludge), human waste treatment sludge (sewage sludge), and organic waste such as garbage from methane fermentation using biomass as raw materials, the generated methane gas can be used for biogas power generation, etc. It is attracting attention for its excellence.

従来、メタン発酵法としては、中温発酵(約37℃程度)が主流であったが、最近の研究では、より高温(55℃程度)における発酵も非常に良い(大きな)VS利用率を出している(特許文献1)。   Conventionally, medium-temperature fermentation (about 37 ° C) has been the mainstream methane fermentation method, but recent studies have shown that fermentation at higher temperatures (about 55 ° C) is also very good (large) VS utilization rate. (Patent Document 1).

例えば下水処理場の汚泥消化タンクでは、中温発酵(37℃程度)から高温発酵に移行するところも出てきている。   For example, in a sludge digestion tank at a sewage treatment plant, a place where a medium temperature fermentation (about 37 ° C.) shifts to a high temperature fermentation has come out.

しかし、メタン発酵の高温化で問題となるのは、発酵阻害を受けやすくなる場合があることで、例えば次のようなストレスによる発酵阻害が挙げられる。   However, the problem with increasing the temperature of methane fermentation is that it may be susceptible to fermentation inhibition. For example, fermentation inhibition due to the following stress may be mentioned.

(1)温度ストレス:投入前のバイオマス温度とメタン発酵槽内の発酵液温度との差が大きくなりやすく、このためバイオマス投入時にメタン発酵槽内の温度が低下する。温度が低下すると、ストレスとなって発酵能力が低下する。特に高温発酵では温度の影響を受けやすくストレスが生じやすい。温度変化に対しては十分な馴養時間(例えば10日以上)をおく必要がある。   (1) Temperature stress: The difference between the biomass temperature before charging and the temperature of the fermentation broth in the methane fermenter tends to increase, so that the temperature in the methane fermenter decreases when the biomass is charged. When temperature falls, it becomes stress and fermentation ability falls. In particular, high-temperature fermentation tends to be affected by temperature and stress is likely to occur. Sufficient acclimatization time (for example, 10 days or more) is required for temperature changes.

(2)酸化ストレス:バイオマス投入時に投入バイオマス中に溶存酸素があればメタン生成菌は酸化ストレスを受ける。かかる酸化ストレスの影響により、バイオガス生成量は著しく減少する。   (2) Oxidative stress: If dissolved oxygen is present in the input biomass when the biomass is input, the methanogen is subjected to oxidative stress. Due to the influence of such oxidative stress, the amount of biogas produced is significantly reduced.

(3)アンモニアストレス:バイオマス原料に含まれるかあるいは生成したアンモニアは発酵阻害物質であり、その蒸気圧が大きくなる高温側ほど影響が大きい。   (3) Ammonia stress: Ammonia contained or generated in biomass raw material is a fermentation inhibitor, and the higher the vapor pressure, the greater the influence.

更に、本発明者らの研究によると、ホテル、旅館、マンション、飲食店、スーパーマーケット、コンビニエンスストア、食品製造業、食品販売、食品流通業、一般家庭等から排出する生ごみのようなバイオマスは、上記の温度ストレスを受けやすく、高温発酵が難しいことがわかった。これは生ごみでは負荷変動が比較的大きいことや、ストレスに対してメタン生成菌が十分な耐性をもっていない可能性が考えられる。メタン発酵槽内で温度ストレスに対応できるメタン生成菌を馴養して高温メタン発酵環境を作るためには長い時間がかかる問題がある。
特開2000−343100号公報
Furthermore, according to the study by the present inventors, biomass such as garbage discharged from hotels, inns, condominiums, restaurants, supermarkets, convenience stores, food manufacturing industries, food sales, food distribution industries, general households, etc. It was found that high temperature fermentation was difficult due to the above temperature stress. This may be due to the relatively large load fluctuations in food waste and the possibility that methanogens are not sufficiently resistant to stress. There is a problem that it takes a long time to acclimate methanogenic bacteria that can cope with temperature stress in a methane fermenter to create a high temperature methane fermentation environment.
JP 2000-343100 A

そこで、本発明の課題は、温度ストレス、酸化ストレス及びアンモニアストレス等の発酵阻害性を軽減してメタン発酵槽内のメタン生成効率を上げることができ、条件によっては高温発酵が困難とされる生ごみなどを効率的に発酵処理できる共発酵方法を提供することにある。   Therefore, an object of the present invention is to reduce the fermentation inhibitory properties such as temperature stress, oxidative stress, and ammonia stress to increase the methane production efficiency in the methane fermenter. The object is to provide a co-fermentation method that can efficiently ferment waste and the like.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。     The above problems are solved by the following inventions.

(請求項1)
食品系廃棄物に、第1胃(ルーメン)由来の反芻動物糞尿を、体積比で10%以上30%以下混合した発酵原料を、メタン発酵槽に導入して該メタン発酵槽内の温度を60℃以上90℃以下の範囲に調整してメタン発酵することを特徴とする共発酵方法。
(Claim 1)
A fermented raw material obtained by mixing ruminant manure derived from rumen into 10% to 30% of the volume of food waste is introduced into the methane fermenter, and the temperature in the methane fermenter is adjusted to 60. A co-fermentation method characterized in that methane fermentation is carried out by adjusting the temperature within a range of from 0C to 90C.

(請求項2)
有機性汚泥及び食品系廃棄物に、第1胃(ルーメン)由来の反芻動物糞尿を、体積比で10%以上30%以下混合した発酵原料を、メタン発酵槽に導入して該メタン発酵槽内の温度を60℃以上90℃以下の範囲に調整してメタン発酵することを特徴とする共発酵方法。
(Claim 2)
A fermentation raw material in which ruminant manure derived from rumen is mixed with organic sludge and food waste in a volume of 10% to 30% is introduced into the methane fermenter, and the inside of the methane fermenter The co-fermentation method characterized by adjusting the temperature of this to the range of 60 degreeC or more and 90 degrees C or less, and performing methane fermentation.

(請求項3)
前記食品系廃棄物は、食品加工残渣又は厨芥残渣であることを特徴とする請求項1又は2記載の共発酵方法。
(Claim 3)
The co-fermentation method according to claim 1 or 2, wherein the food waste is a food processing residue or a koji residue.

(請求項4)
前記厨芥残渣は、コーヒー滓又は茶殻を含むことを特徴とする請求項3記載の共発酵方法。
(Claim 4)
The co-fermentation method according to claim 3, wherein the koji residue contains coffee koji or tea leaves.

(請求項5)
前記有機性汚泥が、有機性排水を好気的に処理する水処理プロセスから発生する汚泥を含むことを特徴とする請求項2〜4の何れかに記載の共発酵方法。
(Claim 5)
The co-fermentation method according to any one of claims 2 to 4, wherein the organic sludge includes sludge generated from a water treatment process for aerobically treating organic wastewater.

本発明によれば、温度ストレス、酸化ストレス及びアンモニアストレス等の発酵阻害性を軽減してメタン発酵槽内のメタン生成効率を上げることができ、条件によっては高温発酵が困難とされる生ごみなどを効率的に発酵処理できる共発酵方法を提供できる。   According to the present invention, fermentation inhibition such as temperature stress, oxidative stress, and ammonia stress can be reduced to increase methane production efficiency in the methane fermentation tank, and garbage that is difficult to be fermented at high temperature depending on conditions. It is possible to provide a co-fermentation method that can efficiently ferment the sucrose.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明において、バイオマス原料の1種となる食品系廃棄物としては、例えば生ごみが挙げられ、生ごみには農水産業廃棄物、食品加工廃棄物等など食品加工残渣;コーヒー滓又は茶殻などの厨芥残渣などを含む。本発明では、前記厨芥残渣がコーヒー滓又は茶殻である場合に良好な効果を発揮する。   In the present invention, examples of the food waste that is one kind of biomass raw material include food waste, which includes food processing residues such as agricultural and fishery industry waste and food processing waste; Including potato residue. In the present invention, a good effect is exhibited when the cocoon residue is coffee candy or tea husk.

また本発明において、バイオマス原料の他の1種は、第1胃(ルーメン)由来の反芻動物糞尿である。ここで反芻動物とは、食物を口で咀嚼し、胃に送って部分的に消化した後、再び口に戻し咀嚼するという過程を繰り返して食物を消化する器官をもつ動物であり、ウシ、ヤギ、ヒツジ、シカなどの反芻亜目、ラクダ、ラマなどの核脚亜目に属するものを指す。   In the present invention, another type of biomass material is ruminant manure derived from the rumen. A ruminant is an animal with an organ that digests food by repeating the process of chewing food in the mouth, sending it to the stomach and partially digesting it, then returning it to the mouth and chewing it again. , Ruminants such as sheep and deer, and those belonging to the subfamily of camels and llamas.

更に本発明では、食品系廃棄物に有機性汚泥を配合してもよい。有機性汚泥は有機性排水を好気的に処理する水処理プロセスから発生する汚泥であり、例えば下水処理汚泥やし尿処理汚泥などがある。   Furthermore, in this invention, you may mix | blend organic sludge with food type waste. Organic sludge is sludge generated from a water treatment process for aerobically treating organic wastewater, such as sewage treatment sludge and human waste treatment sludge.

食品系廃棄物(有機性汚泥を配合してもよい)と、第1胃(ルーメン)由来の反芻動物糞尿の配合比は、食品系廃棄物に、第1胃(ルーメン)由来の反芻動物糞尿を、体積比で10%以上30%以下、好ましくは10%以上20%以下である。配合比が10%未満では、ストレスを緩和する効果が小さいためバイオガス発生量が少なく、また30%を越えても強熱減量VS(wt%)が低下するのでバイオガス発生量が増加しにくくなる。   The mixing ratio of food waste (which may contain organic sludge) and ruminant manure derived from rumen is ruminant manure derived from rumen. The volume ratio is 10% or more and 30% or less, preferably 10% or more and 20% or less. If the compounding ratio is less than 10%, the effect of relieving stress is small, so the amount of biogas generated is small, and if it exceeds 30%, the ignition loss VS (wt%) decreases, so the amount of biogas generated is difficult to increase. Become.

バイオマス原料における食品系廃棄物に対する有機性汚泥の配合比は、本発明において本質的に問われない。   The blending ratio of organic sludge to food waste in the biomass raw material is essentially not limited in the present invention.

食品加工残渣や厨芥残渣などの食品系廃棄物、水処理プロセスから発生する有機性汚泥は、特に完全混合方式の発酵槽でメタン発酵を行う場合、速やかに以前からある発酵残渣と混合されることが全体の発酵速度を維持する上で重要である。   Organic waste sludge generated from food processing residue and waste residue such as food processing residue and water treatment process should be quickly mixed with existing fermentation residue, especially when methane fermentation is performed in a complete mixing system fermenter. Is important in maintaining the overall fermentation rate.

また、追出し方式のリアクタ(プラグフロー型)はリアクタ投入前に抜出した発酵液をバイオマスと十分に混合する必要がある。   Further, in the purge type reactor (plug flow type), it is necessary to sufficiently mix the fermentation liquid extracted before charging the reactor with the biomass.

本発明では、2種又はそれ以上の種類のバイオマス原料を配合したものを発酵させるので、これを共発酵と称している。   In the present invention, what is blended with two or more kinds of biomass raw materials is fermented, which is called co-fermentation.

本発明の共発酵方法では、混合した発酵原料を、メタン発酵槽に導入して該メタン発酵槽内の温度を60℃以上90℃以下の範囲に調整してメタン発酵する。   In the co-fermentation method of the present invention, the mixed fermentation raw material is introduced into a methane fermentation tank, and the temperature in the methane fermentation tank is adjusted to a range of 60 ° C. or higher and 90 ° C. or lower to perform methane fermentation.

従って、本発明において、高温発酵という場合は、60℃以上90℃以下の範囲で発酵を行うことである。   Therefore, in this invention, when it is called high temperature fermentation, it is performing fermentation in the range of 60 degreeC or more and 90 degrees C or less.

高温発酵では、上述したように、温度ストレス、酸化ストレス及びアンモニアストレスのようなストレスに対して敏感であるが、第1胃(ルーメン)由来の反芻動物糞尿を、食品系廃棄物のようなバイオマス原料に一定範囲の量で配合すると、上記各ストレスを緩和する効果が発現し、結果として見かけ上バイオガス発生量が増加し、発酵阻害によるガス発生量の低減が緩和されることがわかった。   As described above, high-temperature fermentation is sensitive to stresses such as temperature stress, oxidative stress, and ammonia stress, but ruminant manure derived from the rumen is converted into biomass such as food waste. It was found that when blended in a certain amount in the raw material, the effect of alleviating each of the above stresses was exhibited, resulting in an apparent increase in the amount of biogas generated and a reduction in the amount of gas generated due to fermentation inhibition.

中温発酵(37℃)や従来の一般的な高温発酵(55℃)では、この効果(ルーメン由来反芻動物糞尿混合効果)は発現しにくいというよりは、むしろストレスに対して発酵阻害を受けにくいため、効果が現れにくい。これに対して、本発明は、上記の60℃以上90℃以下の範囲の高温発酵においてVS利用率の高い、本来バイオガス発生量の多い高温でのメタン発酵において効果が発揮される。   In medium-temperature fermentation (37 ° C) and conventional high-temperature fermentation (55 ° C), this effect (the rumen-derived ruminant manure mixing effect) is less susceptible to fermentation inhibition than stress. The effect is hard to appear. On the other hand, the present invention is effective in methane fermentation at a high temperature with a high VS utilization rate and a high biogas generation rate in a high-temperature fermentation in the range of 60 ° C. to 90 ° C.

一般的な生ごみ系バイオマスと家畜糞尿系バイオマスとの混合物では、家畜糞尿系バイオマスの割合が多くなると、メタン発酵に有効な有機物量(VS値)が減って、ガス発生量が低下する。しかし、家畜糞尿がルーメンを有する反芻動物糞尿であれば、各発酵阻害要因の効果を緩和するため、見かけ上発酵を促進する効果があるようになる。   In a mixture of general garbage biomass and livestock manure biomass, when the proportion of livestock manure biomass increases, the amount of organic matter (VS value) effective for methane fermentation decreases and the amount of gas generated decreases. However, if the livestock manure is ruminant manure having a lumen, the effect of each fermentation inhibition factor is mitigated, so that it has an effect of apparently promoting fermentation.

これはルーメン由来の反芻動物糞尿が各種ストレスに対して耐久性のある菌叢と菌の代謝を維持しやすい環境をつくっているためである。ルーメン由来の反芻動物糞尿混合の効果はVS利用率の高い、本来バイオガス発生量の多い高温でのメタン発酵において発揮される。この理由は前述のように高温での発酵は特にストレスに対して敏感であるためである。   This is because rumen-derived ruminant manure creates an environment that is durable against various stresses and is easy to maintain the bacterial metabolism. The effect of rumen-derived ruminant manure mixing is demonstrated in methane fermentation at high temperatures with high VS utilization and high biogas generation. This is because, as described above, fermentation at high temperature is particularly sensitive to stress.

下水処理の汚泥や生ごみは、温度、負荷量、酸素など厳格な管理を行わないといけないが、そこにルーメン由来の反芻動物糞尿を10%以上30%以下混合することで、良好に発酵が行われる。ルーメン由来の反芻動物糞尿には、第1胃に由来するメタン生成菌が含まれており、これにより、厳格な管理が必要なくなる。   Sewage sludge and food waste must be strictly controlled in terms of temperature, load, oxygen, etc., but rumen-derived ruminant manure is mixed with 10% or more and 30% or less to ensure good fermentation. Done. Rumen-derived ruminant manure contains methanogens derived from the rumen, which eliminates the need for strict management.

従来でも糞尿と生ごみを混ぜた例はあり、当然のように行われてきたことだが、糞尿が90%に生ごみ10%を混ぜるなどであり、生ごみの投入量が少ない場合であった。   There has been an example of mixing manure and garbage in the past, and it has been done as a matter of course, but the manure was mixed with 90% of the garbage and 10% of the garbage, and the amount of garbage input was small. .

バイオマス原料が生ごみ主体で、これに少ない量(所定量)のルーメン由来の反芻動物糞尿を混合し、しかも高温発酵(60〜90℃)したものではない。   The biomass raw material is mainly garbage, and it is not a mixture of ruminant ruminant manure derived from a small amount (predetermined amount) and high-temperature fermentation (60 to 90 ° C.).

本発明では、メタン発酵槽内の圧力が、0.2MPa〜5MPaの範囲であることが好ましい。この発酵圧力は、強制的に加圧することなく、発酵によって生じる自然発酵圧であることが好ましい。   In the present invention, the pressure in the methane fermentation tank is preferably in the range of 0.2 MPa to 5 MPa. This fermentation pressure is preferably a natural fermentation pressure generated by fermentation without forcibly pressurizing.

ここで、「強制的に加圧することなく」というのは、コンプレッサなどの加圧装置を用いて人為的に発酵槽内の圧力を上げる手法を採用していないことを意味している。   Here, “without forcibly pressurizing” means that a technique for artificially increasing the pressure in the fermenter using a pressurizing device such as a compressor is not adopted.

また「発酵によって生じる自然発酵圧」というのは、密閉された発酵槽内で、メタン発酵など生物的な反応によってメタンなどの気体成分が生じることによってメタン発酵槽内の圧力が高い状態になることを意味する。   In addition, “natural fermentation pressure generated by fermentation” means that the pressure in the methane fermentation tank becomes high due to the formation of gaseous components such as methane by biological reactions such as methane fermentation in a closed fermentation tank. Means.

かかる圧力範囲であれば、VS利用効率が向上し、バイオガスの精製効果やバイオガス収集効率が上昇する。圧力の上限はメタン発酵槽の耐圧構造コストと揮発性有機物の利用効率、バイオガスの精製効果やバイオガス収集効率との関係で決まり、5MPaを越えると耐圧構造コストの影響が大きくなる。   In such a pressure range, the VS utilization efficiency is improved, and the biogas purification effect and the biogas collection efficiency are increased. The upper limit of the pressure is determined by the relationship between the pressure structure cost of the methane fermenter and the use efficiency of volatile organic matter, the biogas purification effect and the biogas collection efficiency, and if it exceeds 5 MPa, the effect of the pressure structure cost increases.

本発明において好ましい態様は、発酵によって生じる自然発酵圧によって0.2MPa〜5MPaの範囲まで発酵槽内の圧力を上昇させることである。   A preferable aspect in the present invention is to increase the pressure in the fermenter to a range of 0.2 MPa to 5 MPa by natural fermentation pressure generated by fermentation.

メタン発酵槽は、絶対嫌気性であるメタン生成菌による活動を妨げることがない構成のものが好ましく、例えば空気を完全に遮断したタンクにより構成される。タンクは0.2MPa〜5MPaの範囲の圧力に耐えられる耐圧容器で構成される必要があり、タンク外壁の材質や厚みは、耐圧容器であれば特に限定されない。   The methane fermenter preferably has a configuration that does not hinder the activity of the anaerobic methanogen, and is constituted by, for example, a tank that completely blocks air. A tank needs to be comprised with the pressure | voltage resistant container which can endure the pressure of the range of 0.2 MPa-5 MPa, and the material and thickness of a tank outer wall will not be specifically limited if it is a pressure | voltage resistant container.

メタン発酵槽には、0.2MPa〜5MPaの範囲の圧力であるか否かを検出するために圧力センサを設けることができ、また5MPa以上に圧力が上昇した場合に圧力を開放できる圧力開放弁を設けることができる。   The methane fermentation tank can be provided with a pressure sensor for detecting whether or not the pressure is in the range of 0.2 MPa to 5 MPa, and a pressure release valve that can release the pressure when the pressure rises to 5 MPa or more. Can be provided.

メタン発酵槽内を高温にする手法は、特に限定されないが、好ましい態様としては、発酵槽内部又は外部に、温水又は電気ヒーターなどの加温手段を設置することができる。本発明では高温発酵を効率的に行うために温度測定センサを設けることも好ましい。   Although the method of making the inside of a methane fermentation tank high temperature is not specifically limited, As a preferable aspect, heating means, such as warm water or an electric heater, can be installed in the fermentation tank inside or the exterior. In the present invention, it is also preferable to provide a temperature measurement sensor in order to efficiently perform high-temperature fermentation.

本発明において、かかるバイオマスは発酵槽に導入される前に熱交換などを用いて加温されていることも好ましい。温度ストレス要因を軽減できるからである。   In the present invention, it is also preferable that such biomass is heated using heat exchange or the like before being introduced into the fermenter. This is because the temperature stress factor can be reduced.

図1に本発明のメタン発酵方法を実施する好ましいシステム例を説明する。図1において、2種類以上のバイオマスを混合して貯蔵する貯蔵タンク1からスクリューポンプ2により輸送管20へ定量的に搬送され、メタン発酵槽3に送られる。メタン発酵槽3に至る過程で、熱交換器4によって加温される。メタン発酵槽3には加温ヒーター30と、1又は2以上の攪拌機31を備え、図示しない圧力センサ、温度センサ、圧力調整弁(例えば5MPa以上に加圧された場合に圧力を放出する)などが設けられている。   FIG. 1 illustrates a preferred system example for carrying out the methane fermentation method of the present invention. In FIG. 1, two or more kinds of biomass are mixed and stored, and are quantitatively conveyed to a transport pipe 20 by a screw pump 2 and sent to a methane fermentation tank 3. In the process leading to the methane fermenter 3, the heat exchanger 4 heats it. The methane fermentation tank 3 includes a heating heater 30 and one or more stirrers 31, and includes a pressure sensor (not shown), a temperature sensor, a pressure adjustment valve (for example, releases pressure when pressurized to 5 MPa or more), and the like. Is provided.

メタン発酵槽3は、温度60℃以上90℃以下の範囲に調整され、発酵によって生じる自然発酵圧0.2MPa〜5MPaの範囲でメタン発酵が行われる。生成するバイオガスは、メタンガス濃度は高いがCOやHS濃度は低い。 The methane fermentation tank 3 is adjusted to a temperature range of 60 ° C. or higher and 90 ° C. or lower, and methane fermentation is performed in a range of a natural fermentation pressure of 0.2 MPa to 5 MPa generated by fermentation. The produced biogas has a high methane gas concentration but a low CO 2 or H 2 S concentration.

消化液は排出管32から排出され、熱交換器4でバイオマスと熱交換し、バイオマスを加温する。消化液は発酵温度が60℃以上と高いのでその温度(熱含量)を利用できる。熱交換後COは脱気装置5へ送られ、COが脱気される。その後、アンモニアストリッピング装置6に至り、アンモニアが回収される。アンモニアストリッピング装置6には、充填材60を有し、該充填材60の上方から下方に向かって消化液を散布し、下方から空気を送り込み、アンモニアストリッピングを行う。 The digested liquid is discharged from the discharge pipe 32, heat-exchanged with the biomass in the heat exchanger 4, and warms the biomass. Since the digestive fluid has a high fermentation temperature of 60 ° C. or higher, the temperature (heat content) can be used. After heat exchange, the CO 2 is sent to the degassing device 5 where the CO 2 is degassed. Thereafter, the ammonia stripping device 6 is reached and ammonia is recovered. The ammonia stripping apparatus 6 has a filler 60, sprays digestive juice from the upper side to the lower side of the filler 60, sends air from below, and performs ammonia stripping.

本発明では、メタン発酵槽3からアンモニアストリッピング装置6に至るまで、消化液を移送するのにポンプなどの移送手段を必要としない。メタン発酵槽3内が自然発酵圧0.2MPa〜5MPaの範囲で加圧されているからである。従って、大幅な設備コストと動力コストの削減効果がある。   In the present invention, from the methane fermentation tank 3 to the ammonia stripping device 6, no transfer means such as a pump is required to transfer the digested liquid. This is because the inside of the methane fermentation tank 3 is pressurized within the range of the natural fermentation pressure of 0.2 MPa to 5 MPa. Therefore, there is a significant reduction in equipment costs and power costs.

メタン生成菌は多種微生物と共存し、他の生物からメタン生成菌生育のための基質の提供を受けている。   Methanogens coexist with many types of microorganisms, and other organisms provide a substrate for the growth of methanogens.

メタン発酵槽に導入されるバイオマスは、ルーメン由来の反芻動物糞尿と生ごみの混合物、更に有機性汚泥を混合したものであり、これらのバイオマスには、タンパク質、デンプン、脂肪、繊維質(セルロース)などを含むが、これらの基質は加水分解菌、酸発酵菌などにより低分子化され、メタン生成菌の基質となり、メタン発酵反応を生起させる。   The biomass introduced into the methane fermenter is a mixture of rumen-derived ruminant manure and garbage, and organic sludge. These biomasses include protein, starch, fat, and fiber (cellulose). However, these substrates are reduced in molecular weight by hydrolyzing bacteria, acid-fermenting bacteria, etc., and become substrates of methanogenic bacteria to cause a methane fermentation reaction.

本発明において、メタン発酵汚泥は、ルーメン由来のメタン生成菌を含む汚泥であり、かかる汚泥は、メタン発酵槽内の生物由来の汚泥である。かかる汚泥は10〜10cells/cmの範囲でメタン生成菌を含んでいる。 In the present invention, methane fermentation sludge is sludge containing rumen-derived methanogens, and such sludge is biologically-derived sludge in a methane fermentation tank. Such sludge contains methanogens in the range of 10 6 to 10 9 cells / cm 3 .

以下、実施例により本発明の効果を例証する。   Hereinafter, the effect of the present invention is illustrated by examples.

実施例1
10Lの完全混合型メタン発酵用リアクタに、厨芥残渣をホモジナイザでスラリー化したものと排水処理施設で発生する汚泥(濃縮汚泥)を体積比1:1で混合し、さらに、ルーメン由来の搾乳牛糞尿を体積比で10%、15%、20%、25%混合し、発酵温度を60℃に設定してバッチ式で最長30日間メタン発酵試験を行った。
Example 1
A 10-liter fully mixed methane fermentation reactor is mixed with slurries of sludge generated in a homogenizer and sludge (concentrated sludge) generated in a wastewater treatment facility at a volume ratio of 1: 1, and further, rumen-derived milking cow manure 10%, 15%, 20% and 25% were mixed in a volume ratio, the fermentation temperature was set to 60 ° C., and a methane fermentation test was conducted in batch mode for up to 30 days.

発生したガスは、発酵完了後、ガスホルダーに受け、総量を発酵日数で除して1日あたりのガス発生量を求めた。   The generated gas was received in a gas holder after completion of fermentation, and the total amount was divided by the number of days of fermentation to determine the amount of gas generated per day.

比較例1
実施例1において、搾乳牛糞尿の混合割合を0%、5%として同様に発酵試験を行い、1日あたりのガス発生量を求めた。
Comparative Example 1
In Example 1, the mixing rate of milking cow manure was set to 0% and 5%, and a fermentation test was performed in the same manner to determine the amount of gas generated per day.

比較例2
実施例1と同じく、10Lの完全混合型メタン発酵用リアクタに、厨芥残渣をホモジナイザでスラリー化したものと排水処理施設で発生する汚泥(濃縮汚泥)を体積比1:1で混合し、さらに搾乳牛糞尿を体積比で0%、5%、10%、15%、20%混合し発酵温度を55℃に設定してバッチ式で最長30日間メタン発酵試験を行った。
Comparative Example 2
As in Example 1, 10 L of fully mixed methane fermentation reactor was mixed with slurries of sludge generated in a homogenizer and sludge (concentrated sludge) generated at a wastewater treatment facility at a volume ratio of 1: 1, and further milked. A methane fermentation test was conducted in batch mode for a maximum of 30 days with 0%, 5%, 10%, 15% and 20% of cow manure mixed in a volume ratio and the fermentation temperature set at 55 ° C.

発生したガスは、発酵完了後、ガスホルダーに受け、総量を発酵日数で除して1日あたりのガス発生量を求めた。   The generated gas was received in a gas holder after completion of fermentation, and the total amount was divided by the number of days of fermentation to determine the amount of gas generated per day.

比較例3
比較例2において、発酵温度を37℃として同様に発酵試験を行い、1日あたりのガス発生量を求めた。
Comparative Example 3
In Comparative Example 2, the fermentation test was similarly performed at a fermentation temperature of 37 ° C., and the amount of gas generated per day was determined.

(評価結果)
図2に、上記の実験例1および比較例1〜3でのガス発生量と、各バイオマス(搾乳牛分混合率0%、5%、10%、15%、20%、25%)のVS量をまとめたグラフを示す。
(Evaluation results)
FIG. 2 shows the amount of gas generated in Experimental Example 1 and Comparative Examples 1 to 3 above, and the VS of each biomass (mixing ratio of milking cows 0%, 5%, 10%, 15%, 20%, 25%). A graph summarizing the amounts is shown.

実施例1の搾乳牛糞尿混合率が10%、15%、20%、25%では同じ発酵温度でも比較例1の搾乳牛糞尿混合率が0%、5%と比較して急激にガス発生量が多くなっていることがわかる。   In the milking cow manure mixing ratio of Example 1, 10%, 15%, 20%, and 25%, the amount of gas generation is drastically compared with the milking cow manure mixing ratio of Comparative Example 1 being 0% and 5% even at the same fermentation temperature. It turns out that there are many.

実施例1の搾乳牛糞尿混合率20%と、25%のガス発生量が変わらないのは、搾乳牛糞尿の割合が増加したことで、メタン発酵に利用できるVSの量が減ったため、生産量が頭打ちになったと考えられる。   The mixing rate of milking cow manure in Example 1 is 20% and the gas generation amount of 25% does not change because the amount of VS that can be used for methane fermentation has decreased because the ratio of milking cow manure increased. It seems that has reached the peak.

比較例2(メタン発酵温度55℃)および比較例3(メタン発酵温度37℃)では搾乳牛糞尿を混合した効果が弱いことがわかる。   In Comparative Example 2 (methane fermentation temperature 55 ° C.) and Comparative Example 3 (methane fermentation temperature 37 ° C.), it can be seen that the effect of mixing milking cow manure is weak.

中温発酵(37℃)や従来の一般的な高温発酵(55℃)では、この効果(ルーメン由来牛糞尿混合効果)は発現しにくいというよりは、むしろストレスに対して発酵阻害を受けにくいため、効果が現れにくい。これに対して、本発明は、上記の60℃以上90℃以下の範囲の高温発酵においてVS利用率の高い、本来バイオガス発生量の多い高温でのメタン発酵において効果が発揮されるということが裏付けられた。   In medium temperature fermentation (37 ° C) and conventional general high temperature fermentation (55 ° C), this effect (the rumen-derived cow manure mixing effect) is less susceptible to fermentation inhibition than stress, The effect is difficult to appear. On the other hand, the present invention is effective in methane fermentation at a high temperature with a high VS utilization rate and a high biogas generation rate in a high temperature fermentation in the range of 60 ° C. to 90 ° C. It was supported.

実施例2
10Lの完全混合型メタン発酵用リアクタに、厨芥残渣をホモジナイザでスラリー化したものと排水処理施設で発生する汚泥(濃縮汚泥)を体積比1:1で混合し、さらに搾乳牛糞尿を体積比10%混合したバイオマスを1日1回500ml供給しながら発酵温度を60℃に設定してメタン発酵試験を行った。
Example 2
A 10-liter fully mixed methane fermentation reactor is mixed with slurries of sludge produced by a homogenizer and sludge (concentrated sludge) generated in a wastewater treatment facility at a volume ratio of 1: 1, and milk cow manure is further mixed at a volume ratio of 10 The fermentation temperature was set to 60 ° C. while supplying 500 ml of the mixed biomass once a day, and a methane fermentation test was conducted.

十分にメタン発酵が行われているときに、過酸化水素水に浸して酸化処理(Oをもたせた)を施した汚泥を500ml添加し、その翌日からはもとの酸化処理をしていないバイオマスに戻して運転を続け、その後のガス発生量と酸化還元電位(ORP)を測定して酸化ストレスによる影響を調べた。 When methane fermentation is sufficiently carried out, 500 ml of sludge soaked in hydrogen peroxide and subjected to oxidation treatment (provided with O 2 ) is added, and the original oxidation treatment is not started from the next day. The operation was continued after returning to biomass, and the influence of oxidative stress was investigated by measuring the amount of gas generated and the oxidation-reduction potential (ORP).

比較例4
実施例2において搾乳牛糞尿混合率を5%とした以外は同様にして、メタン発酵を行った。
Comparative Example 4
Methane fermentation was performed in the same manner as in Example 2 except that the mixing ratio of milking cow manure was 5%.

比較例5
実施例2において搾乳牛糞尿混合率を0%とした以外は同様にして、メタン発酵を行った。
Comparative Example 5
Methane fermentation was carried out in the same manner except that the mixing ratio of milking cow manure in Example 2 was 0%.

(評価結果)
図3に実施例2および比較例4、5の結果を示す。
(Evaluation results)
FIG. 3 shows the results of Example 2 and Comparative Examples 4 and 5.

実施例2、比較例4、5を通して、酸化還元電位はほぼ560mVであった。酸化処理汚泥による酸化ストレスは測定上酸化還元電位に影響を及ぼさない程度の、瞬間的な酸素の混入と活性酸素種の生成が原因と考えられる。   Throughout Example 2 and Comparative Examples 4 and 5, the redox potential was approximately 560 mV. Oxidative stress caused by oxidation-treated sludge is thought to be due to instantaneous oxygen contamination and generation of reactive oxygen species that do not affect the oxidation-reduction potential.

比較例4、5では酸化処理汚泥を添加によって酸化ストレスを受け、顕著にガス発生量が低下し、最終的にメタン発酵が停止してガスが発生しなくなってしまったが、実施例2ではバイオガス発生量が一時低下したものの6日後にはガス発生量が回復し、酸化ストレスによる発酵阻害が緩和されたことがわかる。   In Comparative Examples 4 and 5, oxidation treatment sludge was added to cause oxidative stress, and the amount of gas generated was significantly reduced. Finally, methane fermentation was stopped and no gas was generated. It can be seen that the amount of gas generated recovered after 6 days although the amount of gas generated decreased temporarily, and fermentation inhibition due to oxidative stress was alleviated.

本発明のメタン発酵方法を実施する好ましいシステム例を示す図The figure which shows the example of a preferable system which implements the methane fermentation method of this invention 発酵温度37℃、55℃、60℃における搾乳牛糞尿混合率とガス発生量の関係を示すグラフThe graph which shows the relationship between the milking cow manure mixing rate and gas generation amount in fermentation temperature 37 degreeC, 55 degreeC, and 60 degreeC 酸化処理汚泥による酸化ストレスの影響を示すグラフGraph showing the effect of oxidative stress due to oxidation sludge

符号の説明Explanation of symbols

1:貯蔵タンク
2:スクリューポンプ
20:輸送管
3:メタン発酵槽
30:加温ヒーター
31:攪拌機
32:排出管
4:熱交換器
5:脱気装置
6:アンモニアストリッピング装置
60:充填材
1: Storage tank 2: Screw pump 20: Transport pipe 3: Methane fermentation tank 30: Heating heater 31: Stirrer 32: Discharge pipe 4: Heat exchanger 5: Deaerator 6: Ammonia stripping apparatus 60: Filler

Claims (5)

食品系廃棄物に、第1胃(ルーメン)由来の反芻動物糞尿を、体積比で10%以上30%以下混合した発酵原料を、メタン発酵槽に導入して該メタン発酵槽内の温度を60℃以上90℃以下の範囲に調整してメタン発酵することを特徴とする共発酵方法。   A fermented raw material obtained by mixing ruminant manure derived from rumen into 10% to 30% of the volume of food waste is introduced into the methane fermentation tank, and the temperature in the methane fermentation tank is adjusted to 60. A co-fermentation method characterized in that methane fermentation is carried out by adjusting the temperature within a range of from 0C to 90C. 有機性汚泥及び食品系廃棄物に、第1胃(ルーメン)由来の反芻動物糞尿を、体積比で10%以上30%以下混合した発酵原料を、メタン発酵槽に導入して該メタン発酵槽内の温度を60℃以上90℃以下の範囲に調整してメタン発酵することを特徴とする共発酵方法。   A fermentation raw material in which ruminant manure derived from rumen is mixed with organic sludge and food waste in a volume of 10% to 30% is introduced into the methane fermenter, and the inside of the methane fermenter The co-fermentation method is characterized in that methane fermentation is carried out by adjusting the temperature of the mixture to a range of 60 ° C. to 90 ° C. 前記食品系廃棄物は、食品加工残渣又は厨芥残渣であることを特徴とする請求項1又は2記載の共発酵方法。   The co-fermentation method according to claim 1 or 2, wherein the food waste is a food processing residue or a koji residue. 前記厨芥残渣は、コーヒー滓又は茶殻を含むことを特徴とする請求項3記載の共発酵方法。   The co-fermentation method according to claim 3, wherein the koji residue contains coffee koji or tea leaves. 前記有機性汚泥が、有機性排水を好気的に処理する水処理プロセスから発生する汚泥を含むことを特徴とする請求項2〜4の何れかに記載の共発酵方法。   The co-fermentation method according to any one of claims 2 to 4, wherein the organic sludge includes sludge generated from a water treatment process for aerobically treating organic wastewater.
JP2007095726A 2007-03-30 2007-03-30 Co-fermentation method Active JP4709798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095726A JP4709798B2 (en) 2007-03-30 2007-03-30 Co-fermentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095726A JP4709798B2 (en) 2007-03-30 2007-03-30 Co-fermentation method

Publications (2)

Publication Number Publication Date
JP2008253872A true JP2008253872A (en) 2008-10-23
JP4709798B2 JP4709798B2 (en) 2011-06-22

Family

ID=39978021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095726A Active JP4709798B2 (en) 2007-03-30 2007-03-30 Co-fermentation method

Country Status (1)

Country Link
JP (1) JP4709798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method
JP2013184107A (en) * 2012-03-07 2013-09-19 Osaka Gas Co Ltd Method for solubilizing wastewater containing used tea leaf

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JP2000005797A (en) * 1998-06-23 2000-01-11 Mitsubishi Heavy Ind Ltd Method for recovering metahne from organic solid
JP2000343100A (en) * 1999-03-30 2000-12-12 Osaka Gas Co Ltd High temperature methane fermentation method
JP2001334295A (en) * 2000-05-25 2001-12-04 Toshiba Plant Kensetsu Co Ltd Method and apparatus for fermenting organic matter- containing liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JP2000005797A (en) * 1998-06-23 2000-01-11 Mitsubishi Heavy Ind Ltd Method for recovering metahne from organic solid
JP2000343100A (en) * 1999-03-30 2000-12-12 Osaka Gas Co Ltd High temperature methane fermentation method
JP2001334295A (en) * 2000-05-25 2001-12-04 Toshiba Plant Kensetsu Co Ltd Method and apparatus for fermenting organic matter- containing liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method
JP2013184107A (en) * 2012-03-07 2013-09-19 Osaka Gas Co Ltd Method for solubilizing wastewater containing used tea leaf

Also Published As

Publication number Publication date
JP4709798B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Syaichurrozi et al. Effect of total solid content to biogas production rate from Vinasse (RESEARCH NOTE)
Aragaw et al. Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums
CN101830744B (en) Method for simultaneously producing electric fertilizer by mixing and continuous dry fermentation of raw materials with complementary characteristics
Schnürer et al. Microbiology of the biogas process
US11312932B2 (en) Method and device for producing biogas
EP1280738B1 (en) Sludge treatment at a mesophilic temperature
TWI329670B (en) Method for preparing biogas
Watanabe et al. Effect of operating temperature on anaerobic digestion of the Brazilian waterweed Egeria densa and its microbial community
Vijayaraghavan et al. Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter
Darwin et al. Kinetics on anaerobic co-digestion of bagasse and digested cow manure with short hydraulic retention time.
CN114317253A (en) Organic matter methane fermentation circulation control integrated system and fermentation method
JP4709798B2 (en) Co-fermentation method
Sutaryo et al. Enhancing methane production of dairy cow manure by co-digestion with modified cassava flour waste water
JP5030722B2 (en) Methane fermentation method
Tonello et al. Biohydrogen production in AnSBBR in fed-batch from starch effluent: influence of organic load
KR101313766B1 (en) Apparatus and method for high-performance anaerobic digestion using mixture of livestock wastewater and subsidiary materials
Aso et al. Biogasification of cassava residue for on‐site biofuel generation for food production with potential cost minimization, health and environmental safety dividends
Yamei et al. Bioreactor performance and microbial community dynamics in a production-scale biogas plant in northeastern China
CN201747457U (en) Device of raw material character complementary mixed continuous dry fermentation co-production electric fertilizer
CN212403985U (en) Equipment for synthesizing polyhydroxyalkanoate
Kalogo et al. Fermentative hydrogen gas production using biosolids pellets as the inoculum source
Kumar et al. Bioprocess parameters for thermophilic and mesophilic biogas production: recent trends and challenges
Canas Technical feasibility of anaerobic co-digestion of dairy manure with chicken litter and other wastes
CN116157363A (en) Method and apparatus for treating organic waste, including anaerobic digestion thereof and composting of digestate
Woo et al. Biohydrogen production from sewage sludge using a continuous hydrogen fermentation system with a heat treatment vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4709798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350