JPH11309438A - Waste treating method - Google Patents

Waste treating method

Info

Publication number
JPH11309438A
JPH11309438A JP12249698A JP12249698A JPH11309438A JP H11309438 A JPH11309438 A JP H11309438A JP 12249698 A JP12249698 A JP 12249698A JP 12249698 A JP12249698 A JP 12249698A JP H11309438 A JPH11309438 A JP H11309438A
Authority
JP
Japan
Prior art keywords
treatment
solid
waste
sludge
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12249698A
Other languages
Japanese (ja)
Other versions
JP3570888B2 (en
Inventor
Hiroji Seki
廣二 関
Giyokuyu Ri
玉友 李
Yoshio Okuno
芳男 奥野
Hiroshi Sasaki
宏 佐々木
Kazuhiro Akamine
和浩 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Construction and Engineering Co Ltd filed Critical Ataka Construction and Engineering Co Ltd
Priority to JP12249698A priority Critical patent/JP3570888B2/en
Publication of JPH11309438A publication Critical patent/JPH11309438A/en
Application granted granted Critical
Publication of JP3570888B2 publication Critical patent/JP3570888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste treating method by which organic wastes of various properties can effectively and easily be treated and the recovery efficiency of valuables can be improved. SOLUTION: Biologically treated sludge is subjected to solid-liquid separation into sludge contents and liquid filtrate by a first solid-liquid separation means 1. The sludge contents, liquid organic waste from which residue has been removed by a second pretreatment means 2, and solid organic waste from which impurities have been removed by a third pretreatment means 3 are tempered into a mixture. Magnesium compounds, phosphate compounds, iron compounds, nickel compounds, and cobalt compounds are added to the mixture, and the resultant matter is subjected to methane fermentation treatment in a methane fermentation tank 6. The fermented matter is subjected to solid-liquid separation into sludge to be made compost and treated liquid filtrate by a second solid-liquid separation means 7. After the liquid filtrate and the treated liquid filtrate are subjected to ammonia striping treatment, they are subjected to biological treatment by aerobic microorganisms and subjected to high treatment such as flocculation and membrane treatment by a high treatment means 11 to obtain treated water. Excess sludge and sludge of the high treatment means 11 are returned to the first solid-liquid separation means 1 and retreated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を含有する
有機性廃棄物をメタン発酵処理する廃棄物処理方法に関
する。
The present invention relates to a waste treatment method for subjecting organic waste containing organic matter to methane fermentation.

【0002】[0002]

【従来の技術】従来、例えば図3に示すように、別途処
理していた屎尿や畜産廃水、浄化槽汚泥、農業集落廃
水、下水汚泥、食品加工汚泥などの流動性を有する液状
の有機性廃棄物と、厨芥などの生ごみである固形状の有
機性廃棄物とを、一つの系内で処理するとともに、処理
の際に固形燃料や肥料、メタンガスなどの有価物を回収
する廃棄物処理方法が知られている。
2. Description of the Related Art Conventionally, as shown in FIG. 3, for example, liquid organic waste having fluidity such as human waste, livestock wastewater, septic tank sludge, agricultural settlement wastewater, sewage sludge, and food processing sludge which have been separately treated. And solid organic waste, such as kitchen garbage, are treated in one system, and at the time of disposal, solid fuel, fertilizers, and valuable resources such as methane gas are collected. Are known.

【0003】この図3に示す廃棄物処理方法は、液状の
有機性廃棄物を粉砕あるいは夾雑物を分離除去するなど
第1の前処理工程21で前処理をした後に固液分離工程22
で汚泥分と濾液とに固液分離し、汚泥分は別途第2の前
処理工程23であらかじめ粉砕あるいは夾雑物を除去した
固形状の有機性廃棄物とともにメタン発酵槽24でメタン
発酵処理する。そして、メタン発酵処理にてメタンガス
を有価物として回収した後、脱水工程25で汚泥と処理濾
液とに脱水分離し、汚泥は肥料などにコンポスト化して
有価物として回収し、処理濾液は固液分離工程22で液状
の有機性廃棄物の固液分離にて分集した濾液とともに硝
化脱窒工程26で硝化脱窒処理し、さらに高度処理工程27
で凝集剤にて凝集処理し、処理水として処理する。な
お、硝化脱窒処理および凝集処理により生じた余剰汚泥
や凝集汚泥は、液状の有機性廃棄物の前処理や固液分離
に返送して再び処理する。
In the waste treatment method shown in FIG. 3, a solid-liquid separation step 22 is performed after a pre-treatment in a first pre-treatment step 21 such as pulverization of liquid organic waste or separation and removal of impurities.
The solid-liquid separation into a sludge component and a filtrate is performed, and the sludge component is separately subjected to methane fermentation in a methane fermentation tank 24 together with solid organic waste from which pulverization or impurities have been removed in advance in a second pretreatment step 23. Then, after recovering methane gas as a valuable material in the methane fermentation treatment, the dewatering step 25 dehydrates and separates the sludge into a treated filtrate, and the sludge is composted into fertilizers and collected as a valuable material, and the treated filtrate is separated into a solid and a liquid. In step 22, a nitrification and denitrification treatment is performed in a nitrification and denitrification step 26 together with a filtrate collected by solid-liquid separation of liquid organic waste, and further an advanced treatment step 27
For coagulation with a coagulant and treated as treated water. Excess sludge and coagulated sludge generated by the nitrification and denitrification treatment and coagulation treatment are returned to pretreatment of liquid organic waste and solid-liquid separation to be treated again.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、屎尿や
畜産廃水、水産加工廃水などの液状の有機性廃棄物は、
固液分離してメタン発酵処理するための汚泥分を分離し
ているが、濾液には以前高いBOD(Biochemical Oxyg
en Demand :生物化学的酸素要求量)が含まれていると
ともに多量の窒素化合物が溶解した状態となっている。
このため、これらBODおよび窒素化合物の双方を処理
する装置構成が複雑で大型となるとともに処理に大きな
エネルギを必要とする硝化脱窒処理を行う必要がある。
また、濾液中のBODや窒素化合物などを有価物として
回収できない問題がある。
However, liquid organic waste such as human waste, livestock wastewater, fishery processing wastewater, etc.
It separates the sludge for methane fermentation by solid-liquid separation, but the filtrate has high BOD (Biochemical Oxyg
en Demand: biochemical oxygen demand) and a large amount of nitrogen compounds dissolved.
For this reason, it is necessary to perform a nitrification denitrification treatment which requires a complicated and large-sized apparatus for treating both the BOD and the nitrogen compound and requires a large energy for the treatment.
In addition, there is a problem that BOD and nitrogen compounds in the filtrate cannot be recovered as valuables.

【0005】本発明は、上記問題点に鑑みて、各種性状
の有機性廃棄物を効率よく簡単に処理できるとともに、
有価物としての回収効率を向上できる廃棄物処理方法を
提供することを目的とする。
[0005] In view of the above problems, the present invention can efficiently and easily treat various types of organic wastes,
An object of the present invention is to provide a waste disposal method that can improve the efficiency of collecting valuable resources.

【0006】[0006]

【課題を解決するための手段】請求項1記載の廃棄物処
理方法は、生物処理により生成した生物処理汚泥を汚泥
分と濾液とに固液分離し、前記汚泥分と嫌気性生物にて
分解可能な有機物を含有する流動性を有した液状有機性
廃棄物と嫌気性生物にて分解可能な固形状の有機物を含
有する固形状有機性廃棄物とを攪拌混合してメタン発酵
処理した後に固液分離して処理濾液を分集し、この処理
濾液を前記濾液とにて好気性微生物により生物処理する
ものである。
According to a first aspect of the present invention, there is provided a waste treatment method comprising the steps of solid-liquid separation of biologically treated sludge generated by biological treatment into a sludge component and a filtrate, and decomposing the sludge component and an anaerobic organism. The liquid organic waste with fluidity containing possible organic matter and the solid organic waste containing solid organic matter that can be decomposed by anaerobic organisms are stirred and mixed, and solidified after methane fermentation treatment. The treated filtrate is separated by liquid separation, and the treated filtrate is subjected to biological treatment with the filtrate by an aerobic microorganism.

【0007】そして、生物処理により生成した生物処理
汚泥を固液分離して分集した全有機物の大半が存在する
汚泥分と、嫌気性生物にて分解可能な有機物を含有する
流動性を有し液体部分に多量の有機物が存在する液状有
機性廃棄物と、嫌気性生物にて分解可能な固形状の有機
物を含有する固形状有機性廃棄物とを攪拌混合してメタ
ン発酵処理し、このメタン発酵処理した後に固液分離し
て分集した処理濾液と生物処理汚泥を固液分離して分集
した濾液とを好気性微生物により生物処理するため、各
種性状の異なる廃棄物の有機物をほとんどメタン発酵処
理してメタンガスの有価物として回収可能となるととも
に、後工程の好気性微生物による生物処理の負荷が低減
して装置の小型化および運転エネルギの低減が得られ、
効率よく処理できる。
[0007] The biologically treated sludge generated by the biological treatment is separated by solid-liquid separation into a sludge containing most of the total organic matter, and a liquid having a fluidity containing an organic matter decomposable by anaerobic organisms. The methane fermentation treatment is carried out by mixing and mixing liquefied organic waste in which a large amount of organic matter is present in part with solid organic waste containing solid organic matter that can be decomposed by anaerobic organisms. After the treatment, the treated filtrate separated and separated by solid-liquid separation and the filtrate separated and separated from the biologically treated sludge are subjected to biological treatment with aerobic microorganisms. Methane gas can be recovered as valuable resources, and the load of biological treatment by aerobic microorganisms in the post-process is reduced, resulting in downsizing of the device and reduction in operating energy.
It can be processed efficiently.

【0008】請求項2記載の廃棄物処理方法は、請求項
1記載の廃棄物処理方法において、好気性微生物による
生物処理により生成する余剰汚泥は、汚泥分、液状有機
性廃棄物および固形状有機性廃棄物とともにメタン発酵
処理するものである。
According to a second aspect of the present invention, there is provided a waste treatment method according to the first aspect, wherein excess sludge generated by biological treatment with an aerobic microorganism comprises sludge, liquid organic waste and solid organic waste. It is subjected to methane fermentation together with municipal waste.

【0009】そして、好気性微生物による生物処理によ
り生成する余剰汚泥を、汚泥分、液状有機性廃棄物およ
び固形状有機性廃棄物とともにメタン発酵処理してメタ
ンガスの有価物として回収するため、有機物を確実にメ
タン発酵処理してメタンガスの有価物として回収するの
で、効率よく処理できる。
[0009] The excess sludge generated by the biological treatment with the aerobic microorganisms is subjected to methane fermentation together with the sludge, liquid organic waste and solid organic waste to be collected as valuable methane gas. Since the methane fermentation treatment is surely performed and the methane gas is recovered as a valuable material, the treatment can be performed efficiently.

【0010】請求項3記載の廃棄物処理方法は、請求項
1または2記載の廃棄物処理方法において、メタン発酵
処理する前に総固形物濃度を5%以上20%以下に水分
調整するものである。
A waste treatment method according to a third aspect of the present invention is the waste treatment method according to the first or second aspect, wherein the total solid concentration is adjusted to a water content of 5% or more and 20% or less before the methane fermentation treatment. is there.

【0011】そして、メタン発酵処理する前に総固形物
濃度が5%以上20%以下となるように水分調整するた
め、メタン発酵処理する際の適性な濃度となり、メタン
発酵処理効率が向上する。なお、総固形物濃度が5%よ
り低いとメタン発酵処理する有機物の濃度が低減し、運
転エネルギに対するメタンガスの発生量が低減してメタ
ン発酵の効率が低下する。また、総固形物濃度が20%
より高いと粘性が増大するとともに固形状の有機物の存
在により、均一に短時間で有機物を分解処理できなくな
りメタン発酵の効率が低下する。このため、メタン発酵
処理する前に総固形物濃度を5%以上20%以下に設定
する。
Since the water content is adjusted so that the total solid concentration becomes 5% or more and 20% or less before the methane fermentation treatment, an appropriate concentration for the methane fermentation treatment is obtained, and the methane fermentation treatment efficiency is improved. If the total solid concentration is lower than 5%, the concentration of the organic matter to be subjected to the methane fermentation treatment is reduced, and the amount of methane gas generated with respect to the operation energy is reduced, so that the efficiency of the methane fermentation is reduced. In addition, the total solid concentration is 20%
If it is higher, the viscosity increases and the presence of solid organic matter makes it impossible to uniformly decompose the organic matter in a short time, thereby lowering the efficiency of methane fermentation. Therefore, the total solid concentration is set to 5% or more and 20% or less before the methane fermentation treatment.

【0012】請求項4記載の廃棄物処理方法は、請求項
1ないし3いずれか一記載の廃棄物処理方法において、
メタン発酵処理前に液状有機性廃棄物および固形状有機
性廃棄物の少なくとも一方から夾雑物を除去するもので
ある。
According to a fourth aspect of the present invention, there is provided the waste disposal method according to any one of the first to third aspects.
Prior to the methane fermentation treatment, impurities are removed from at least one of the liquid organic waste and the solid organic waste.

【0013】そして、メタン発酵処理する前にあらかじ
め液状有機性廃棄物および固形状有機性廃棄物の少なく
とも一方から夾雑物を除去するため、夾雑物によるメタ
ン発酵処理の阻害を防止し、メタン発酵処理効率が向上
する。
In order to remove impurities from at least one of the liquid organic waste and the solid organic waste before the methane fermentation treatment, the methane fermentation treatment is prevented from being hindered by the impurities. Efficiency is improved.

【0014】請求項5記載の廃棄物処理方法は、請求項
1ないし4いずれか一記載の廃棄物処理方法において、
メタン発酵処理する前または前記メタン発酵処理の際に
マグネシウム化合物および燐酸化合物を添加するもので
ある。
According to a fifth aspect of the present invention, there is provided a waste disposal method as set forth in any one of the first to fourth aspects.
A magnesium compound and a phosphate compound are added before or during the methane fermentation treatment.

【0015】そして、メタン発酵処理する前またはメタ
ン発酵処理の際にマグネシウム化合物および燐酸化合物
を添加するため、生物処理汚泥の汚泥分中に残留する窒
素化合物、液状有機性廃棄物中に存在する窒素化合物が
マグネシウム化合物および燐酸化合物と反応して燐酸マ
グネシウムアンモニウムを生成して析出させるので、窒
素化合物によるメタン発酵処理の阻害を防止して、メタ
ン発酵処理効率を向上する。
Since the magnesium compound and the phosphate compound are added before or during the methane fermentation treatment, the nitrogen compounds remaining in the sludge of the biologically treated sludge and the nitrogen present in the liquid organic waste are removed. Since the compound reacts with the magnesium compound and the phosphate compound to generate and precipitate magnesium ammonium phosphate, the inhibition of the methane fermentation treatment by the nitrogen compound is prevented, and the methane fermentation treatment efficiency is improved.

【0016】請求項6記載の廃棄物処理方法は、請求項
5記載の廃棄物処理方法において、マグネシウム化合物
および燐酸化合物を添加する際に、鉄化合物、コバルト
化合物およびニッケル化合物の少なくともいずれか一方
を添加するものである。
According to a sixth aspect of the present invention, in the waste treatment method of the fifth aspect, when adding the magnesium compound and the phosphate compound, at least one of the iron compound, the cobalt compound and the nickel compound is added. It is to be added.

【0017】そして、マグネシウム化合物および燐酸化
合物を添加する際に、鉄化合物、コバルト化合物および
ニッケル化合物の少なくともいずれか一方を添加するた
め、メタン発酵処理の際に総固形物濃度や窒素化合物濃
度が高くなる状態でも、栄養塩類の鉄分、コバルト分お
よびニッケル分の不活性効果の増大分が補給されて、栄
養塩バランスが確保され、メタン発酵処理効率が向上す
る。
When adding the magnesium compound and the phosphate compound, at least one of the iron compound, the cobalt compound and the nickel compound is added. Even in such a state, the increased amount of the inactive effect of the iron, cobalt and nickel components of the nutrients is replenished, whereby the nutrient balance is secured and the methane fermentation treatment efficiency is improved.

【0018】請求項7記載の廃棄物処理方法は、請求項
5または6記載の廃棄物処理方法において、マグネシウ
ム化合物および燐酸化合物の添加量は、メタン発酵処理
の際の窒素化合物の濃度が4000ppm 以下となる量で
あるものである。
According to a seventh aspect of the present invention, in the waste treatment method according to the fifth or sixth aspect, the amount of the magnesium compound and the phosphate compound is such that the concentration of the nitrogen compound in the methane fermentation treatment is 4000 ppm or less. It is the quantity which becomes.

【0019】そして、マグネシウム化合物および燐酸化
合物は、メタン発酵処理の際の窒素化合物の濃度が40
00ppm 以下となるように添加するため、窒素化合物に
よるメタン発酵処理の阻害が確実に防止され、メタン発
酵処理効率が向上する。
The magnesium compound and the phosphate compound have a nitrogen compound concentration of 40 at the time of the methane fermentation treatment.
Since the addition is performed so as to be not more than 00 ppm, inhibition of the methane fermentation treatment by the nitrogen compound is reliably prevented, and the methane fermentation treatment efficiency is improved.

【0020】請求項8記載の廃棄物処理方法は、請求項
1ないし7いずれか一記載の廃棄物処理方法において、
処理濾液と濾液とを生物処理する前に窒素化合物を除去
するものである。
[0020] The waste disposal method according to claim 8 is the waste disposal method according to any one of claims 1 to 7,
It is to remove nitrogen compounds before biological treatment of the treated filtrate and the filtrate.

【0021】そして、処理濾液と濾液とを生物処理する
前に窒素化合物を除去するため、硝化脱窒処理による窒
素化合物の分解処理が不要となり、装置構成の簡略化お
よび処理エネルギの低減が得られるとともに、生物処理
の負荷が低減し、処理効率が向上する。
Further, since the treated filtrate and the filtrate are subjected to biological treatment to remove nitrogen compounds, the nitrogen compound is not required to be decomposed by nitrification and denitrification treatment, so that the apparatus configuration can be simplified and the treatment energy can be reduced. At the same time, the load of biological treatment is reduced, and the treatment efficiency is improved.

【0022】請求項9記載の廃棄物処理方法は、請求項
8記載の廃棄物処理方法において、窒素化合物の除去
は、アンモニアストリッピング処理するものである。
According to a ninth aspect of the present invention, in the waste disposal method of the eighth aspect, the nitrogen compound is removed by ammonia stripping.

【0023】そして、生物処理する前にアンモニアスト
リッピング処理により窒素化合物を除去するため、生物
処理により生成した生物処理汚泥の固液分離により得ら
れ比較的有機物が少なく窒素化合物が多い濾液、およ
び、メタン発酵処理後の比較的有機物が少なく窒素化合
物が多い処理濾液で、硝化脱窒処理では有機物を別途添
加しなくては窒素化合物が処理できなくなる状態でも、
簡単な構成で窒素化合物を除去できるとともに有価物と
して回収でき、また、好気性微生物による生物処理の負
荷が低減し、処理効率が向上する。
In order to remove nitrogen compounds by ammonia stripping treatment before biological treatment, a filtrate obtained by solid-liquid separation of biologically treated sludge generated by biological treatment and containing relatively few organic substances and a large amount of nitrogen compounds, and In the treated filtrate with relatively little organic matter and many nitrogen compounds after methane fermentation, even in the state where nitrogen compounds can not be processed without additional organic matter in nitrification denitrification treatment,
Nitrogen compounds can be removed with a simple configuration and can be recovered as valuables. In addition, the load of biological treatment by aerobic microorganisms is reduced, and treatment efficiency is improved.

【0024】請求項10記載の廃棄物処理方法は、請求
項8または9記載の廃棄物処理方法において、窒素化合
物の除去は、生物処理する際の処理濾液および濾液の混
合中の生物化学的酸素要求量(BOD)濃度が全窒素化
合物濃度の15倍以上となるまで除去するものである。
According to a tenth aspect of the present invention, there is provided the waste treatment method according to the eighth or ninth aspect, wherein the removal of the nitrogen compound comprises the step of removing the biologically treated oxygen from the treated filtrate and the mixture of the filtrate during the biological treatment. The removal is performed until the required amount (BOD) concentration becomes 15 times or more of the total nitrogen compound concentration.

【0025】そして、生物処理する際の処理濾液および
濾液の混合中の生物化学的酸素要求量(BOD)濃度が
全窒素化合物濃度の15倍以上となるまで窒素化合物を
除去するため、生物処理する好気性微生物が摂取する栄
養源となる窒素化合物が確保され、処理効率が向上する
とともに、窒素化合物が残留せず高度に低減する。
Then, biological treatment is carried out to remove nitrogen compounds until the biochemical oxygen demand (BOD) concentration during the treatment filtrate and the mixture of the filtrate during the biological treatment becomes 15 times or more the total nitrogen compound concentration. Nitrogen compounds serving as a nutrient source to be ingested by the aerobic microorganisms are secured, the treatment efficiency is improved, and the nitrogen compounds remain at a high level without remaining.

【0026】[0026]

【発明の実施の形態】以下、本発明の廃棄物処理方法の
実施の一形態の構成を図1を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a waste disposal method according to the present invention will be described below with reference to FIG.

【0027】図1において、1は第1の固液分離手段
で、この第1の固液分離手段1は、別途好気性微生物に
よる生物処理や硝化脱窒処理などにより生じた余剰汚
泥、浄化槽汚泥、下水汚泥、畜産廃水汚泥、農業集落汚
泥、食品加工汚泥などの微生物による生物処理の作用に
より生じた生物処理汚泥を、汚泥分と濾液とに脱水して
固液分離するもので、例えばスクリュープレスなどの脱
水機が用いられる。
In FIG. 1, reference numeral 1 denotes a first solid-liquid separation means, which is composed of surplus sludge and septic tank sludge separately generated by biological treatment with aerobic microorganisms or nitrification and denitrification treatment. , Sewage sludge, livestock wastewater sludge, agricultural settlement sludge, biologically processed sludge generated by the action of microorganisms such as food processing sludge, and dewatered into sludge and filtrate to solid-liquid separation, for example, a screw press Such a dehydrator is used.

【0028】一方、2は第1の前処理手段で、この第1
の前処理手段2は例えばドラムスクリーンなどを備え、
屎尿や畜産廃水、農業集落廃水、下水、食品加工廃水な
どの流動性を有する液状有機性廃棄物から紙や布である
繊維物などの屎渣や、金属片やガラス、プラスチックな
どの夾雑物を除去する。
On the other hand, reference numeral 2 denotes a first pre-processing means.
Is provided with, for example, a drum screen,
From liquid organic waste with fluidity such as human waste, livestock wastewater, agricultural settlement wastewater, sewage, and food processing wastewater to waste such as paper and cloth, textiles, and other impurities such as metal chips, glass, and plastic. Remove.

【0029】また、3は第2の前処理手段で、この第2
の前処理手段3は生ごみや厨芥、農水産廃棄物、食品加
工廃棄物などの事業系ごみなど主に固形状の有機物を含
有する固形状有機性廃棄物を破袋あるいは破砕する図示
しない解破砕装置と、この解破砕装置にて解破砕された
破砕物を磁気選別して金属片などの夾雑物を除去する図
示しない金属除去手段と、固形状有機性廃棄物に含まれ
る合成樹脂製の袋やプラスチックなどの夾雑物を除去す
る図示しない分別装置とを備えている。
Reference numeral 3 denotes a second pre-processing means.
The pre-treatment means 3 is a solution (not shown) for breaking or crushing solid organic waste mainly containing solid organic matter such as business garbage such as garbage, kitchen waste, agricultural and marine waste, and food processing waste. A crushing device, a metal removing means (not shown) for magnetically sorting the crushed material crushed by the crushing device to remove impurities such as metal pieces, and a synthetic resin material contained in solid organic waste. A separation device (not shown) for removing impurities such as bags and plastics is provided.

【0030】そして、第1の固液分離手段1、第1の前
処理手段2および第2の前処理手段3には、固液分離し
た汚泥分、夾雑物が除去された液状有機性廃棄物および
夾雑物が除去された固形状有機性廃棄物が投入される調
整手段としての調整槽4が接続されている。なお、すで
に脱水された状態の生物処理汚泥、例えば脱水下水汚泥
などは、第1の固液分離手段1を経ることなく直接調整
槽4に投入してもよい。
The first solid-liquid separation means 1, the first pre-treatment means 2 and the second pre-treatment means 3 are provided with solid-liquid separated sludge and liquid organic waste from which impurities are removed. An adjusting tank 4 is connected as an adjusting means into which solid organic waste from which impurities are removed is input. The biologically treated sludge that has already been dehydrated, for example, dewatered sewage sludge, may be directly charged into the adjustment tank 4 without passing through the first solid-liquid separation means 1.

【0031】この調整槽4には、投入された汚泥分、液
状有機性廃棄物および固形状有機性廃棄物を攪拌混合す
る図示しない攪拌手段と、例えば約55℃〜60℃に加
温する手段と、水を適宜添加して水分を調整する水分調
整手段と、マグネシウム化合物、燐酸化合物、鉄化合
物、コバルト化合物およびニッケル化合物を添加する添
加手段とを備えている。
The adjusting tank 4 is provided with a stirring means (not shown) for stirring and mixing the introduced sludge, the liquid organic waste and the solid organic waste, and a means for heating to, for example, about 55-60 ° C. And a water adjusting means for adjusting the water content by appropriately adding water, and an adding means for adding a magnesium compound, a phosphoric acid compound, an iron compound, a cobalt compound and a nickel compound.

【0032】なお、水分の添加および加温に際してはス
チームを用いるとよい。スチームを用いることにより、
水を添加して別途加熱手段にて加熱する必要がなく、効
率よく加温・給水できる。
It is preferable to use steam when adding water and heating. By using steam,
There is no need to add water and separately heat with heating means, so that heating and water supply can be performed efficiently.

【0033】また、添加手段5にて添加するマグネシウ
ム化合物としては、マグネシウムイオンを解離する例え
ばマグネシウム塩、水酸化マグネシウム、酸化マグネシ
ウムなどが用いられ、燐酸化合物としては燐酸イオンを
解離する例えば燐酸塩、燐酸、重縮合燐酸などが用いら
れる。さらに、鉄化合物、コバルト化合物およびニッケ
ル化合物も同様に、鉄イオン、コバルトイオン、ニッケ
ルイオンとして解離する例えば塩化物を用いる。
As the magnesium compound added by the adding means 5, for example, a magnesium salt, magnesium hydroxide, magnesium oxide or the like that dissociates magnesium ions is used. As the phosphate compound, for example, phosphate, which dissociates phosphate ions, Phosphoric acid, polycondensed phosphoric acid and the like are used. Further, iron compounds, cobalt compounds, and nickel compounds also use, for example, chlorides that dissociate as iron ions, cobalt ions, and nickel ions.

【0034】また、調整槽4には、汚泥分、液状有機性
廃棄物および固形状有機性廃棄物を加温しつつ攪拌混合
して塊状物も混在するようなスラリ状に調質した混合物
をメタン発酵処理するメタン発酵処理手段としてのメタ
ン発酵槽6が接続されている。このメタン発酵槽6は、
固形状や塊状の有機性廃棄物などを含有する濃度が濃い
スラリ状の調質物でも処理可能な生物浮遊型で、加温、
例えば55℃〜60℃で適宜攪拌してメタン生成菌など
の嫌気性微生物にて有機性廃棄物中の有機性物質をメタ
ン発酵処理する。そして、このメタン発酵槽6には、発
生したメタンガスを回収する図示しないメタンガス回収
手段が設けられている。なお、メタンガス回収手段に
は、回収したメタンガスを貯溜するガスタンクが接続さ
れている。また、回収したメタンガスは、発電や処理の
加温などに利用し、余剰エネルギは施設外にも供給でき
る。
In the adjusting tank 4, a mixture prepared by mixing and stirring the sludge, the liquid organic waste and the solid organic waste while heating them to form a slurry in which lumps are mixed is also heated. A methane fermentation tank 6 as methane fermentation treatment means for performing methane fermentation treatment is connected. This methane fermenter 6
It is a biological suspension type that can process even concentrated slurry-like refining materials containing solid or massive organic waste, etc.
For example, an organic substance in the organic waste is subjected to methane fermentation treatment with anaerobic microorganisms such as methane-producing bacteria by appropriately stirring at 55 ° C to 60 ° C. The methane fermenter 6 is provided with methane gas collecting means (not shown) for collecting the generated methane gas. The methane gas recovery means is connected to a gas tank for storing the recovered methane gas. In addition, the recovered methane gas is used for heating of power generation and processing, and surplus energy can be supplied outside the facility.

【0035】さらに、メタン発酵槽6には、混合物をメ
タン発酵処理して得られた処理物を処理濾液および汚泥
とに脱水して固液分離する例えば、遠心脱水機、回転円
盤形脱水機、スクリュープレスなどの脱水機が用いられ
る第2の固液分離手段7が接続されている。なお、この
第2の固液分離手段7にて分離した汚泥は、別途肥料な
どに処理するコンポスト化するための工程に搬送する。
なお、第2の固液分離手段7に、高分子凝集剤を添加し
て残留する汚染物質を凝集させる凝集手段を設けてもよ
い。
The methane fermentation tank 6 further dehydrates the processed product obtained by methane fermentation of the mixture into treated filtrate and sludge to separate solid and liquid. For example, a centrifugal dehydrator, a rotating disk dehydrator, Second solid-liquid separation means 7 using a dehydrator such as a screw press is connected. The sludge separated by the second solid-liquid separation means 7 is transported to a composting step where the sludge is separately processed into fertilizer or the like.
The second solid-liquid separation means 7 may be provided with a coagulation means for adding a polymer coagulant to coagulate remaining contaminants.

【0036】また、第1の固液分離手段1および第2の
固液分離手段7には、第1の固液分離手段1にて分集し
た濾液および第2の固液分離手段7にて分集した処理濾
液が投入される窒素化合物除去手段8が接続されてい
る。この窒素化合物除去手段8は、投入された濾液およ
び処理濾液をアンモニアストリッピングしてアンモニア
性窒素(NH3 −N)などの窒素化合物を除去するアン
モニアストリッピング処理手段を備えている。すなわ
ち、アンモニアストリッピング処理手段は、図示しない
曝気手段を備えた曝気槽内に濾液および処理濾液を投入
し、曝気して濾液および処理濾液中に溶解するアンモニ
ア性窒素(NH3 −N)などの窒素化合物を空気中に移
行させるという気曝によりストリッピングし、窒素化合
物を含有する空気を、酸性槽に貯留する例えば硫酸や塩
酸などの無機酸水溶液である酸性水溶液内の中に透過さ
せ、窒素化合物を例えば硫酸アンモニウムや塩化アンモ
ニウムなどとして析出させて回収する。
The first solid-liquid separating means 1 and the second solid-liquid separating means 7 have the filtrate collected by the first solid-liquid separating means 1 and the second solid-liquid separating means 7, respectively. The nitrogen compound removing means 8 into which the treated filtrate is charged is connected. The nitrogen compound removing means 8 includes an ammonia stripping processing means for removing nitrogen compounds such as ammoniacal nitrogen (NH 3 -N) by ammonia stripping the fed filtrate and the treated filtrate. That is, the ammonia stripping treatment means puts the filtrate and the treatment filtrate into an aeration tank provided with an aeration means (not shown), aerated and dissolved in the filtrate and the treatment filtrate such as ammonia nitrogen (NH 3 -N). Stripping by air exposure to transfer nitrogen compounds into the air, and allowing the air containing the nitrogen compounds to permeate into an acidic aqueous solution that is an inorganic acid aqueous solution such as sulfuric acid or hydrochloric acid stored in an acidic tank, and The compound is precipitated and recovered, for example, as ammonium sulfate or ammonium chloride.

【0037】そして、窒素化合物除去手段8のアンモニ
アストリッピング処理手段には、アンモニアストリッピ
ング処理された濾液および処理濾液を好気性微生物によ
り生物処理する好気性生物処理手段9が接続されてい
る。この好気性生物処理手段9には、投入されたアンモ
ニアストリッピング処理後の濾液および処理濾液に酸素
を供給するための空気を曝気する図示しない曝気手段が
設けられている。また、この好気性生物処理手段9に
は、余剰汚泥を固液分離する図示しない第3の固液分離
手段が設けられ、この第3の固液分離手段にて分集した
余剰汚泥を第1の固液分離手段1に返送する余剰汚泥返
送手段10が接続されている。
The ammonia stripping treatment means of the nitrogen compound removing means 8 is connected to an aerobic biological treatment means 9 for biologically treating the filtrate subjected to the ammonia stripping treatment and the treated filtrate with an aerobic microorganism. The aerobic biological treatment means 9 is provided with an aeration means (not shown) for aeration of the supplied filtrate after the ammonia stripping treatment and air for supplying oxygen to the treated filtrate. The aerobic biological treatment means 9 is provided with a third solid-liquid separation means (not shown) for solid-liquid separation of excess sludge, and the excess sludge collected by the third solid-liquid separation means is subjected to the first solid-liquid separation means. An excess sludge return means 10 for returning to the solid-liquid separation means 1 is connected.

【0038】さらに、好気性生物処理手段9には、好気
性微生物により生物処理された濾液および処理濾液を、
例えば凝集剤の添加により溶解する汚染物質を凝集させ
て固液分離したり、活性炭などにより汚染物質を吸着分
離したり、限外濾過や逆浸透膜などにより高度な膜分離
により汚染物質を除去するなどの高度処理する高度処理
手段11が接続され、この高度処理手段11により濾液およ
び処理濾液が高度処理されて処理液として放流される。
なお、高度処理手段11には、分集した凝集汚泥や膜分離
により分離した膜分離汚泥を第1の固液分離手段1に返
送する汚泥返送手段12が接続されている。なお、活性炭
により高度処理する場合には、汚泥返送手段は設けな
い。
Further, the filtrate treated biologically by the aerobic microorganism and the treated filtrate are added to the aerobic biological treatment means 9.
For example, the contaminants dissolved by the addition of a coagulant are aggregated and solid-liquid separated, the contaminants are separated by adsorption with activated carbon, etc., and the contaminants are removed by advanced membrane separation such as ultrafiltration or reverse osmosis membrane. An advanced processing means 11 for performing advanced processing is connected, and the filtrate and the processed filtrate are subjected to advanced processing by the advanced processing means 11 and discharged as a processing liquid.
The advanced treatment means 11 is connected to a sludge return means 12 for returning collected coagulated sludge or membrane separated sludge separated by membrane separation to the first solid-liquid separation means 1. In the case of advanced treatment with activated carbon, no sludge return means is provided.

【0039】次に、上記実施の一形態の動作について説
明する。
Next, the operation of the above embodiment will be described.

【0040】まず、生物処理汚泥を第1の固液分離手段
1にて濾液と汚泥分とに脱水して固液分離する。
First, the biologically treated sludge is dehydrated by a first solid-liquid separation means 1 into a filtrate and a sludge portion to be separated into a solid and a liquid.

【0041】また、液状有機性廃棄物を第1の前処理手
段2にて夾雑物を除去する。
Further, foreign substances are removed from the liquid organic waste by the first pretreatment means 2.

【0042】さらに、固形状有機性廃棄物を第2の前処
理手段3にて破袋あるいは破砕して合成樹脂製の袋やプ
ラスチックなどの夾雑物を除去し、さらに磁気選別して
金属片などの夾雑物を除去する。
Further, the solid organic waste is broken or crushed by the second pretreatment means 3 to remove impurities such as synthetic resin bags and plastics, and is further subjected to magnetic separation to produce metal pieces and the like. Remove impurities.

【0043】そして、第1の固液分離手段1からの汚泥
分、第1の前処理手段2にて前処理された液状有機性廃
棄物、および、第2の前処理手段3にて前処理した固形
状有機性廃棄物を調整槽4に投入する。この調整槽4に
て、例えばスチームを用いて約55℃に加温しつつ攪拌
混合し、攪拌混合が可能な全蒸発残留物濃度である総固
形物濃度(Total Solids:TS)が5%以上20%以下
となる塊状物も混入するようなスラリ状の混合物を調質
する。なお、TS濃度が20%より高くなると、メタン
発酵処理の際の攪拌混合が不十分となり効率よく後工程
のメタン発酵処理できなくなるため、TS濃度を20%
以下、好ましくは18%以下にする。さらに、TS濃度
が5%より低くなると、水分量が多くなって有機物の割
合が少なくなった状態となり、後工程でのメタン発酵処
理の効率が低下するため、5%以上、好ましくは7.5
%以上に設定する。また、塊状物などが少ないもしくは
ほとんどないような状態のスラリ状とすることにより、
微生物によるメタン発酵処理がより効率よく進行する。
Then, the sludge content from the first solid-liquid separation means 1, the liquid organic waste pretreated by the first pretreatment means 2, and the pretreatment by the second pretreatment means 3 The solid organic waste thus obtained is charged into the adjusting tank 4. In the adjusting tank 4, the mixture is stirred and mixed while being heated to about 55 ° C. using, for example, steam, and the total solids concentration (TS), which is the concentration of all evaporation residues that can be stirred and mixed, is 5% or more. Condition a slurry-like mixture in which lumps of 20% or less are mixed. If the TS concentration is higher than 20%, the stirring and mixing at the time of the methane fermentation treatment become insufficient and the methane fermentation treatment in the subsequent step cannot be performed efficiently.
Or less, preferably 18% or less. Further, when the TS concentration is lower than 5%, the water content is increased and the proportion of organic substances is reduced, and the efficiency of the methane fermentation treatment in the subsequent step is reduced. Therefore, the TS concentration is 5% or more, preferably 7.5.
Set to more than%. Also, by making the slurry in a state where there is little or almost no lump,
The methane fermentation treatment by microorganisms proceeds more efficiently.

【0044】この調整槽4での調質の際、混合物のTS
濃度を測定し、TS濃度が5%以上、好ましくは7.5
%以上となる場合には、添加手段5にて、栄養塩類であ
る鉄化合物、ニッケル化合物およびコバルト化合物の少
なくともいずれか一方を添加する。これら栄養塩類は、
混合物中に鉄として10mg/リットル以上、好ましくは
10〜300mg/リットル、ニッケルとして1mg/リッ
トル以上、好ましくは1〜30mg/リットル、コバルト
として1mg/リットル以上、好ましくは1〜30mg/リ
ットルを添加する。
At the time of tempering in the adjusting tank 4, the mixture TS
The concentration is measured, and the TS concentration is 5% or more, preferably 7.5.
% Or more, the addition means 5 adds at least one of iron compounds, nickel compounds and cobalt compounds as nutrients. These nutrients are
10 mg / l or more, preferably 10-300 mg / l as iron, 1 mg / l or more, preferably 1-30 mg / l as nickel and 1 mg / l or more, preferably 1-30 mg / l as cobalt are added to the mixture. .

【0045】そして、TS濃度が5%より低い場合に
は、有機性廃棄物中に微量に含まれる鉄、ニッケル、コ
バルトは凝集や沈殿、スケールの生成などによる不活性
効果が低くなり、嫌気性微生物の活性に必要な十分な栄
養塩類量が得られるので、栄養塩類を別途添加する必要
がない。
When the TS concentration is lower than 5%, trace effects of iron, nickel and cobalt contained in the organic waste are reduced due to agglomeration, sedimentation, scale formation and the like, and anaerobic. Since a sufficient amount of nutrients necessary for the activity of the microorganism can be obtained, it is not necessary to separately add nutrients.

【0046】また、鉄添加量が10mg/リットルより少
なくなると、後段でのメタン発酵処理の改善が認められ
ず、300mg/リットルより多くなっても鉄添加による
効果の差異が認められずコストが増大するため、鉄添加
量が10mg/リットル以上、好ましくは10〜300mg
/リットルとなるように鉄化合物を添加する。また、同
様に、ニッケル添加量が1mg/リットルより少なくなる
と、後段でのメタン発酵処理の改善が認められず、30
mg/リットルより多くなってもニッケル添加による効果
の差異が認められずコストが増大するため、ニッケル添
加量が1mg/リットル以上、好ましくは1〜30mg/リ
ットルとなるようにニッケル化合物を添加する。さら
に、同様に、コバルト添加量が1mg/リットルより少な
くなると、後段でのメタン発酵処理の改善が認められ
ず、30mg/リットルより多くなってもコバルト添加に
よる効果の差異が認められずコストが増大するため、コ
バルト添加量が1mg/リットル以上、好ましくは1〜3
0mg/リットルとなるようにコバルト化合物を添加す
る。
On the other hand, if the amount of iron added is less than 10 mg / l, no improvement in the methane fermentation treatment in the subsequent stage is observed, and if it is more than 300 mg / l, no difference in the effect due to the addition of iron is observed and the cost increases. Therefore, the amount of iron added is 10 mg / liter or more, preferably 10 to 300 mg.
Per liter of an iron compound. Similarly, when the amount of nickel added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and
Even if the amount is more than mg / liter, no difference in effect due to the addition of nickel is recognized and the cost increases. Therefore, the nickel compound is added so that the amount of nickel added is 1 mg / liter or more, preferably 1 to 30 mg / liter. Similarly, if the amount of cobalt added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and if it exceeds 30 mg / liter, no difference in the effect of the cobalt addition is observed and the cost increases. Therefore, the addition amount of cobalt is 1 mg / liter or more, preferably 1 to 3
A cobalt compound is added so as to be 0 mg / liter.

【0047】さらに、添加手段5にて、マグネシウム
塩、水酸化マグネシウム、酸化マグネシウムなどのマグ
ネシウム化合物、および、燐酸塩、燐酸、重縮合燐酸な
どの燐酸化合物を添加する。なお、調整槽4ではすでに
アンモニア性窒素(NH3 −N)が存在しているが、調
整槽4では各性状の有機性廃棄物の酸発酵が進行してお
り、pHが5前後となっていることから、マグネシウム
化合物および燐酸化合物の添加により、混合物中の窒素
化合物であるアンモニア性窒素(NH3 −N)と反応し
て燐酸マグネシウムアンモニウム(Mg(NH4 )PO
4 )が急に生成して調整槽4の壁面などにスケールとし
て固着することはない。
Further, a magnesium compound such as magnesium salt, magnesium hydroxide and magnesium oxide, and a phosphoric acid compound such as phosphate, phosphoric acid and polycondensed phosphoric acid are added by adding means 5. In addition, although ammonia nitrogen (NH 3 -N) is already present in the adjusting tank 4, acid fermentation of the organic waste of each property is progressing in the adjusting tank 4, and the pH becomes about 5. Therefore, the addition of a magnesium compound and a phosphoric acid compound causes the compound to react with ammonium nitrogen (NH 3 —N), which is a nitrogen compound in the mixture, to react with magnesium ammonium phosphate (Mg (NH 4 ) PO).
4 ) is not generated suddenly and adheres to the wall surface of the adjustment tank 4 as a scale.

【0048】また、マグネシウム化合物および燐酸化合
物の添加量は、後工程のメタン発酵処理の際に窒素化合
物がメタン発酵に影響しない程度の量まで低減する量を
添加する。すなわち、メタン発酵処理が55℃〜60℃
程度の高温発酵ではアンモニア性窒素濃度を2500pp
m 以下、好ましくは、2000ppm 以下、35℃〜40
℃程度の中温発酵では4000ppm 以下、好ましくは3
000ppm 以下まで低減するように添加量を設定する。
The amounts of addition of the magnesium compound and the phosphate compound are such that the nitrogen compound is reduced to an amount that does not affect the methane fermentation in the subsequent methane fermentation treatment. That is, the methane fermentation treatment is 55 ° C to 60 ° C.
In high temperature fermentation, the ammonia nitrogen concentration is 2500pp
m, preferably 2000 ppm or less, 35 ° C to 40 ° C
4,000 ppm or less, preferably 3 ppm
The addition amount is set so as to reduce to 000 ppm or less.

【0049】ここで、混合物中の窒素化合物であるアン
モニア性窒素(NH3 −N)のすべてを燐酸マグネシウ
ムアンモニウム(Mg(NH4 )PO4 )として生成さ
せることも可能であるが、燐酸マグネシウムアンモニウ
ムの分子量比からアンモニア性窒素濃度の10倍の燐酸
マグネシウムアンモニウムが生成するため、例えば混合
物中に4000ppm のアンモニア性窒素が存在する場
合、40000ppm の燐酸マグネシウムアンモニウムが
生成することとなり、この40000ppm の燐酸マグネ
シウムアンモニウムはTS濃度で4%に相当することと
なり、上述したようにTS濃度が5%以上20%以下の
適性範囲から外れるおそれがあるので、水分調整に留意
する必要がある。
Here, all of the ammoniacal nitrogen (NH 3 —N), which is a nitrogen compound in the mixture, can be produced as magnesium ammonium phosphate (Mg (NH 4 ) PO 4 ). Since ammonium ammonium phosphate having a molecular weight ratio of 10 times the ammonia nitrogen concentration is generated, for example, if 4000 ppm of ammonia nitrogen is present in the mixture, 40,000 ppm of magnesium ammonium phosphate is generated, and this 40,000 ppm of magnesium phosphate is produced. Ammonium is equivalent to 4% in TS concentration, and as described above, there is a possibility that the TS concentration may be out of the appropriate range of 5% or more and 20% or less, so it is necessary to pay attention to moisture adjustment.

【0050】また、マグネシウム化合物は、添加する燐
酸化合物および混合物中の燐酸イオンの総合計である総
燐酸濃度に対してマグネシウムのモル比が1以下となる
ように添加し、マグネシウムイオンが残留して後工程で
のマグネシウム化合物の析出によるスケールの発生を防
止する。
The magnesium compound is added so that the molar ratio of magnesium is 1 or less with respect to the total phosphoric acid concentration, which is the total amount of the phosphate compound to be added and the phosphate ions in the mixture. The generation of scale due to precipitation of a magnesium compound in a subsequent step is prevented.

【0051】そしてさらに、燐酸イオンは、後工程の好
気性生物処理の際の好気性微生物の栄養源となるが除去
作業は容易でないことから、燐酸イオン濃度として20
ppm以下、好ましくは10ppm 以下となるように、マグ
ネシウム化合物および燐酸化合物の添加量を設定する。
Further, phosphate ions are a nutrient source for aerobic microorganisms in the subsequent aerobic biological treatment, but the removal operation is not easy.
The addition amount of the magnesium compound and the phosphoric acid compound is set so as to be at most 10 ppm, preferably at most 10 ppm.

【0052】そして、鉄化合物、ニッケル化合物および
コバルト化合物などの栄養塩類が適宜添加されるととも
にマグネシウム化合物および燐酸化合物を添加して調質
した混合物をメタン発酵槽6に流入させ、例えば55℃
で適宜攪拌しつつ8日滞留させて、メタン生成菌などに
て有機物をメタン発酵処理する。なお、メタン発酵処理
により発生するメタンガスは、図示しないメタンガス回
収手段にて回収してガスタンクに貯溜し、発電などにて
有機性廃棄物の処理の際の運転エネルギやその他の汚水
処理、冷暖房などに利用する。
Then, a nutrient salt such as an iron compound, a nickel compound and a cobalt compound is appropriately added, and a mixture prepared by adding a magnesium compound and a phosphoric acid compound is allowed to flow into the methane fermentation tank 6.
The mixture is allowed to stay for 8 days while being appropriately stirred, and the organic matter is subjected to methane fermentation treatment with methanogens or the like. The methane gas generated by the methane fermentation treatment is collected by a methane gas collection means (not shown) and stored in a gas tank, which is used for the operation energy for the treatment of the organic waste such as power generation, other sewage treatment, and cooling and heating. Use.

【0053】このメタン発酵槽6ではpHが7以上のア
ルカリ性の雰囲気で安定した状態となっていることか
ら、メタン発酵槽6に流入された混合物中の窒素化合物
であるアンモニア性窒素(NH3 −N)が調整槽4であ
らかじめ添加したマグネシウム化合物および燐酸化合物
と反応して燐酸マグネシウムアンモニウム(Mg(NH
4 )PO4 )を生成する。
Since the methane fermenter 6 is in a stable state in an alkaline atmosphere having a pH of 7 or more, ammonia nitrogen (NH 3 −), which is a nitrogen compound in the mixture flowing into the methane fermenter 6. N) reacts with the magnesium compound and the phosphoric acid compound added in advance in the adjusting tank 4 to react with magnesium ammonium phosphate (Mg (NH
4) to generate the PO 4).

【0054】また、鉄、ニッケル、コバルトは、メタン
生成菌などの微生物の補酵素成分を構成する物質で、微
生物の活性向上に欠かせない栄養元素である。なお、鉄
は約1000mg/リットル、ニッケルは約80〜240
mg/リットル、および、コバルトは約50〜150mg/
リットル以上となると、逆に微生物の活性阻害を生じ始
める。
[0054] Iron, nickel and cobalt are substances constituting coenzyme components of microorganisms such as methanogens and are nutrient elements indispensable for improving the activity of microorganisms. In addition, iron is about 1000 mg / liter, nickel is about 80-240.
mg / liter and cobalt is about 50-150 mg /
On the other hand, when the amount becomes more than 1 liter, the activity of the microorganism starts to be inhibited.

【0055】また、メタン発酵槽6内では、固形状の有
機性廃棄物を含有する濃度が濃いスラリ状の混合物を処
理するので、凝集・沈殿、スケール微粒子の形成や共沈
吸着効果などの物理化学的反応が生じていると考えられ
る。
In the methane fermentation tank 6, a slurry-like mixture containing a solid organic waste and having a high concentration is treated, so that physical and physical effects such as coagulation and precipitation, formation of scale fine particles, and coprecipitation adsorption effects are obtained. It is considered that a chemical reaction has occurred.

【0056】このため、投入TS濃度であるメタン発酵
槽6へ投入される調質物のTS濃度が5%より低い場合
には、メタン発酵槽6における凝集・沈殿、スケール形
成物質の濃度が比較的低く、凝集・沈殿、スケール形成
などの物理化学的反応による微量栄養塩類である鉄、ニ
ッケル、コバルトの不活性効果も相対的に低くなり、メ
タン生成菌などの嫌気性微生物は、調質物中の活性のあ
る鉄、ニッケル、コバルトを栄養源として吸収して活性
が増大し、効率よく有機性物質を分解処理する。なお、
この場合には、固形状の有機性廃棄物を処理可能な生物
浮遊型のメタン発酵処理方法では、BOD(Biochemica
l Oxygen Demand :生物化学的酸素要求量)濃度が3〜
5万ppm で滞留時間が8日程度が処理のほぼ上限の負荷
(BOD負荷で4〜6kg/m3 ・日)、すなわち嫌気性
微生物が調質物中の活性のある鉄、ニッケル、コバルト
を栄養源として吸収して有機物を分解処理できる上限の
処理条件である。
For this reason, when the TS concentration of the tempered material charged into the methane fermentation tank 6 which is the input TS concentration is lower than 5%, the concentration of the coagulation / precipitation and scale forming substances in the methane fermentation tank 6 is relatively low. The effect of micronutrients such as iron, nickel and cobalt due to physicochemical reactions such as coagulation / sedimentation and scale formation is relatively low, and anaerobic microorganisms such as methane-producing bacteria It absorbs active iron, nickel, and cobalt as nutrients to increase the activity and efficiently decompose organic substances. In addition,
In this case, in a biological suspension type methane fermentation treatment method capable of treating solid organic waste, BOD (Biochemica
l Oxygen Demand: biochemical oxygen demand)
At 50,000 ppm, the residence time is about 8 days and the treatment is almost the upper limit load (4 to 6 kg / m 3 · day in BOD load), that is, anaerobic microorganisms feed active iron, nickel and cobalt in the refining material. This is the upper limit of processing conditions under which organic matter can be decomposed by absorption as a source.

【0057】一方、TS濃度が5%以上、特に7.5%
以上となると、沈殿やスケール形成により、鉄、ニッケ
ル、コバルトの不活性効果が増大し、嫌気性微生物が必
要とする鉄、ニッケル、コバルトが不足して活性が低下
し、上述した処理可能なTOC(Total Organic Carbo
n:全有機性炭素)負荷や化学的酸素要求量(CO
Cr)負荷、BOD負荷が同等または低くなる処理負荷
の条件でもメタン発酵効率が大きく低減あるいは停止し
てしまう。
On the other hand, when the TS concentration is 5% or more, especially 7.5%
As a result, the inactive effect of iron, nickel, and cobalt increases due to precipitation and scale formation, the activity decreases due to the lack of iron, nickel, and cobalt required by anaerobic microorganisms, and the above-mentioned processable TOC is reduced. (Total Organic Carbo
n: Total organic carbon) load and chemical oxygen demand (CO
Even under the conditions of the processing load at which the D Cr ) load and the BOD load are equal or lower, the methane fermentation efficiency is greatly reduced or stopped.

【0058】したがって、上述したように、上記実施の
形態では、生ごみや厨芥、農水産廃棄物などの固形状の
有機物を含有する固形状有機性廃棄物をメタン発酵処理
する際に、メタン発酵槽6に投入する際のTS濃度が5
%以上となる場合に、鉄化合物、ニッケル化合物および
コバルト化合物の少なくともいずれか一方を鉄濃度が1
0〜300mg/リットル、ニッケル濃度が1〜30mg/
リットル、コバルト濃度が1〜30mg/リットルとなる
ように添加する。
Therefore, as described above, in the above-described embodiment, methane fermentation treatment is performed when solid organic waste containing solid organic matter such as garbage, kitchen waste, and agricultural and marine waste is subjected to methane fermentation. When the TS concentration at the time of charging into the tank 6 is 5
% Or more, at least one of the iron compound, the nickel compound and the cobalt compound has an iron concentration of 1
0-300mg / liter, nickel concentration 1-30mg /
Liter and cobalt concentration to be 1 to 30 mg / liter.

【0059】次に、メタン発酵処理した発酵処理物を第
2の固液分離手段7にて汚泥である脱水ケーキと処理濾
液である分離水とに固液分離する。そして、分離液は、
第1の固液分離手段1にて固液分離して分集した濾液と
ともに窒素化合物除去手段8のアンモニアストリッピン
グ処理手段に搬送し、脱水ケーキは肥料などにコンポス
ト化したり、焼却処分する。なお、第1の前処理手段2
および第2の前処理手段3にて夾雑物が充分に除去さ
れ、脱水ケーキに燐酸マグネシウムアンモニウムが含ま
れていることから、コンポスト化して窒素、リン、マグ
ネシウムの無機性の栄養素を含有する肥料など、すなわ
ち緩衝性の肥効成分が加わることによってコンポストの
土壌改良剤としての働きにプラスした肥料などの有価物
として回収する。
Next, the fermentation product subjected to the methane fermentation treatment is solid-liquid separated by a second solid-liquid separation means 7 into a dewatered cake as sludge and a separated water as a treated filtrate. And the separated liquid is
The filtrate collected by the solid-liquid separation by the first solid-liquid separation means 1 is conveyed to the ammonia stripping treatment means of the nitrogen compound removing means 8 together with the filtrate, and the dehydrated cake is composted into fertilizer or the like and incinerated. Note that the first preprocessing means 2
And since the contaminants are sufficiently removed by the second pretreatment means 3 and the dehydrated cake contains magnesium ammonium phosphate, it is composted and contains fertilizers containing inorganic nutrients of nitrogen, phosphorus and magnesium. That is, by adding a buffering fertilizing component, the compost is recovered as a valuable material such as fertilizer which has been added to the function of the compost as a soil conditioner.

【0060】この第2の固液分離手段7での固液分離の
際、後工程で生物処理の負荷を低減するために、処理濾
液中のBODを低減すべく凝集剤を添加してBODに起
因する有機物を凝集させてから脱水して固液分離する。
ここで、固液分離した汚泥である脱水ケーキは、肥料と
して利用するコンポスト化および乾燥用熱量を低減する
ための含水率を低減させるために高分子凝集剤の添加に
よる脱水が好ましい。また、高分子凝集剤としては、各
種カチオン系凝集剤が利用できるが、BOD濃度が50
0ppm 以下に低減できるアミジン系凝集剤が好ましい。
At the time of the solid-liquid separation by the second solid-liquid separation means 7, in order to reduce the load of biological treatment in a subsequent step, a flocculant is added to the BOD by adding a flocculant to reduce the BOD in the treated filtrate. The resulting organic matter is agglomerated, then dehydrated and solid-liquid separated.
Here, the dewatered cake, which is solid-liquid separated sludge, is preferably dewatered by adding a polymer flocculant in order to reduce the water content for composting used as a fertilizer and for reducing the amount of heat for drying. Various cationic coagulants can be used as the polymer coagulant.
Amidine-based flocculants that can be reduced to 0 ppm or less are preferred.

【0061】そして、窒素化合物除去手段8のアンモニ
アストリッピング処理手段に搬送された濾液および処理
濾液は図示しない曝気手段にてアルカリ雰囲気中で曝気
され、濾液および処理濾液中に溶存する窒素化合物であ
るアンモニア性窒素を曝気された空気中に移行させる気
曝によるストリッピングを実施する。ここで、アルカリ
雰囲気としては、濾液および処理濾液に水酸化ナトリウ
ム、水酸化カリウム、消石灰などのアルカリを添加して
アルカリ性としてストリッピングする。そして、窒素化
合物を含有する空気を、酸性槽に貯留する例えば硫酸や
塩酸などの無機酸水溶液である酸性水溶液内の中に透過
させ、窒素化合物を例えば硫酸アンモニウムや塩化アン
モニウムなどとして析出させて回収する。なお、この窒
素化合物の除去は、BOD/Nが15以上となるように
する。
The filtrate and the treated filtrate conveyed to the ammonia stripping treatment means of the nitrogen compound removing means 8 are aerated in an alkaline atmosphere by aeration means (not shown), and are nitrogen compounds dissolved in the filtrate and the treated filtrate. Perform stripping by aeration that transfers ammoniacal nitrogen into the aerated air. Here, as the alkali atmosphere, an alkali such as sodium hydroxide, potassium hydroxide, slaked lime or the like is added to the filtrate and the treated filtrate, and stripping is performed by adding alkali. Then, the air containing the nitrogen compound is permeated into an acidic aqueous solution which is an inorganic acid aqueous solution such as sulfuric acid or hydrochloric acid stored in an acid tank, and the nitrogen compound is precipitated and recovered as, for example, ammonium sulfate or ammonium chloride. . The removal of the nitrogen compound is performed so that the BOD / N is 15 or more.

【0062】一方、ストリッピングされた濾液および処
理濾液は、好気性生物処理手段9に流入し、好気性微生
物により生物処理、すなわち残存する有機物を酸化分解
してBODを低減する。この生物処理の際、アンモニア
ストリッピング処理にて除去されずに残存する窒素化合
物、燐酸化合物などは、好気性微生物の栄養源として摂
取され、BODが低減するとともに窒素化合物や燐酸化
合物などの残存微量成分も低減する。
On the other hand, the stripped filtrate and the treated filtrate flow into the aerobic biological treatment means 9 and are biologically treated by aerobic microorganisms, that is, oxidatively decompose remaining organic substances to reduce BOD. At the time of this biological treatment, nitrogen compounds and phosphate compounds remaining without being removed by the ammonia stripping treatment are ingested as nutrients of aerobic microorganisms, and the BOD is reduced and the remaining trace amounts of nitrogen compounds and phosphate compounds are reduced. The components are also reduced.

【0063】さらに、生物処理された濾液および処理濾
液は、高度処理手段11にて例えば酸性凝集沈殿、砂濾
過、活性炭吸着処理、膜処理などの高度処理をし、色
度、BOD濃度、COD濃度、燐酸化合物が低い良好な
処理水を得る。なお、凝集処理の場合、塩化第二鉄や硫
酸バンドなどの無機凝集剤を用いるとよい。また、凝集
処理後に膜処理を利用することにより、安定した処理水
が効率よく得られる。そして、高度処理により生じた凝
集汚泥や膜分離汚泥などの汚泥は、汚泥返送手段12を介
して第1の固液分離手段1に返送し、再び処理する。
Further, the biologically treated filtrate and the treated filtrate are subjected to advanced treatment such as acidic coagulation sedimentation, sand filtration, activated carbon adsorption treatment and membrane treatment by the advanced treatment means 11 to obtain chromaticity, BOD concentration and COD concentration. To obtain good treated water with low phosphate compounds. In the case of the coagulation treatment, an inorganic coagulant such as a ferric chloride or a sulfate band may be used. Further, by using the membrane treatment after the aggregation treatment, stable treated water can be efficiently obtained. Then, sludge such as coagulated sludge and membrane separation sludge generated by the advanced treatment is returned to the first solid-liquid separation unit 1 via the sludge return unit 12 and processed again.

【0064】上述したように、廃棄物を生物処理により
生成した生物処理汚泥と、嫌気性生物にて分解可能な有
機物を含有する流動性を有し液体部分に多量の有機物が
存在する液状有機性廃棄物と、嫌気性生物にて分解可能
な固形状の有機物を含有する固形状有機性廃棄物との3
種類に分け、廃棄物全体の大半の有機物が存在する生物
処理汚泥を固液分離して分集した汚泥分、液状有機性廃
棄物および固形状有機性廃棄物をメタン発酵処理して効
率よくメタンガスの有価物として回収するとともに、廃
棄物全体の有機物が低減して残留する有機物を簡単な構
成の好気性微生物による生物処理するのみで処理でき、
装置の小型化および運転エネルギ低減ができ、効率よく
廃棄物全体を処理できる。
As described above, the biologically treated sludge produced by biological treatment of the waste and the liquid organic liquid containing a large amount of the organic substance in the liquid portion having a fluidity containing an organic substance decomposable by anaerobic organisms. Waste and solid organic waste containing solid organic matter that can be decomposed by anaerobic organisms.
The sludge fraction obtained by solid-liquid separation and separation of biologically treated sludge, which contains most of the organic matter in the entire waste, is separated into liquid waste, liquid organic waste, and solid organic waste. While being recovered as valuables, the organic matter in the entire waste is reduced and the remaining organic matter can be treated only by biological treatment with a simple aerobic microorganism,
The apparatus can be reduced in size and operating energy can be reduced, and the entire waste can be efficiently treated.

【0065】また、好気性微生物による生物処理にて生
じる余剰汚泥や高度処理により生じる汚泥を第1の固液
分離手段1に返送して固液分離し、汚泥分、液状有機性
廃棄物および固形状有機性廃棄物とともにメタン発酵処
理してメタンガスの有価物として回収するため、有機物
を確実にメタン発酵処理してメタンガスの有価物として
回収でき、処理効率を向上できる。
Further, surplus sludge generated by biological treatment by aerobic microorganisms and sludge generated by advanced treatment are returned to the first solid-liquid separation means 1 to be separated into solid and liquid, and the sludge, liquid organic waste and solid Since the methane fermentation treatment is performed together with the shaped organic waste and collected as valuable methane gas, the organic matter can be surely subjected to methane fermentation treatment and collected as valuable methane gas, thereby improving the treatment efficiency.

【0066】そして、生物処理汚泥を第1の固液分離手
段1にて脱水して固液分離したため、メタン発酵処理す
る有機物が確実に汚泥分側に固液分離でき、メタンガス
としての回収効率を向上できるとともに、後工程の生物
処理の負荷を低減でき、廃棄物の処理効率を向上でき
る。
Since the biologically treated sludge is dehydrated and solid-liquid separated by the first solid-liquid separation means 1, the organic matter to be subjected to methane fermentation can be surely separated into solid and liquid on the sludge side, and the recovery efficiency as methane gas is improved. It is possible to reduce the load of the biological treatment in the post-process, and to improve the waste treatment efficiency.

【0067】さらに、メタン発酵処理する前に総固形物
濃度が5%以上20%以下となるように水分調整するた
め、メタン発酵処理する際の適性な濃度となり、メタン
発酵処理効率を向上できる。
Further, since the water content is adjusted so that the total solid concentration becomes 5% or more and 20% or less before the methane fermentation treatment, the concentration becomes suitable for the methane fermentation treatment, and the methane fermentation treatment efficiency can be improved.

【0068】また、メタン発酵処理する前に、あらかじ
め液状有機性廃棄物および固形状有機性廃棄物から夾雑
物を除去する前処理をしたため、夾雑物によるメタン発
酵処理の阻害を防止でき、メタン発酵処理効率を向上で
きる。
In addition, prior to the methane fermentation treatment, a pretreatment for removing impurities from the liquid organic waste and the solid organic waste is performed in advance, so that the methane fermentation treatment can be prevented from being hindered by the impurities. Processing efficiency can be improved.

【0069】さらに、メタン発酵処理の前またはメタン
発酵処理の際にマグネシウム化合物および燐酸化合物を
添加して、pHがアルカリ性となるメタン発酵槽6で窒
素化合物をマグネシウム化合物および燐酸化合物と反応
させて燐酸マグネシウムアンモニウムとして生成して析
出させるため、窒素化合物によるメタン発酵処理の阻害
を防止でき、効率よくメタン発酵処理できる。
Further, before or during the methane fermentation treatment, a magnesium compound and a phosphate compound are added, and the nitrogen compound is reacted with the magnesium compound and the phosphate compound in the methane fermentation tank 6 in which the pH becomes alkaline, whereby phosphoric acid is added. Since it is produced and precipitated as magnesium ammonium, inhibition of the methane fermentation treatment by a nitrogen compound can be prevented, and methane fermentation treatment can be performed efficiently.

【0070】また、マグネシウム化合物および燐酸化合
物を、メタン発酵処理の際の窒素化合物の濃度が400
0ppm 以下となるように添加するため、窒素化合物によ
るメタン発酵処理の阻害を確実に防止でき、メタン発酵
処理効率を向上できる。
Further, the magnesium compound and the phosphate compound were replaced with a nitrogen compound having a concentration of 400 at the time of the methane fermentation treatment.
Since it is added so as to be 0 ppm or less, inhibition of the methane fermentation treatment by a nitrogen compound can be reliably prevented, and the methane fermentation treatment efficiency can be improved.

【0071】そして、マグネシウム化合物および燐酸化
合物を添加する際に、鉄化合物、コバルト化合物および
ニッケル化合物の少なくともいずれか一方を添加するた
め、メタン発酵処理の際に総固形物濃度や窒素化合物濃
度が高くなる状態でも、栄養塩類の鉄分、コバルト分お
よびニッケル分の不活性効果の増大分を補給でき、栄養
塩バランスを確保して効率よくメタン発酵処理できる。
Since at least one of the iron compound, the cobalt compound and the nickel compound is added when adding the magnesium compound and the phosphate compound, the total solid concentration and the nitrogen compound concentration are increased during the methane fermentation treatment. Even in such a state, the increased amount of the inactive effect of the nutrients of iron, cobalt and nickel can be replenished, and the nutrient balance can be secured and methane fermentation can be performed efficiently.

【0072】また、生物処理汚泥の固液分離により分集
した濾液と、メタン発酵処理後の固液分離により分集し
た処理濾液とを、好気性微生物による生物処理する前に
窒素化合物を除去するため、硝化脱窒処理による窒素化
合物の分解処理が不要となり、装置構成の簡略化および
処理エネルギの低減が得られるとともに、生物処理の負
荷を低減でき、処理効率を向上できる。
Further, the filtrate collected by the solid-liquid separation of the biologically treated sludge and the treated filtrate collected by the solid-liquid separation after the methane fermentation treatment are used to remove nitrogen compounds before the biological treatment by the aerobic microorganisms. Decomposition treatment of nitrogen compounds by nitrification denitrification treatment is not required, so that the apparatus configuration can be simplified and treatment energy can be reduced, and the load of biological treatment can be reduced, thereby improving treatment efficiency.

【0073】さらに、この窒素化合物の除去として簡単
な構成でアンモニアストリッピング処理するため、生物
処理により生成した生物処理汚泥の固液分離により得ら
れ比較的有機物が少なく窒素化合物が多い濾液、およ
び、メタン発酵処理後の比較的有機物が少なく窒素化合
物が多い処理濾液で、硝化脱窒処理では有機物を別途添
加しなくては窒素化合物が処理できなくなる状態でも、
簡単な構成で窒素化合物を除去できるとともに有価物と
して回収でき、また、好気性微生物による生物処理の負
荷を低減でき処理効率を向上できる。そして、あらかじ
め生物処理汚泥から汚泥分を除去した濾液と、メタン発
酵処理後に固液分離した処理濾液とをアンモニアストリ
ッピングするため、ストリッピングしても消泡せずに泡
が発生してアンモニアストリッピング処理できなくなる
ことはなく、安定して窒素化合物を除去できる。
Further, in order to remove the nitrogen compound, the ammonia stripping treatment is carried out with a simple structure, so that a filtrate obtained by solid-liquid separation of the biologically treated sludge generated by the biological treatment is relatively free from organic matter and contains a large amount of nitrogen compound, and In the treated filtrate with relatively little organic matter and many nitrogen compounds after methane fermentation, even in the state where nitrogen compounds can not be processed without additional organic matter in nitrification denitrification treatment,
The nitrogen compound can be removed with a simple configuration and can be recovered as a valuable resource, and the load of biological treatment by aerobic microorganisms can be reduced and the treatment efficiency can be improved. Then, ammonia stripping is performed between the filtrate from which the sludge has been removed from the biologically treated sludge and the treated filtrate that has been subjected to solid-liquid separation after the methane fermentation treatment. The nitrogen compound can be stably removed without preventing the ripping treatment.

【0074】そして、マグネシウム化合物および燐酸化
合物は、メタン発酵処理の際の窒素化合物の濃度が40
00ppm 以下となるように添加するため、窒素化合物に
よるメタン発酵処理の阻害を確実に防止でき、メタン発
酵処理効率を向上できる。
The magnesium compound and the phosphate compound have a nitrogen compound concentration of 40 at the time of the methane fermentation treatment.
Since it is added so as to be not more than 00 ppm, inhibition of the methane fermentation treatment by the nitrogen compound can be reliably prevented, and the methane fermentation treatment efficiency can be improved.

【0075】また、生物処理する際の処理濾液および濾
液の混合中の有機物濃度が全窒素化合物濃度の15倍以
上となるまで窒素化合物を除去するため、生物処理する
好気性微生物が摂取する栄養源となる窒素化合物が確保
され、処理効率を向上できるとともに、窒素化合物が残
留せず高度に低減できる。
Further, in order to remove nitrogen compounds until the concentration of organic substances in the treated filtrate and the mixture of the filtrates at the time of biological treatment becomes 15 times or more of the total nitrogen compound concentration, the nutrient source ingested by the aerobic microorganisms to be biologically treated. Nitrogen compound can be secured, the processing efficiency can be improved, and the nitrogen compound can be highly reduced without remaining.

【0076】なお、上記実施の形態において、第1の固
液分離手段1および第2の固液分離手段7として、脱水
機を用いて脱水により固液分離して説明したが、スクリ
ーンなどにて固液分離したり、沈殿分離などにて固液分
離してもよい。
In the above embodiment, the first solid-liquid separation means 1 and the second solid-liquid separation means 7 have been described as being solid-liquid separated by dehydration using a dehydrator. Solid-liquid separation may be performed, or solid-liquid separation may be performed by precipitation separation.

【0077】また、生物処理汚泥や液状有機性廃棄物、
固形状有機性廃棄物の各種形態の廃棄物中の窒素化合物
の含有量や生物処理時の窒素化合物の残留量などによ
り、生物処理の際に硝化脱窒処理してもよい。また、簡
単な構成とした硝化脱窒処理を用いることにより、前段
のアンモニアストリッピング処理の構造を簡略化でき
る。
Further, biologically treated sludge, liquid organic waste,
Depending on the content of nitrogen compounds in various forms of solid organic waste and the residual amount of nitrogen compounds during biological treatment, nitrification and denitrification may be performed during biological treatment. Further, by using the nitrification and denitrification treatment having a simple structure, the structure of the preceding ammonia stripping treatment can be simplified.

【0078】さらに、含有する窒素化合物の量が少ない
場合には、アンモニアストリッピング処理などの窒素化
合物の除去する工程を設けなくてもよい。なお、有機物
を含有する廃棄物全般を網羅する浄化槽汚泥や畜産廃水
汚泥などの生物処理汚泥や屎尿や畜産廃水などの液状有
機性廃棄物、固形状有機性廃棄物の各種形態の廃棄物
は、窒素化合物を多く含有するため、一般的に廃棄物を
処理する処理装置としては窒素化合物を除去する構成を
設ける。そして、この窒素化合物の除去としては、アン
モニアストリッピング処理に限られない。さらに、アン
モニアストリッピング処理としては、液中散気方式に限
らず、例えばラシヒリングなどによる充填塔方式などで
も可能であるが、SSによる充填層の閉塞を考慮すると
液中散気方式が好ましい。
Further, when the amount of the nitrogen compound contained is small, a step of removing the nitrogen compound such as an ammonia stripping treatment may not be provided. In addition, liquid organic waste such as septic tank sludge and livestock wastewater sludge covering all waste containing organic matter, liquid organic waste such as human waste and livestock wastewater, and various forms of solid organic waste are: Since a large amount of nitrogen compounds is contained, a treatment apparatus for treating waste is generally provided with a structure for removing nitrogen compounds. The removal of the nitrogen compound is not limited to the ammonia stripping treatment. Further, the ammonia stripping treatment is not limited to the submerged gas diffusion method, but may be, for example, a packed tower method using Raschig ring or the like. However, the liquid submerged gas diffusion method is preferable in consideration of clogging of the packed bed by SS.

【0079】また、第2の固液分離手段7の際に、凝集
分離処理したが、固液分離の方法により凝集処理しなく
てもよい。なお、凝集処理を併用することにより、簡単
な構成で短時間に固液分離できる。
In the second solid-liquid separation means 7, the coagulation / separation treatment is performed, but the coagulation / separation processing may not be performed by the solid-liquid separation method. By using the coagulation treatment together, solid-liquid separation can be performed in a short time with a simple structure.

【0080】一方、液状有機性廃棄物および固形状有機
性廃棄物をあらかじめ前処理して夾雑物を除去して説明
したが、夾雑物の含有量が少ない場合には前処理しなく
てもよい。
On the other hand, the liquid organic waste and the solid organic waste are preliminarily treated to remove impurities, but the pretreatment may be omitted when the content of the impurities is small. .

【0081】そして、メタン発酵処理の前およびメタン
発酵処理の際にマグネシウム化合物および燐酸化合物を
添加して説明したが、含有する窒素化合物の量が少ない
場合には、これらマグネシウム化合物および燐酸化合物
を添加しなくてもよい。なお、有機物を含有する廃棄物
全般を網羅する浄化槽汚泥や畜産廃水汚泥などの生物処
理汚泥や屎尿や畜産廃水などの液状有機性廃棄物、固形
状有機性廃棄物の各種形態の廃棄物は、窒素化合物を多
く含有するため、一般的に廃棄物を処理する処理装置と
してはこれらマグネシウム化合物および燐酸化合物を添
加する構成を設ける。
In the above description, the magnesium compound and the phosphate compound are added before and during the methane fermentation treatment. However, when the amount of the nitrogen compound is small, the magnesium compound and the phosphate compound are added. You don't have to. In addition, liquid organic waste such as septic tank sludge and livestock wastewater sludge covering all waste containing organic matter, liquid organic waste such as human waste and livestock wastewater, and various forms of solid organic waste are: Since a large amount of nitrogen compounds is contained, a treatment apparatus for treating waste is generally provided with a configuration in which these magnesium compounds and phosphoric acid compounds are added.

【0082】また、鉄化合物、コバルト化合物およびニ
ッケル化合物のいずれか一方の栄養源を添加して説明し
たが、処理する性状により不活性効果が増大しない場合
には、添加しなくてもよい。なお、同様に、有機物を含
有する廃棄物全般を網羅する生物処理汚泥や液状有機性
廃棄物、固形状有機性廃棄物の各種形態の廃棄物を処理
する際においては、一般に不活性効果が増大するため、
栄養塩バランスの確保のために添加する。
In the above description, a nutrient of any one of an iron compound, a cobalt compound and a nickel compound is added. However, when the nature of the treatment does not increase the inactive effect, it may not be added. In addition, similarly, when processing waste in various forms such as biologically treated sludge, liquid organic waste, and solid organic waste covering the entire waste containing organic substances, the inert effect generally increases. To do
It is added to ensure nutritional balance.

【0083】[0083]

【実施例】処理する廃棄物の形態による処理効率の差異
について比較検討した。
EXAMPLE A comparison was made on the difference in treatment efficiency depending on the type of waste to be treated.

【0084】なお、廃棄物の形態としては、野菜、果
実、肉、魚、米飯などの残飯を混合攪拌によりスラリ状
に破砕して含水率が約80%(TS濃度が約20%)の
合成生ごみを固形状有機性廃棄物として調整する。ま
た、液状有機性廃棄物としては、屎尿処理場より収集し
た屎尿を、10mm目の篩により屎渣を除去する前処理し
たものを用いた。さらに、生物処理汚泥としては、屎尿
処理場より収集した浄化槽汚泥を用い、塩化第二鉄を1
000ppm 添加して攪拌混合した後、カチオン系高分子
凝集剤をTS濃度に対して2%添加して凝集処理し、目
の粗い濾布で濾過して十分に絞り、汚泥分としての脱水
汚泥と濾液とに固液分離した。これら性状を表1に示
す。また、浄化槽汚泥の濾液の性状を表2に示す。
[0084] The form of the waste is as follows: the remaining rice, such as vegetables, fruits, meat, fish, cooked rice, etc., is crushed into a slurry by mixing and stirring to obtain a water content of about 80% (TS concentration of about 20%). Prepare garbage as solid organic waste. Further, as the liquid organic waste, used was human waste collected from a human waste processing plant, which had been pre-treated to remove the waste by a 10-mm sieve. Furthermore, as biologically treated sludge, septic tank sludge collected from a human waste treatment plant was used, and ferric chloride was added to the wastewater treatment plant.
After adding 000 ppm and stirring and mixing, a cationic polymer flocculant is added to the TS concentration by 2% to perform a flocculation treatment, filtered through a coarse filter cloth and sufficiently squeezed to remove dewatered sludge as sludge. Solid-liquid separation was performed with the filtrate. Table 1 shows these properties. Table 2 shows the properties of the filtrate of the septic tank sludge.

【0085】[0085]

【表1】 [Table 1]

【表2】 そして、処理方法としては、上記図1に示す実施の形態
の廃棄物を生物処理汚泥、液状有機性廃棄物および固形
状有機性廃棄物の3形態に廃棄物を分けて処理する方法
と、従来例である図3に示す液状の有機性廃水と固形状
の有機性廃棄物との2形態に廃棄物を分けて処理する方
法と、従来例である図4に示す各種形態の廃棄物を混合
して1形態の廃棄物として処理する方法とについて、処
理状態を観察して比較評価した。
[Table 2] As a treatment method, a method of dividing waste into three forms of biologically treated sludge, liquid organic waste, and solid organic waste by treating the waste of the embodiment shown in FIG. A method of separating waste into two forms, liquid organic wastewater and solid organic waste shown in FIG. 3 as an example, and mixing various forms of waste shown in FIG. 4 as a conventional example. Then, the method of treating the waste as one form of waste was evaluated by observing the treatment state.

【0086】まず、図1に示す3形態に廃棄物を分けて
処理する工程について説明する。
First, the process of separating waste into the three forms shown in FIG. 1 will be described.

【0087】上述した前処理の除渣した屎尿10kg、浄
化槽汚泥を固液分離して分集した脱水汚泥0.5kg(浄
化槽汚泥10kgから得られる脱水汚泥量)および合成生
ごみ5kgを攪拌混合して混合物を調質する。なお、この
調質した混合物の性状を表3に示す。
10 kg of the excrement removed from the above-mentioned pretreatment, 0.5 kg of dewatered sludge separated by solid-liquid separation of septic tank sludge (the amount of dewatered sludge obtained from 10 kg of septic tank sludge) and 5 kg of synthetic garbage are mixed by stirring. Temper the mixture. Table 3 shows the properties of the tempered mixture.

【0088】[0088]

【表3】 そして、調質した混合物を既に馴養の完了しているメタ
ン発酵槽に投入して、約55℃でメタン発酵処理した。
その結果を図2に示す。なお、処理当初は、滞留時間を
30日とした。
[Table 3] Then, the tempered mixture was put into a methane fermentation tank that had already been acclimated, and subjected to methane fermentation at about 55 ° C.
The result is shown in FIG. At the beginning of the treatment, the residence time was 30 days.

【0089】この図2に示す結果から、メタン発酵槽内
のアンモニア濃度は、3200〜3800mg/リットル
と高く、有機酸は4000〜8000mg/リットルとか
なりの量が蓄積した。この有機酸の蓄積によりpHやメ
タン生成速度は変化しなかったが、メタン発酵処理後に
固液分離した処理濾液中のBOD濃度が増大して後工程
の生物処理の負荷が増大するため、有機酸の濃度を下げ
る必要がある。そこで、嫌気性微生物であるメタン生成
菌の活性を増大させるべく、栄養元素として微量元素の
鉄を塩化第二鉄として500mg/リットル、ニッケルを
塩化ニッケルとして50mg/リットル、コバルトを塩化
コバルトとして50mg/リットル連続的に添加した。こ
の結果、有機酸濃度は約1000mg/リットルまで低減
した。
From the results shown in FIG. 2, the ammonia concentration in the methane fermentation tank was as high as 3200 to 3800 mg / l, and the organic acid accumulated in a considerable amount of 4000 to 8000 mg / l. Although the pH and the methane production rate did not change due to the accumulation of the organic acid, the BOD concentration in the treated filtrate obtained by solid-liquid separation after the methane fermentation treatment increased, and the load of the biological treatment in the subsequent process increased. Needs to be reduced. Therefore, in order to increase the activity of the anaerobic microorganism methanogen, 500 mg / liter of iron as a nutrient element as ferric chloride, 50 mg / liter of nickel as nickel chloride, and 50 mg / liter as cobalt as cobalt chloride. One liter was added continuously. As a result, the organic acid concentration was reduced to about 1000 mg / liter.

【0090】そして、有機酸の多量の蓄積が認められず
処理状態が安定した時点で滞留時間を15日とした。こ
の滞留時間の短縮によるメタン発酵処理の負荷の増大に
より、再び有機酸が蓄積し始め、10000mg/リット
ル程度まで増大した。
When a large amount of organic acid was not recognized and the treatment state was stabilized, the residence time was set to 15 days. Due to the increase in the load of the methane fermentation treatment due to the shortening of the residence time, the organic acids started to accumulate again and increased to about 10,000 mg / liter.

【0091】この負荷の増大により、アンモニア性窒素
(NH4 −N)の影響を強く受けるようになり、その結
果メタン発酵が阻害されたためと考えられる。
It is considered that the increase in the load strongly affected the ammonia nitrogen (NH 4 -N), and as a result, methane fermentation was inhibited.

【0092】一般に、アンモニアはメタン発酵を阻害す
るため、アンモニア性窒素濃度が2000mg/リットル
程度で運転しているが、微量元素である栄養元素を添加
してもアンモニア性窒素によるメタン発酵の阻害を防止
できないことが分かる。
In general, since ammonia inhibits methane fermentation, the operation is performed at an ammonia nitrogen concentration of about 2000 mg / liter. However, even if a trace element such as a nutrient element is added, the inhibition of methane fermentation by ammonia nitrogen can be prevented. It turns out that it cannot be prevented.

【0093】そこで、マグネシウム化合物および燐酸化
合物を添加し、アンモニア性窒素濃度を約2000mg/
リットルまで低減させたところ、有機酸の蓄積が防止さ
れ、300〜560mg/リットルまで低減した。この状
態で滞留時間を7.5日まで短縮しても有機酸は蓄積せ
ずに安定して処理できた。そして、この状態での消化ガ
ス中のメタン含有率は約59%で、消化ガス発生量は
0.35リットル/g・投入CODCrとなり、良好な結
果を示すことが分かる。
Then, a magnesium compound and a phosphoric acid compound were added, and the ammonia nitrogen concentration was increased to about 2000 mg /
When reduced to liters, the accumulation of organic acids was prevented and reduced to 300-560 mg / liter. In this state, even if the residence time was reduced to 7.5 days, the organic acid could not be accumulated and could be treated stably. Then, in this state, the methane content in the digested gas was about 59%, and the amount of digested gas generated was 0.35 liter / g · input COD Cr , indicating that good results were obtained.

【0094】この後、微量元素の添加を停止したとこ
ろ、アンモニア性窒素濃度が約2000mg/リットル程
度でも有機酸濃度が徐々に増大するとともにpHも酸性
を示し、酸敗状態となった。
After that, when the addition of the trace element was stopped, the organic acid concentration gradually increased and the pH became acidic even when the ammonia nitrogen concentration was about 2,000 mg / liter, and it became rancid.

【0095】このように、TS濃度および窒素化合物で
あるアンモニア性窒素が高い場合には、微量元素の添加
によりある程度の有機酸の蓄積を防止することができる
が、負荷が増大するとアンモニア性窒素の影響が現れ、
有機酸の蓄積が生じることから、メタン発酵処理を安定
して効率よく進行させるためには微量元素の添加とマグ
ネシウム化合物および燐酸化合物の添加によるアンモニ
ア性窒素の低減を図る必要があることが分かる。
As described above, when the TS concentration and the ammonia nitrogen, which is a nitrogen compound, are high, the addition of a trace element can prevent a certain amount of organic acid from accumulating. The effect appears,
The accumulation of organic acids indicates that it is necessary to reduce the amount of ammonia nitrogen by adding a trace element and adding a magnesium compound and a phosphate compound in order to allow the methane fermentation treatment to proceed stably and efficiently.

【0096】一方、滞留時間15日で有機酸濃度が50
0mg/リットル程度で安定した状態のメタン発酵処理し
た混合物を、ポリアミジン系強カチオン高分子凝集剤と
一般的なポリアクリル酸エステル系強カチオン高分子凝
集剤とを用いて凝集処理した後に脱水して汚泥である脱
水ケーキと処理濾液とに固液分離した。この脱水ケーキ
と処理濾液との性状を表4に、ポリアミジン系強カチオ
ン高分子凝集剤により凝集処理して得られた脱水ケーキ
中の成分分析結果を表5に示す。
On the other hand, when the residence time is 15 days and the organic acid concentration is 50
The mixture subjected to methane fermentation treatment in a stable state at about 0 mg / liter is subjected to a coagulation treatment using a polyamidine-based strong cationic polymer coagulant and a general polyacrylate ester-based strong cationic polymer coagulant, followed by dehydration. Solid-liquid separation was carried out into a dewatered cake as sludge and a treated filtrate. Table 4 shows the properties of the dehydrated cake and the treated filtrate, and Table 5 shows the results of component analysis in the dehydrated cake obtained by coagulation treatment with a polyamidine-based strong cationic polymer coagulant.

【0097】[0097]

【表4】 [Table 4]

【表5】 この表4に示す結果から、ポリアクリル酸エステル系強
カチオン高分子凝集剤では脱水ケーキの含水率が82.
4%であるのに対し、ポリアミジン系強カチオン高分子
凝集剤では77.8%となり、大きな差が認められた。
また、処理濾液中のBODもポリアミジン系強カチオン
高分子凝集剤では430mg/リットルとなり、500mg
/リットル以下にすることができた。しかし、総窒素濃
度(T−N)は約2200mg/リットルと非常に高いこ
とがわかる。また、表5に示す結果から、乾燥重量当た
り、窒素(N)7.2%、リン(P)12.1%、マグ
ネシウム(Mg)5.3%で、肥料として効果を生じす
る肥効成分が多く含まれていることが分かる。
[Table 5] From the results shown in Table 4, the water content of the dehydrated cake of the polyacrylic acid ester-based strong cationic polymer coagulant was 82.
In contrast to 4%, the polyamidine-based strong cationic polymer flocculant was 77.8%, indicating a large difference.
Also, the BOD in the treated filtrate was 430 mg / liter for the polyamidine-based strong cationic polymer flocculant, and was 500 mg.
/ Liter or less. However, it can be seen that the total nitrogen concentration (TN) is as high as about 2200 mg / liter. In addition, from the results shown in Table 5, fertilizer components that produce an effect as a fertilizer with nitrogen (N) 7.2%, phosphorus (P) 12.1%, and magnesium (Mg) 5.3% per dry weight. It can be seen that many are included.

【0098】そして、分集した処理濾液をあらかじめ浄
化槽汚泥を固液分離して分集した濾液と一緒に好気性微
生物処理することとなる。ここで、処理濾液と濾液との
量比は、屎尿と浄化槽汚泥との比率が1:1であるため
ほぼ同量となる。このため、表2および表4に示す結果
から、濾液および処理濾液の混合液は、BODが約70
0mg/リットル、総窒素濃度(T−N)が約1300mg
/リットル程度となり、アンモニアストリッピング処理
などにより窒素化合物を除去することにより、後工程の
好気性微生物による生物処理は、BODが約700mg/
リットルの汚水を処理する負荷が低い活性汚泥処理で済
むこととなる。
Then, the collected treated filtrate is subjected to an aerobic microorganism treatment together with the filtrate separated by solid-liquid separation of the septic tank sludge in advance. Here, the volume ratio between the treated filtrate and the filtrate is almost the same since the ratio between human waste and septic tank sludge is 1: 1. Therefore, from the results shown in Tables 2 and 4, the mixture of the filtrate and the treated filtrate had a BOD of about 70.
0mg / liter, total nitrogen concentration (TN) about 1300mg
By removing nitrogen compounds by ammonia stripping or the like, the biological treatment by aerobic microorganisms in the subsequent step has a BOD of about 700 mg / liter.
Activated sludge treatment with a low load of treating liters of sewage is required.

【0099】次に、濾液および処理濾液を等量混合し、
アンモニアストリッピング処理をした。この処理方法
は、まずpH調整槽に投入した濾液および処理濾液に水
酸化ナトリウムを添加してpHを11に調整した後、容
量1リットルの槽が2段直列に接続されたストリッピン
グ槽に流入させ、それぞれの槽に設けた散気管より空気
を散気してアンモニアストリッピング処理した。この結
果を表6に示す。
Next, equal amounts of the filtrate and the treated filtrate were mixed,
Ammonia stripping was performed. In this treatment method, first, sodium hydroxide is added to the filtrate and the treatment filtrate put in the pH adjustment tank to adjust the pH to 11, and then a 1-liter capacity tank flows into a stripping tank connected in two stages in series. Then, air was diffused from an air diffuser provided in each tank to perform an ammonia stripping treatment. Table 6 shows the results.

【0100】[0100]

【表6】 この表6に示す結果から、アンモニア性窒素濃度が14
60mg/リットルから31mg/リットルまで低減でき
た。そして、このアンモニアストリッピング処理によ
り、表7に示す性状となった。
[Table 6] From the results shown in Table 6, the ammonia nitrogen concentration was 14%.
It could be reduced from 60 mg / liter to 31 mg / liter. The properties shown in Table 7 were obtained by the ammonia stripping treatment.

【0101】[0101]

【表7】 この後、好気性微生物による生物処理である活性汚泥法
による処理により、表8に示すBOD、SS、総窒素が
良好に低減した処理水が得られた。
[Table 7] Thereafter, by the activated sludge method, which is a biological treatment with aerobic microorganisms, treated water shown in Table 8 in which BOD, SS, and total nitrogen were satisfactorily reduced was obtained.

【0102】[0102]

【表8】 一方、図3に示す比較例1は、上記実施例の合成生ごみ
と、屎尿および浄化槽汚泥を1:1で混合した2形態の
廃棄物を出発原料とし、固液分離工程22に相当する固液
分離、すなわち混合した屎尿および浄化槽汚泥にカチオ
ン系高分子凝集剤をTS濃度に対して2%添加して凝集
処理し、目の粗い濾布で濾過して十分に絞り、約1.5
kgの汚泥分としての脱水汚泥と約18.5kgの濾液とに
固液分離した。これら脱水汚泥と濾液との性状を表9に
示す。
[Table 8] On the other hand, in Comparative Example 1 shown in FIG. 3, the synthetic garbage of the above-described example, waste in two forms in which human waste and septic tank sludge were mixed at a ratio of 1: 1 was used as a starting material, and a solid-liquid separation step 22 was performed. Liquid separation, that is, a cationic polymer flocculant is added to the mixed human waste and septic tank sludge at 2% with respect to the TS concentration, and the mixture is subjected to flocculation treatment.
The solid-liquid separation was carried out into dewatered sludge as kg of sludge and about 18.5 kg of filtrate. Table 9 shows the properties of the dewatered sludge and the filtrate.

【0103】[0103]

【表9】 ここで、通常の硝化脱窒処理でのBOD/Nは3.5〜
4程度の性状に設定する必要があることから、表9に示
す濾液を後工程の硝化脱窒工程26で硝化脱窒処理する
際、BODが不足する状態となり、メタノールなどの有
機炭素源を添加する必要がある。このため、硝化脱窒処
理の際の実際の負荷はBOD濃度が6700〜7680
mg/リットル、総窒素濃度1920mg/リットルとな
る。したがって、上記汚泥が3形態の実施例のBOD濃
度700mg/リットルの活性汚泥処理に比して非常に大
きな負荷となり、処理装置の大型化および消費処理エネ
ルギの増大を生じることとなる、すなわち上記実施例に
よれば、後工程の生物処理の構成の簡略化および消費処
理エネルギの低減が得られ、簡単な構成で効率よく廃棄
物を処理できることがわかる。
[Table 9] Here, BOD / N in the normal nitrification denitrification treatment is 3.5 to
When the filtrate shown in Table 9 is subjected to nitrification and denitrification in the subsequent nitrification and denitrification step 26, the BOD becomes insufficient, and an organic carbon source such as methanol is added. There is a need to. For this reason, the actual load at the time of the nitrification denitrification treatment is such that the BOD concentration is 6700 to 7680.
mg / l, total nitrogen concentration 1920 mg / l. Therefore, the sludge has a much larger load than the activated sludge treatment with a BOD concentration of 700 mg / liter in the three embodiments, which results in an increase in the size of the treatment apparatus and an increase in the consumption energy. According to the example, it is understood that the configuration of the biological treatment in the post-process can be simplified and the energy consumption can be reduced, and waste can be efficiently processed with a simple configuration.

【0104】また、メタン発酵槽24でメタン発酵処理す
るために、屎尿と浄化槽汚泥との混合物から分集される
脱水汚泥1.5kgに合成生ごみ5kgを加え、水を添加し
てTS濃度が10%程度となるように調質した。その性
状を表10に示す。
Further, in order to perform methane fermentation treatment in the methane fermentation tank 24, 5 kg of synthetic garbage is added to 1.5 kg of dewatered sludge collected from a mixture of human waste and septic tank sludge, and water is added to reduce the TS concentration to 10%. %. Table 10 shows the properties.

【0105】[0105]

【表10】 そして、表1および表9に示す結果から、脱水汚泥およ
び合成生ごみの混合物を調質した調質物を流入するメタ
ン発酵槽24に投入する際の屎尿10kg、浄化槽汚泥10
kgおよび合成生ごみ5kg当たりのCODCr量を以下に示
す方法により計算すると、 1.5[kg]×180[g/kg]+5[kg]×307[g/kg]=1
805[g] となり、図3に示す比較例1は約1.8kgとなる。
[Table 10] From the results shown in Tables 1 and 9, 10 kg of human waste and 10 liters of septic tank sludge at the time of introducing the reconditioned material obtained by conditioning the mixture of dehydrated sludge and synthetic garbage into the methane fermentation tank 24 into which the mixture flows.
When the amount of COD Cr per kg and 5 kg of synthetic garbage is calculated by the following method, 1.5 [kg] × 180 [g / kg] +5 [kg] × 307 [g / kg] = 1
805 [g], and the comparative example 1 shown in FIG. 3 weighs about 1.8 kg.

【0106】一方、上記実施例の廃棄物が3形態の屎尿
10kg、浄化槽汚泥の固液分離した汚泥分0.5kg、合
成生ごみ5kgが調質された混合物が流入するメタン発酵
槽に投入されるCODCr量は、 10[kg]×32[g/kg]+0.5[kg]×307[g/kg]×5
[kg]×169[g/kg]=1940[g] となり、約2.0kgとなる。そして、メタン発酵でのメ
タン回収率は投入されるCODCr量によりほぼ決定され
ることから、図3に示す比較例1による処理方法では上
記実施例に比して1割程度メタン回収率が低下、すなわ
ち本実施例のように処理することにより従来より1割増
のメタン回収率の向上が得られることがわかる。
On the other hand, the waste of the above embodiment was put into a methane fermentation tank into which a mixture of 10 kg of human waste in three forms, 0.5 kg of solid-liquid separated sludge of a septic tank sludge, and 5 kg of synthetic garbage was introduced. COD Cr amount is 10 [kg] x 32 [g / kg] + 0.5 [kg] x 307 [g / kg] x 5
[kg] × 169 [g / kg] = 1940 [g], which is about 2.0 kg. Further, since the methane recovery rate in methane fermentation is substantially determined by the amount of COD Cr to be input, the methane recovery rate in the treatment method according to Comparative Example 1 shown in FIG. That is, it can be seen that the treatment as in the present embodiment can improve the methane recovery rate by 10% compared to the conventional method.

【0107】次に、図4に示す比較例2は、上記実施の
形態の合成生ごみ、屎尿および浄化槽汚泥を混合した1
形態の廃棄物市を出発原料として処理するものである。
すなわち、図3に示す比較例1である従来例の液状の有
機性廃棄物と固形状の有機性廃棄物とを一括して前処理
工程31で粉砕あるいは夾雑物の分離除去などの前処理を
した後に固液分離工程32で汚泥分と濾液とに固液分離
し、汚泥分はメタン発酵槽33でメタン発酵処理する。さ
らに、メタン発酵処理にてメタンガスを有価物として回
収した後、脱水工程34で汚泥と処理濾液とに脱水分離
し、汚泥は肥料などにコンポスト化して有価物として回
収し、処理濾液は燐酸除去工程35でマグネシウム化合物
および燐酸化合物の添加により燐酸マグネシウムアンモ
ニウムを生成させて分離し、燐酸が除去させた処理濾液
は固液分離工程32で分集した濾液とともに硝化脱窒工程
36で硝化脱窒処理し、さらに高度処理工程37で凝集剤に
て凝集処理し、処理水として処理する。なお、硝化脱窒
処理により生じた余剰汚泥は、液状の有機性廃棄物の前
処理や固液分離に返送して再び処理する。
Next, in Comparative Example 2 shown in FIG. 4, the synthetic garbage, human waste and septic tank sludge of the above embodiment were mixed.
The waste city of the form is treated as a starting material.
That is, the liquid organic waste and the solid organic waste of the conventional example which is Comparative Example 1 shown in FIG. 3 are subjected to a pretreatment such as pulverization or separation and removal of impurities in a pretreatment step 31 at a time. After that, in a solid-liquid separation step 32, solid-liquid separation is performed into sludge and a filtrate, and the sludge is subjected to methane fermentation in a methane fermentation tank 33. Furthermore, after recovering methane gas as a valuable material in the methane fermentation treatment, the sludge and the treated filtrate are dehydrated and separated in a dehydration step 34, and the sludge is composted into fertilizers and collected as a valuable material, and the treated filtrate is subjected to a phosphate removal step. At step 35, magnesium ammonium phosphate is formed by the addition of a magnesium compound and a phosphate compound and separated, and the treated filtrate from which phosphoric acid has been removed is subjected to a nitrification and denitrification step together with the filtrate collected at the solid-liquid separation step 32.
A nitrification denitrification treatment is performed at 36, and a coagulation treatment is performed with a coagulant at an advanced treatment step 37, which is treated as treated water. Excess sludge generated by the nitrification and denitrification treatment is returned to pretreatment of liquid organic waste or solid-liquid separation for treatment again.

【0108】この図4に示す比較例2の処理工程に対応
して、屎尿および浄化槽汚泥1:1の混合物20kgに、
合成生ごみ5kgを混合し、固液分離工程32に相当する固
液分離、すなわちカチオン系高分子凝集剤をTS濃度に
対して2%添加して凝集処理し、目の粗い濾布で濾過し
て十分に絞り、約3.9kgの汚泥分としての脱水汚泥と
約21.1kgの濾液とに固液分離した。これら脱水汚泥
と濾液との性状を表11に示す。
According to the treatment process of Comparative Example 2 shown in FIG. 4, 20 kg of a mixture of human waste and septic tank sludge 1: 1 was added.
5 kg of synthetic garbage is mixed and subjected to solid-liquid separation corresponding to the solid-liquid separation step 32, that is, coagulation treatment is performed by adding a cationic polymer coagulant to the TS concentration by 2%, and filtered through a coarse filter cloth. The mixture was sufficiently squeezed and solid-liquid separated into about 3.9 kg of dewatered sludge as sludge and about 21.1 kg of filtrate. Table 11 shows the properties of the dewatered sludge and the filtrate.

【0109】[0109]

【表11】 そして、メタン発酵槽33に投入されるCODCr量を上述
と同様に計算すると、約1.4kgとなり、図4に示す比
較例2による処理方法では、上記実施例に比して3割程
度メタン回収率が低下することがわかる。さらに、濾液
のBOD量を比較すると、表2および表11から、 (21.1[kg]×12000[mg/l])/(9.5[kg]×
880[mg/l])=30.3 となり、上記実施例に比して約30倍高く、後工程での
生物処理の負荷が増大することがわかる。
[Table 11] Then, when the amount of COD Cr supplied to the methane fermentation tank 33 is calculated in the same manner as described above, the amount is about 1.4 kg. In the treatment method according to Comparative Example 2 shown in FIG. It turns out that a recovery rate falls. Furthermore, comparing the BOD amount of the filtrate, Table 2 and Table 11 show that (21.1 [kg] × 12000 [mg / l]) / (9.5 [kg] ×
880 [mg / l]) = 30.3, which is about 30 times higher than that of the above example, and it can be seen that the load of biological treatment in the subsequent process increases.

【0110】さらに、これら図3に示す比較例1および
図4に示す比較例2を上記実施例と同様にアンモニアス
トリッピング処理した。その結果、発泡がひどくアンモ
ニアストリッピング処理を続けることができなかった。
これは、図3に示す比較例1および図4に示す比較例2
では、屎尿である液状廃棄物や生ごみなどの生物処理を
経ていない廃棄物は蛋白質や高分子有機物が多く含まれ
ているためと考えられる。そこで、シリコンなどの消泡
剤を添加して発泡を抑制して実施例と同じ条件でアンモ
ニアストリッピング処理を継続した。その結果を表12
に示す。
Further, Comparative Example 1 shown in FIG. 3 and Comparative Example 2 shown in FIG. 4 were subjected to an ammonia stripping treatment in the same manner as in the above example. As a result, the foaming was so severe that the ammonia stripping treatment could not be continued.
This corresponds to Comparative Example 1 shown in FIG. 3 and Comparative Example 2 shown in FIG.
Then, it is considered that liquid waste that has not undergone biological treatment, such as liquid waste and garbage, is rich in protein and high-molecular organic matter. Therefore, an ammonia defoaming agent such as silicon was added to suppress foaming, and the ammonia stripping treatment was continued under the same conditions as in the example. Table 12 shows the results.
Shown in

【0111】[0111]

【表12】 この表12に示す結果から、上記実施例に比してアンモ
ニア性窒素の除去割合が低いことがわかる。これは、消
泡剤のシリコンが気液表面に集まってアンモニア性窒素
が液相から気相へ気散することを抑制するためと考えら
れる。
[Table 12] From the results shown in Table 12, it can be seen that the removal ratio of ammonia nitrogen is lower than that of the above-mentioned Example. This is considered to be because the defoaming agent silicon is prevented from gathering on the gas-liquid surface and ammonia nitrogen from being diffused from the liquid phase to the gas phase.

【0112】一方、これら発泡による弊害を防止するた
め、生物処理にてBODを低減した後、アンモニアスト
リッピング処理することも考えられるが、生物処理の際
の溶存酸素の供給のための曝気により、アンモニア性窒
素が硝化反応して硝酸や亜硝酸を生成し、BODの酸化
分解のみを行うことはできない。そして、これら生成す
る硝酸や亜硝酸は、アンモニアストリッピング処理では
除去できないため、生物処理後にアンモニアストリッピ
ング処理しても総窒素濃度は余り低減しないので、高い
窒素含有量となってしまう。このため、図3および図4
に示す比較例では、簡単な構成のアンモニアストリッピ
ング処理を利用することができず、装置が大型複雑で消
費処理エネルギも大きな硝化脱窒処理を行わなければ、
高度処理のための基準となる総窒素濃度が10mg/リッ
トル以下の処理水が得られない。
On the other hand, in order to prevent the adverse effects of these foams, it is conceivable to carry out ammonia stripping after reducing the BOD by biological treatment. However, aeration for supplying dissolved oxygen during biological treatment is considered. Ammonia nitrogen causes a nitrification reaction to generate nitric acid or nitrous acid, and cannot perform only oxidative decomposition of BOD. Since the generated nitric acid and nitrous acid cannot be removed by the ammonia stripping treatment, the total nitrogen concentration does not decrease so much even if the ammonia stripping treatment is performed after the biological treatment, resulting in a high nitrogen content. Therefore, FIGS. 3 and 4
In the comparative example shown in the above, the ammonia stripping process having a simple configuration cannot be used, and if the apparatus is large and complicated, and the nitrification denitrification process that consumes a large amount of processing energy is not performed,
Processed water having a total nitrogen concentration of 10 mg / liter or less, which is a standard for advanced treatment, cannot be obtained.

【0113】したがって、上記実施例では、総窒素濃度
を数十mg/リットル程度まで低減させれば、後工程の生
物処理によりさらに窒素化合物が高度処理のための基準
となる総窒素濃度が10mg/リットル以下にまで低減で
きるので、処理装置の簡略小型化および消費処理エネル
ギの低減が図れることがわかる。
Therefore, in the above embodiment, if the total nitrogen concentration is reduced to about several tens of mg / liter, the total nitrogen concentration, which is a standard for advanced treatment of nitrogen compounds by the biological treatment in the subsequent step, is 10 mg / liter. Since it can be reduced to liters or less, it can be seen that the processing apparatus can be simplified and reduced in size and the consumption energy for processing can be reduced.

【0114】[0114]

【発明の効果】請求項1記載の廃棄物処理方法によれ
ば、生物処理汚泥を固液分離して分集した全有機物の大
半が存在する汚泥分と、液体部分に多量の有機物が存在
する液状有機性廃棄物と、固形状の有機物を含有する固
形状有機性廃棄物とを攪拌混合してメタン発酵処理し、
このメタン発酵処理した後に固液分離して分集した処理
濾液と生物処理汚泥を固液分離して分集した濾液とを好
気性微生物により生物処理するため、各種性状の異なる
廃棄物の有機物のほとんどをメタン発酵処理してメタン
ガスの有価物として回収でき、メタンガスとしての回収
効率を向上できるとともに、後工程の好気性微生物によ
る生物処理の負荷を低減でき、装置の簡略化および小型
化と運転エネルギの低減とができ、効率よく廃棄物を処
理できる。
According to the first aspect of the present invention, there is provided a waste treatment method comprising the steps of solid-liquid separation of biologically treated sludge and separation of the sludge where most of the total organic matter is present, and liquid where a large amount of organic matter is present in the liquid portion. Organic waste, solid organic waste containing solid organic matter is stirred and mixed and methane fermented,
After the methane fermentation treatment, the treated filtrate obtained by solid-liquid separation and separation and the filtrate obtained by solid-liquid separation and separation of biologically treated sludge are subjected to biological treatment by aerobic microorganisms. Methane fermentation treatment can be recovered as valuable methane gas, improving the recovery efficiency as methane gas, reducing the load of biological treatment by aerobic microorganisms in the post-process, simplifying and downsizing the equipment and reducing operating energy The waste can be treated efficiently.

【0115】請求項2記載の廃棄物処理方法によれば、
請求項1記載の廃棄物処理方法の効果に加え、好気性微
生物による生物処理により生成する余剰汚泥を、汚泥
分、液状有機性廃棄物および固形状有機性廃棄物ととも
にメタン発酵処理してメタンガスの有価物として回収す
るため、有機物を確実にメタン発酵処理してメタンガス
の有価物として回収できるので、さらに効率よく処理で
きる。
According to the waste disposal method of the second aspect,
In addition to the effect of the waste treatment method according to claim 1, surplus sludge generated by biological treatment with aerobic microorganisms is subjected to methane fermentation together with sludge, liquid organic waste and solid organic waste to produce methane gas. Since the organic matter can be reliably collected by methane fermentation and collected as valuable methane gas, it can be more efficiently treated because it is recovered as a valuable resource.

【0116】請求項3記載の廃棄物処理方法によれば、
請求項1または2記載の廃棄物処理方法の効果に加え、
メタン発酵処理する前に総固形物濃度が5%以上20%
以下となるように水分調整するため、メタン発酵処理す
る際の適性な濃度となり、メタン発酵処理効率を向上で
きる。
According to the waste disposal method of the third aspect,
In addition to the effects of the waste disposal method according to claim 1 or 2,
5% or more 20% of total solids concentration before methane fermentation
Since the water content is adjusted to be as follows, an appropriate concentration for methane fermentation treatment is obtained, and the methane fermentation treatment efficiency can be improved.

【0117】請求項4記載の廃棄物処理方法によれば、
請求項1ないし3いずれか一記載の廃棄物処理方法の効
果に加え、メタン発酵処理する前にあらかじめ液状有機
性廃棄物および固形状有機性廃棄物の少なくとも一方か
ら夾雑物を除去するため、夾雑物によるメタン発酵処理
の阻害を防止でき、運転エネルギに対するメタン回収率
を向上でき、メタン発酵処理効率を向上できる。
According to the waste treatment method of the fourth aspect,
In addition to the effects of the waste treatment method according to any one of claims 1 to 3, in addition to removing impurities from at least one of a liquid organic waste and a solid organic waste before performing methane fermentation treatment, It is possible to prevent the methane fermentation treatment from being hindered by substances, improve the methane recovery rate with respect to the operating energy, and improve the methane fermentation treatment efficiency.

【0118】請求項5記載の廃棄物処理方法によれば、
請求項1ないし4いずれか一記載の廃棄物処理方法の効
果に加え、メタン発酵処理する前またはメタン発酵処理
の際にマグネシウム化合物および燐酸化合物を添加する
ため、生物処理汚泥の汚泥分中に残留する窒素化合物、
液状有機性廃棄物中に存在する窒素化合物がマグネシウ
ム化合物および燐酸化合物と反応して燐酸マグネシウム
アンモニウムを生成して析出させるので、窒素化合物に
よるメタン発酵処理の阻害を防止でき、メタン発酵処理
効率を向上できる。
According to the waste disposal method of the fifth aspect,
In addition to the effects of the waste treatment method according to any one of claims 1 to 4, the magnesium compound and the phosphate compound are added before or during the methane fermentation treatment, so that they remain in the sludge of the biologically treated sludge. Nitrogen compounds,
Nitrogen compounds present in the liquid organic waste react with magnesium compounds and phosphate compounds to form and precipitate magnesium ammonium phosphate, preventing the inhibition of methane fermentation treatment by nitrogen compounds and improving methane fermentation treatment efficiency. it can.

【0119】請求項6記載の廃棄物処理方法によれば、
請求項5記載の廃棄物処理方法の効果に加え、マグネシ
ウム化合物および燐酸化合物を添加する際に、鉄化合
物、コバルト化合物およびニッケル化合物の少なくとも
いずれか一方を添加するため、メタン発酵処理の際に総
固形物濃度や窒素化合物濃度が高くなる状態でも、栄養
塩類の鉄分、コバルト分およびニッケル分の不活性効果
の増大分を補給でき、栄養塩バランスが確保されてメタ
ン発酵処理効率を向上できる。
According to the waste disposal method of the sixth aspect,
In addition to the effect of the waste treatment method according to claim 5, when adding a magnesium compound and a phosphoric acid compound, at least one of an iron compound, a cobalt compound and a nickel compound is added. Even in the state where the solid matter concentration and the nitrogen compound concentration are high, the increased amount of the inactive effect of the nutrients of iron, cobalt and nickel can be replenished, and the nutrient salt balance can be ensured to improve the methane fermentation treatment efficiency.

【0120】請求項7記載の廃棄物処理方法によれば、
請求項5または6記載の廃棄物処理方法の効果に加え、
マグネシウム化合物および燐酸化合物は、メタン発酵処
理の際の窒素化合物の濃度が4000ppm 以下となるよ
うに添加するため、窒素化合物によるメタン発酵処理の
阻害を確実に防止でき、メタン発酵処理効率を向上でき
る。
According to the waste disposal method of claim 7,
In addition to the effects of the waste disposal method according to claim 5 or 6,
Since the magnesium compound and the phosphate compound are added so that the concentration of the nitrogen compound during the methane fermentation treatment becomes 4000 ppm or less, the inhibition of the methane fermentation treatment by the nitrogen compound can be surely prevented, and the methane fermentation treatment efficiency can be improved.

【0121】請求項8記載の廃棄物処理方法によれば、
請求項1ないし7いずれか一記載の廃棄物処理方法の効
果に加え、処理濾液と濾液とを生物処理する前に窒素化
合物を除去するため、硝化脱窒処理による窒素化合物の
分解処理が不要となり、装置構成の簡略小型化および処
理エネルギの低減ができるとともに、生物処理の負荷を
低減でき、処理効率を向上できる。
According to the waste treatment method of the eighth aspect,
In addition to the effects of the waste treatment method according to any one of claims 1 to 7, nitrogen compounds are removed before biological treatment of the treated filtrate and the filtrate, so that nitrogen compound decomposing treatment by nitrification denitrification treatment becomes unnecessary. In addition, the size of the apparatus can be simplified and reduced, the processing energy can be reduced, the load of biological treatment can be reduced, and the processing efficiency can be improved.

【0122】請求項9記載の廃棄物処理方法によれば、
請求項8記載の廃棄物処理方法の効果に加え、生物処理
する前にアンモニアストリッピング処理により窒素化合
物を除去するため、生物処理により生成した生物処理汚
泥の固液分離により得られ比較的有機物が少なく窒素化
合物が多い濾液、および、メタン発酵処理後の比較的有
機物が少なく窒素化合物が多い処理濾液で、硝化脱窒処
理では有機物を別途添加しなくては窒素化合物が処理で
きなくなる状態でも、簡単な構成で窒素化合物を除去で
きるとともに有価物として回収でき、また、好気性微生
物による生物処理の負荷を低減でき、処理効率を向上で
きる。
According to the ninth aspect of the present invention,
In addition to the effect of the waste treatment method according to claim 8, since nitrogen compounds are removed by ammonia stripping treatment before biological treatment, relatively organic substances obtained by solid-liquid separation of biologically treated sludge generated by biological treatment are obtained. A filtrate with a small amount of nitrogen compounds and a filtrate with a relatively small amount of organic compounds after methane fermentation and a relatively large amount of nitrogen compounds.Even in a state where nitrogen compounds cannot be treated without additional organic matter in nitrification and denitrification, With such a configuration, the nitrogen compound can be removed and recovered as a valuable resource, the load of biological treatment by aerobic microorganisms can be reduced, and the treatment efficiency can be improved.

【0123】請求項10記載の廃棄物処理方法によれ
ば、請求項8または9記載の廃棄物処理方法の効果に加
え、生物処理する際の処理濾液および濾液の混合中の生
物化学的酸素要求量(BOD)濃度が全窒素化合物濃度
の15倍以上となるまで窒素化合物を除去するため、生
物処理する好気性微生物が摂取する栄養源となる窒素化
合物が確保され、処理効率を向上できるとともに、窒素
化合物を残留させずに高度に低減できる。
According to the waste treatment method of the tenth aspect, in addition to the effect of the waste treatment method of the eighth or ninth aspect, the treatment filtrate during the biological treatment and the biochemical oxygen demand during the mixing of the filtrate. Nitrogen compounds are removed until the amount (BOD) concentration becomes 15 times or more of the total nitrogen compound concentration, so that a nitrogen compound as a nutrient source ingested by the aerobic microorganisms to be biologically treated can be secured, and the treatment efficiency can be improved. Highly reduced without leaving nitrogen compounds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃棄物処理方法の実施の一形態の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a waste disposal method according to the present invention.

【図2】同上図1に示す処理工程において屎尿、浄化槽
汚泥および合成生ごみを用いてメタン発酵処理した実験
の結果を示すグラフである。
FIG. 2 is a graph showing the results of an experiment in which methane fermentation was performed using human waste, septic tank sludge, and synthetic garbage in the processing step shown in FIG.

【図3】従来例の廃棄物処理方法の構成を示すブロック
図である。
FIG. 3 is a block diagram showing a configuration of a conventional waste disposal method.

【図4】従来の他の廃棄物処理方法の構成を示すブロッ
ク図である。
FIG. 4 is a block diagram showing a configuration of another conventional waste disposal method.

【符号の説明】[Explanation of symbols]

1 第1の固液分離手段 2 第1の前処理手段 3 第2の前処理手段 6 メタン発酵処理手段としてのメタン発酵槽 7 第2の固液分離手段 8 窒素化合物除去手段としてのアンモニアストリッ
ピング処理工程 9 生物処理手段 10 余剰汚泥返送手段
REFERENCE SIGNS LIST 1 first solid-liquid separation means 2 first pretreatment means 3 second pretreatment means 6 methane fermentation tank as methane fermentation treatment means 7 second solid-liquid separation means 8 ammonia stripping as nitrogen compound removal means Treatment process 9 Biological treatment means 10 Excess sludge return means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 宏 大阪府大阪市西区立売堀二丁目1番9号 アタカ工業株式会社内 (72)発明者 赤嶺 和浩 大阪府大阪市西区立売堀二丁目1番9号 アタカ工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Sasaki 2-9-1-9, Noribori, Nishi-ku, Osaka, Osaka Inside Ataka Industry Co., Ltd. (72) Kazuhiro Akamine 2-9-1, Noribori, Nishi-ku, Osaka, Osaka Ataca Industry Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 生物処理により生成した生物処理汚泥を
汚泥分と濾液とに固液分離し、 前記汚泥分と嫌気性生物にて分解可能な有機物を含有す
る流動性を有した液状有機性廃棄物と嫌気性生物にて分
解可能な固形状の有機物を含有する固形状有機性廃棄物
とを攪拌混合してメタン発酵処理した後に固液分離して
処理濾液を分集し、 この処理濾液を前記濾液とにて好気性微生物により生物
処理することを特徴とする廃棄物処理方法。
1. A liquid organic waste having a fluidity, comprising a liquid-solid separation of a biologically treated sludge generated by a biological treatment into a sludge component and a filtrate, and the sludge component and an organic substance decomposable by anaerobic organisms. The mixture is stirred and mixed with a solid organic waste containing a solid organic substance that can be decomposed by an anaerobic organism, subjected to methane fermentation treatment, and then subjected to solid-liquid separation to collect a treatment filtrate. A waste treatment method, comprising biologically treating an aerobic microorganism with a filtrate.
【請求項2】 好気性微生物による生物処理により生成
する余剰汚泥は、汚泥分、液状有機性廃棄物および固形
状有機性廃棄物とともにメタン発酵処理することを特徴
とする請求項1記載の廃棄物処理方法。
2. The waste according to claim 1, wherein the excess sludge generated by the biological treatment with the aerobic microorganism is subjected to methane fermentation together with the sludge, liquid organic waste and solid organic waste. Processing method.
【請求項3】 メタン発酵処理する前に総固形物濃度を
5%以上20%以下に水分調整することを特徴とする請
求項1または2記載の廃棄物処理方法。
3. The waste treatment method according to claim 1, wherein the water content is adjusted to a total solid concentration of 5% or more and 20% or less before the methane fermentation treatment.
【請求項4】 メタン発酵処理前に液状有機性廃棄物お
よび固形状有機性廃棄物の少なくとも一方から夾雑物を
除去することを特徴とする請求項1ないし3いずれか一
記載の廃棄物処理方法。
4. The waste disposal method according to claim 1, wherein impurities are removed from at least one of a liquid organic waste and a solid organic waste before the methane fermentation treatment. .
【請求項5】 メタン発酵処理する前または前記メタン
発酵処理の際にマグネシウム化合物および燐酸化合物を
添加することを特徴とする請求項1ないし4いずれか一
記載の廃棄物処理方法。
5. The waste treatment method according to claim 1, wherein a magnesium compound and a phosphate compound are added before or during the methane fermentation treatment.
【請求項6】 マグネシウム化合物および燐酸化合物を
添加する際に、鉄化合物、コバルト化合物およびニッケ
ル化合物の少なくともいずれか一方を添加することを特
徴とする請求項5記載の廃棄物処理方法。
6. The waste treatment method according to claim 5, wherein at least one of an iron compound, a cobalt compound and a nickel compound is added when adding the magnesium compound and the phosphate compound.
【請求項7】 マグネシウム化合物および燐酸化合物の
添加量は、メタン発酵処理の際の窒素化合物の濃度が4
000ppm 以下となる量であることを特徴とする請求項
5または6記載の廃棄物処理方法。
7. The addition amount of the magnesium compound and the phosphoric acid compound is determined when the concentration of the nitrogen compound in the methane fermentation treatment is 4%.
7. The method according to claim 5, wherein the amount is 000 ppm or less.
【請求項8】 処理濾液と濾液とを生物処理する前に窒
素化合物を除去することを特徴とする請求項1ないし7
いずれか一記載の廃棄物処理方法。
8. The process filtrate according to claim 1, wherein nitrogen compounds are removed before biological treatment of the filtrate.
The waste disposal method according to any one of the above.
【請求項9】 窒素化合物の除去は、アンモニアストリ
ッピング処理することを特徴とする請求項8記載の廃棄
物処理方法。
9. The waste treatment method according to claim 8, wherein the removal of the nitrogen compound is performed by ammonia stripping.
【請求項10】 窒素化合物の除去は、生物処理する際
の処理濾液および濾液の混合中の生物化学的酸素要求量
(BOD)濃度が全窒素化合物濃度の15倍以上となる
まで除去することを特徴とする請求項8または9記載の
廃棄物処理方法。
10. The removal of nitrogen compounds is carried out until the concentration of biochemical oxygen demand (BOD) in the treated filtrate and the mixing of the filtrate during the biological treatment is at least 15 times the total nitrogen compound concentration. The waste disposal method according to claim 8 or 9, wherein
JP12249698A 1998-05-01 1998-05-01 Waste treatment method Expired - Fee Related JP3570888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12249698A JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12249698A JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Publications (2)

Publication Number Publication Date
JPH11309438A true JPH11309438A (en) 1999-11-09
JP3570888B2 JP3570888B2 (en) 2004-09-29

Family

ID=14837292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12249698A Expired - Fee Related JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Country Status (1)

Country Link
JP (1) JP3570888B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP2005074328A (en) * 2003-09-01 2005-03-24 Kurimoto Ltd Method for treating organic sludge
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method
WO2012086416A1 (en) * 2010-12-24 2012-06-28 三菱化工機株式会社 Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
CN103435240A (en) * 2013-08-02 2013-12-11 轻工业环境保护研究所 Fermentation and re-dewatering method of dewatered sludge
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
CN106734118A (en) * 2017-02-17 2017-05-31 刘波 A kind of processing method of house refuse foul smell
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10216785A (en) * 1997-02-07 1998-08-18 Ebara Corp Treatment of night soil, garbage and sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10216785A (en) * 1997-02-07 1998-08-18 Ebara Corp Treatment of night soil, garbage and sludge

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015229A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for treating organic waste
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP4631204B2 (en) * 2001-04-27 2011-02-16 栗田工業株式会社 Dry methane fermentation of organic waste
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP2005074328A (en) * 2003-09-01 2005-03-24 Kurimoto Ltd Method for treating organic sludge
JP2008253871A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Co-fermentation method
WO2012086416A1 (en) * 2010-12-24 2012-06-28 三菱化工機株式会社 Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
CN103435240A (en) * 2013-08-02 2013-12-11 轻工业环境保护研究所 Fermentation and re-dewatering method of dewatered sludge
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
CN106734118A (en) * 2017-02-17 2017-05-31 刘波 A kind of processing method of house refuse foul smell
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method

Also Published As

Publication number Publication date
JP3570888B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
EP1157972A1 (en) A method of processing oil-plant wastes
US7806957B1 (en) Balanced fertilizer production and improved anaerobic digestion efficiency
JP4367876B2 (en) Waste treatment method and apparatus
EP3394009A1 (en) Recovery of phosphorus compounds from wastewater
KR101368459B1 (en) Food waste effluent anaerobic advanced treatment system
WO2007139264A1 (en) Apparatus and method for treatment of food waste
JP3570888B2 (en) Waste treatment method
JP2000015231A (en) Method for methane fermentation of organic waste
JP3554689B2 (en) Waste disposal method
CA3126294A1 (en) Method and system for treating wastewater
JP3609332B2 (en) Treatment method for oil-containing waste
KR100407554B1 (en) A disposal method of pig ordure
JP3145957B2 (en) Waste treatment method
JP3400292B2 (en) Waste treatment method
JP3835927B2 (en) Organic waste treatment methods
JPH11197636A (en) Method for treatment of organic waste
KR100274534B1 (en) Nitrogen and phosphorus removal methods with using fermented organic wastes
JP3835930B2 (en) Organic waste treatment methods
JP2000015230A (en) Method for removing ammonia
JP3970163B2 (en) Organic waste treatment method and apparatus
JPH10337594A (en) Apparatus for waste disposal
KR20150066055A (en) System for Anaerobic Digestion of High Concentration Organic Wastes
JP2006281095A (en) Method for treating organic waste
JP3276138B2 (en) Organic waste treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees