JP3145957B2 - Waste treatment method - Google Patents
Waste treatment methodInfo
- Publication number
- JP3145957B2 JP3145957B2 JP18870997A JP18870997A JP3145957B2 JP 3145957 B2 JP3145957 B2 JP 3145957B2 JP 18870997 A JP18870997 A JP 18870997A JP 18870997 A JP18870997 A JP 18870997A JP 3145957 B2 JP3145957 B2 JP 3145957B2
- Authority
- JP
- Japan
- Prior art keywords
- methane fermentation
- waste
- treatment
- methane
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011282 treatment Methods 0.000 title claims description 104
- 239000002699 waste material Substances 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 268
- 238000000855 fermentation Methods 0.000 claims description 107
- 230000004151 fermentation Effects 0.000 claims description 107
- 239000010815 organic waste Substances 0.000 claims description 31
- 239000007787 solid Substances 0.000 claims description 30
- 244000005700 microbiome Species 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002351 wastewater Substances 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 14
- 150000002506 iron compounds Chemical class 0.000 claims description 13
- 150000002816 nickel compounds Chemical class 0.000 claims description 13
- 150000001869 cobalt compounds Chemical class 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 11
- 238000001704 evaporation Methods 0.000 claims description 10
- 230000008020 evaporation Effects 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 56
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 54
- 235000015097 nutrients Nutrition 0.000 description 46
- 229910017052 cobalt Inorganic materials 0.000 description 30
- 239000010941 cobalt Substances 0.000 description 30
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 30
- 229910052759 nickel Inorganic materials 0.000 description 28
- 229910052742 iron Inorganic materials 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 239000000463 material Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 21
- 239000010813 municipal solid waste Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 230000029087 digestion Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- 239000010865 sewage Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 229960002089 ferrous chloride Drugs 0.000 description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- -1 ferrous chloride Chemical class 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- SAXCKUIOAKKRAS-UHFFFAOYSA-N cobalt;hydrate Chemical compound O.[Co] SAXCKUIOAKKRAS-UHFFFAOYSA-N 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、生物分解可能な固
形状の有機性廃棄物をメタン発酵処理する廃棄物処理方
法に関する。[0001] The present invention relates to a waste treatment method for subjecting a biodegradable solid organic waste to methane fermentation.
【0002】[0002]
【従来の技術】従来、例えば有機性汚水をメタン生成菌
にてメタン発酵処理し、得られるメタンガスを利用して
効率よく処理する廃棄物処理方法として、特開平3−1
54692号公報および特開平3−165895号公報
に記載の汚水処理方法が知られている。2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Publication No. Hei.
There are known sewage treatment methods described in Japanese Patent No. 54692 and Japanese Patent Application Laid-Open No. 3-165895.
【0003】そして、特開平3−154692号公報に
記載の汚水処理方法では、上述したメタン生成菌にて有
機性汚水をメタン発酵処理する場合、TOC(Total Or
ganic Carbon:全有機性炭素)負荷が4kg/m3 ・日か
ら5kg/m3 ・日に上げることにより、過負荷となって
TOC除去率が急激に低下するため、過負荷となって処
理効率が低下した際に、メタン生成菌の代謝に必要なニ
ッケル、コバルト、窒素、リンを適宜添加して処理効率
の回復を図っている。In the sewage treatment method described in Japanese Patent Application Laid-Open No. 3-154693, when organic sewage is subjected to methane fermentation treatment with the above-mentioned methane-producing bacteria, the TOC (Total Orifice) is used.
ganic Carbon) When the load is increased from 4 kg / m 3 · day to 5 kg / m 3 · day, overload occurs and the TOC removal rate drops rapidly, resulting in overload and treatment efficiency. When the concentration decreases, nickel, cobalt, nitrogen, and phosphorus necessary for metabolism of methanogens are appropriately added to recover the treatment efficiency.
【0004】また、特開平3−165895号公報に記
載の汚水処理方法では、メタン生成菌にて有機性廃棄物
をメタン発酵処理する際に、BOD(Biochemical Oxyg
en Demand :生物化学的酸素要求量)負荷が3kg/m3
・日より高くなるとBOD除去率が低下するため、メタ
ン生成菌の栄養素となるニッケル、鉄、コバルトを有機
性廃棄物のBOD濃度に対して所定量以上となるように
適宜添加して、メタン生成菌の増殖活性を向上させて、
BOD負荷が高くなってもBOD除去率の低下を防止し
ている。Further, in the sewage treatment method described in Japanese Patent Application Laid-Open No. 3-165895, BOD (Biochemical Oxyg
en Demand: Biochemical oxygen demand) Load is 3 kg / m 3
-Since the BOD removal rate decreases when the temperature is higher than the day, nickel, iron, and cobalt, which are nutrients of methane-producing bacteria, are appropriately added so that the BOD concentration of the organic waste becomes a predetermined amount or more, and methane generation is performed. Improve the growth activity of bacteria,
Even if the BOD load increases, a decrease in the BOD removal rate is prevented.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記特
開平3−154692号公報および特開平3−1658
95号公報に記載の汚水処理方法では、処理効率を向上
させるためにTOC負荷やBOD負荷を増大させて処理
しているが、メタン生成菌にてメタン発酵処理する際に
生じるメタンガスの生成量は多くない。そして、TOC
負荷やBOD負荷をさらに増大させてメタンガスの生成
量を増大させると、メタン発酵処理するメタン発酵消化
槽を加温する熱エネルギも比例して増大することとな
る。このため、TOC負荷やBOD負荷を増大させて
も、得られるメタンガスを他のエネルギ源として有効利
用するエネルギ回収ができない。However, the above-mentioned Japanese Patent Application Laid-Open Nos. Hei 3-154692 and Hei 3-1658 are disclosed.
In the sewage treatment method described in Japanese Patent Publication No. 95, the treatment is performed by increasing the TOC load and the BOD load in order to improve the treatment efficiency. However, the amount of methane gas generated when performing methane fermentation treatment with methane-producing bacteria is as follows. not many. And TOC
When the load and the BOD load are further increased to increase the amount of methane gas generated, the thermal energy for heating the methane fermentation digester for methane fermentation also increases in proportion. For this reason, even if the TOC load or the BOD load is increased, it is not possible to recover energy by effectively using the obtained methane gas as another energy source.
【0006】そこで、メタンガスの生成量を増大させる
方法として、例えば早急な処理対策が望まれている各家
庭や事業所から収集される生ゴミや厨芥などの嫌気性微
生物にて分解処理可能な固形状の有機性廃棄物を含有す
る廃棄物を、生物分解性を向上すべく破砕して水を混合
したり有機性汚水を混合して破砕物を調製し、この破砕
物をメタン発酵処理することが考えられる。また、この
固形状の有機性廃棄物を含有する廃棄物中には、メタン
生成菌の栄養素となるニッケル、鉄、コバルトが含まれ
ていることが知られている。Therefore, as a method of increasing the amount of methane gas generated, for example, a solid solution that can be decomposed by anaerobic microorganisms such as garbage and kitchen garbage collected from homes and business establishments where urgent treatment measures are desired. Crushing waste containing organic waste in a form to improve biodegradability, mixing water and mixing organic wastewater to prepare crushed material, and subjecting this crushed material to methane fermentation treatment Can be considered. It is known that the waste containing the solid organic waste contains nickel, iron, and cobalt, which are nutrients for methanogens.
【0007】しかしながら、メタンガスの生成量を増大
させてエネルギ回収を図るべく、破砕物の濃度を高くす
ると、TOC負荷やCOD負荷、BOD負荷が同等また
は低くなるメタン生成菌の活性を低下させない処理負荷
の条件でも、有機酸の蓄積が生じてメタン発酵処理が低
下もしくは停止する場合がある。[0007] However, when the concentration of the crushed material is increased in order to increase the amount of methane gas generated and recover energy, the TOC load, COD load, and BOD load become equal or lower. Even under the conditions described above, the accumulation of organic acids may occur, and the methane fermentation treatment may be reduced or stopped.
【0008】本発明は、上記問題点に鑑みて、固形状の
有機性廃棄物を含有する廃棄物を効率よく簡単に処理で
き、生成するメタンガスの有効利用が図れる廃棄物処理
方法を提供することを目的とする。The present invention has been made in view of the above problems, and provides a waste treatment method capable of efficiently and simply treating waste containing solid organic waste and effectively utilizing the generated methane gas. With the goal.
【0009】[0009]
【課題を解決するための手段】請求項1記載の廃棄物処
理方法は、嫌気性生物にて分解可能な固形状の有機性廃
棄物を含有する廃棄物を破砕した破砕物をメタン発酵処
理する廃棄物処理方法において、メタン発酵処理時の前
記破砕物中の全蒸発残留物が5%以上となる場合、鉄化
合物、コバルト化合物およびニッケル化合物の少なくと
もいずれか一方を添加するものである。According to a first aspect of the present invention, there is provided a waste treatment method comprising subjecting crushed material obtained by crushing waste containing solid organic waste decomposable by anaerobic organisms to methane fermentation treatment. In the waste treatment method, when the total evaporation residue in the crushed material during the methane fermentation treatment is 5% or more, at least one of an iron compound, a cobalt compound, and a nickel compound is added.
【0010】そして、固形状の有機性廃棄物を含有する
廃棄物を破砕して得られた破砕物を嫌気性生物にてメタ
ン発酵処理する際に、破砕物中の全蒸発残留物が5%以
上となる場合に、鉄化合物、コバルト化合物およびニッ
ケル化合物の少なくともいずれか一方を添加することに
より、メタンガスの生成量を増大するために全蒸発残留
物の濃度を高い条件で処理することによる破砕物中に含
有される嫌気性微生物の栄養塩類の鉄分、コバルト分お
よびニッケル分の不活性効果の増大分を補給して、栄養
塩バランスを確保してメタン発酵の処理効率を向上す
る。[0010] When the crushed material obtained by crushing the waste containing the solid organic waste is subjected to methane fermentation with an anaerobic organism, the total evaporation residue in the crushed material is 5%. In the case described above, the crushed material obtained by treating at a high concentration of the total evaporation residue in order to increase the amount of methane gas generated by adding at least one of the iron compound, the cobalt compound and the nickel compound. The nutrients of the anaerobic microorganisms contained therein are replenished with the increased inactive effect of iron, cobalt and nickel, thereby ensuring the balance of nutrients and improving the treatment efficiency of methane fermentation.
【0011】請求項2記載の廃棄物処理方法は、嫌気性
微生物にて分解可能な有機性汚水をメタン発酵処理する
廃棄物処理方法において、前記有機性汚水に嫌気性生物
にて分解可能な固形状の有機性廃棄物を含有する廃棄物
を破砕攪拌混合して混合物を調製し、この混合物をメタ
ン発酵処理する際にこの混合物の全蒸発残留物が5%以
上となる場合、鉄化合物、コバルト化合物およびニッケ
ル化合物の少なくともいずれか一方を添加するものであ
る。The waste treatment method according to claim 2 is a waste treatment method for subjecting organic wastewater decomposable by anaerobic microorganisms to methane fermentation, wherein the solid waste decomposable to the organic wastewater by anaerobic organisms. A waste containing organic waste in a form is crushed, stirred and mixed to prepare a mixture, and when the mixture is subjected to methane fermentation treatment, when the total evaporation residue of the mixture is 5% or more, iron compounds, cobalt At least one of a compound and a nickel compound is added.
【0012】そして、有機性汚水を嫌気性生物にてメタ
ン発酵処理する際に、固形状の有機性廃棄物を含有する
廃棄物を破砕攪拌混合して混合物を調製し、この混合物
の全蒸発残留物が5%以上となる場合、鉄化合物、コバ
ルト化合物およびニッケル化合物の少なくともいずれか
一方を添加することにより、メタンガスの生成量を増大
するために全蒸発残留物の濃度が高い条件となることに
よる破砕物中に含有される嫌気性微生物の栄養塩類の鉄
分、コバルト分およびニッケル分の不活性効果の増大分
を補給して、栄養塩バランスを確保してメタン発酵の処
理効率を向上する。When the organic wastewater is subjected to methane fermentation treatment with an anaerobic organism, the waste containing the solid organic waste is crushed and mixed to prepare a mixture, and the mixture is entirely evaporated. When the content is 5% or more, at least one of an iron compound, a cobalt compound, and a nickel compound is added to increase the amount of methane gas generated. The anaerobic microorganism nutrients contained in the crushed material are replenished with an increase in the inactive effect of iron, cobalt and nickel, thereby ensuring a nutrient balance and improving the treatment efficiency of methane fermentation.
【0013】請求項3記載の廃棄物処理方法は、請求項
1または2記載の廃棄物処理方法において、廃棄物を固
液分離した屎尿系汚水の固形分とともにメタン発酵処理
するものである。According to a third aspect of the present invention, there is provided the waste disposal method according to the first or second aspect, wherein the waste is subjected to methane fermentation together with the solid matter of the human wastewater from which the waste is solid-liquid separated.
【0014】そして、廃棄物をメタン発酵処理するに際
して固液分離した屎尿系汚水の固形分を混合するため、
屎尿系汚水の固形分から窒素分およびリン分が補給さ
れ、嫌気性微生物の活性が向上し、メタン発酵の効率が
向上する。Then, in order to mix the solid matter of the human wastewater separated into solid and liquid during the methane fermentation treatment of the waste,
Nitrogen and phosphorus are replenished from the solid content of human wastewater, the activity of anaerobic microorganisms is improved, and the efficiency of methane fermentation is improved.
【0015】[0015]
【発明の実施の形態】以下、本発明の廃棄物処理方法の
実施の一形態の構成を図1を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a waste disposal method according to the present invention will be described below with reference to FIG.
【0016】図1において、1は前処理手段で、この前
処理手段1は、生ゴミや厨芥、農水産廃棄物などの事業
系ゴミなどの主に固形状の有機性廃棄物を含有する廃棄
物を破袋および破砕して合成樹脂製の袋やプラスチック
などを除去する図示しない解破砕装置と、この解破砕装
置にて解破砕された破砕物を洗浄しつつ磁気選別して金
属を除去する図示しない金属除去手段とを備えている。In FIG. 1, reference numeral 1 denotes a pretreatment means, which is a waste containing mainly solid organic waste such as business waste such as garbage, kitchen garbage, and agricultural and marine waste. A crushing device (not shown) that breaks and crushes the material to remove synthetic resin bags, plastics, and the like, and removes metals by magnetic sorting while washing the crushed material with the crushing device. And a metal removing means (not shown).
【0017】また、前処理手段1には、調整手段2が接
続されている。この調整手段2には、解破砕された有機
性廃棄物に塩化第一鉄などの鉄化合物、塩化ニッケルな
どのニッケル化合物、塩化コバルトなどのコバルト化合
物の少なくともいずれか一方を添加する栄養塩素類添加
手段3が接続されている。そして、調整手段2は、解破
砕された有機性廃棄物に鉄化合物、ニッケル化合物およ
びコバルト化合物の少なくともいずれか一方と水分とを
適宜添加し、例えば約55℃〜60℃に加温して攪拌混
合し塊状物も混在するようなスラリ状、すなわち塊状物
や液体が混在する破砕物である混合物としての調質物を
調製する。なお、水分の添加および加温に際してはスチ
ームを用いるとよい。スチームを用いることにより、水
を添加して別途加熱手段にて加熱する必要がなく、効率
よく加温・攪拌混合が行える。The pre-processing means 1 is connected to an adjusting means 2. The adjusting means 2 includes nutrient chlorine added by adding at least one of an iron compound such as ferrous chloride, a nickel compound such as nickel chloride, and a cobalt compound such as cobalt chloride to the crushed organic waste. Means 3 is connected. Then, the adjusting means 2 appropriately adds at least one of an iron compound, a nickel compound, and a cobalt compound and water to the crushed organic waste, and heats the mixture to, for example, about 55 ° C. to 60 ° C. and stirs. A refined product is prepared as a slurry in which lumps are mixed with each other, that is, a crushed material in which lumps and liquids are mixed. Note that steam is preferably used for adding water and heating. By using steam, there is no need to add water and separately heat with heating means, and heating and stirring and mixing can be performed efficiently.
【0018】さらに、調整手段2には、調質物をメタン
発酵処理するメタン発酵手段を構成するメタン発酵消化
槽4が接続されている。このメタン発酵消化槽4は、固
形状や塊状の有機性廃棄物などを含有する濃度が濃いス
ラリ状の調質物でも処理可能な生物浮遊型で、加温、例
えば55℃〜60℃で適宜攪拌してメタン生成菌などの
嫌気性微生物にて有機性廃棄物中の有機性物質をメタン
発酵処理する。Further, the adjusting means 2 is connected to a methane fermentation digester 4 which constitutes a methane fermenting means for methane fermenting the refined material. This methane fermentation digestion tank 4 is a biological suspension type that can process even a thick slurry-like refined material containing solid or bulky organic waste and the like, and is heated, for example, appropriately stirred at 55 ° C to 60 ° C. Then, organic substances in the organic waste are subjected to methane fermentation treatment with anaerobic microorganisms such as methanogens.
【0019】そして、このメタン発酵消化槽4には、発
生するメタンガスを回収する図示しないメタンガス回収
手段が設けられ、このメタンガス回収手段には、回収し
たメタンガスを貯溜するガスタンク5が接続されてい
る。なお、この回収したメタンガスの一部は、発電など
に利用し、有機性廃棄物を処理する際の運転エネルギと
して利用する。The methane fermentation digester 4 is provided with methane gas collecting means (not shown) for collecting generated methane gas, and the methane gas collecting means is connected to a gas tank 5 for storing the collected methane gas. A part of the collected methane gas is used for power generation and the like, and is used as operating energy when treating organic waste.
【0020】また、メタン発酵消化槽4には、メタン発
酵処理にて得られた発酵処理物を、スクリーンや膜など
による濾過分離や沈降分離処理、遠心分離処理などにて
脱水ケーキと分離液とに固液分離する固液分離手段6が
接続されている。さらに、固液分離手段6には、固液分
離された分離液を調整手段2に返送する返送管7を備え
た返送手段が接続されている。なお、固液分離された脱
水ケーキは、固形燃料や肥料、建材などに利用される。In the methane fermentation digester 4, the fermented product obtained by the methane fermentation treatment is subjected to filtration separation using a screen or membrane, sedimentation separation treatment, centrifugal separation treatment, etc. Is connected to a solid-liquid separation means 6 for performing solid-liquid separation. Further, a return means having a return pipe 7 for returning the separated liquid subjected to the solid-liquid separation to the adjusting means 2 is connected to the solid-liquid separation means 6. In addition, the dewatered cake separated into solid and liquid is used for solid fuel, fertilizer, building materials, and the like.
【0021】次に、上記実施の一形態の動作について説
明する。Next, the operation of the above embodiment will be described.
【0022】まず、生ゴミや農水産廃棄物などの嫌気性
微生物にて生物分解可能な固形状の有機性廃棄物を含有
する廃棄物を前処理手段1の解破砕装置に投入して、破
袋および破砕して合成樹脂製の袋や合成樹脂フィルム、
プラスチック、ガラスなどの微生物にて分解処理できな
い夾雑物を除去する。そして、この解破砕された破砕物
を金属除去装置にて洗浄しつつ磁気選別などにより夾雑
物である金属を除去する。First, waste containing solid organic waste that can be biodegraded by anaerobic microorganisms such as garbage and agricultural and marine wastes is put into the crushing and shredding device of the pretreatment means 1 and crushed. Bags and crushed synthetic resin bags and synthetic resin films,
Removes contaminants that cannot be decomposed by microorganisms such as plastic and glass. Then, the metal which is a foreign substance is removed by magnetic separation or the like while washing the crushed crushed material with a metal removing device.
【0023】この後、磁気選別後の破砕された破砕物を
調整手段2に投入する。そして、調整手段2にて、例え
ばスチームを用いて約55℃に加温しつつ攪拌混合し、
攪拌混合が可能な全蒸発残留物(Total Solids:TS)
濃度が20%以下となる塊状物も混入するようなスラリ
状の調質物を調製する。なお、TS濃度が20%より高
くなると、メタン発酵処理の際の攪拌混合が不十分とな
り効率よくメタン発酵処理できなくなるため、TS濃度
を20%以下、好ましくは18%以下にする。また、塊
状物などが少ないもしくはほとんどないような状態のス
ラリ状とすることにより、微生物によるメタン発酵処理
がより効率よく進行する。Thereafter, the crushed material after the magnetic separation is introduced into the adjusting means 2. Then, in the adjusting means 2, the mixture is stirred and mixed while being heated to about 55 ° C. using, for example, steam.
Evaporation residue that can be stirred and mixed (Total Solids: TS)
A slurry-like refining material is prepared in which a lump having a concentration of 20% or less is mixed. If the TS concentration is higher than 20%, the stirring and mixing during the methane fermentation treatment become insufficient and the methane fermentation treatment cannot be performed efficiently. Therefore, the TS concentration is set to 20% or less, preferably 18% or less. In addition, by forming the slurry in a state in which there is little or almost no lump, the methane fermentation treatment by the microorganism proceeds more efficiently.
【0024】ここで、調質物のTS濃度を測定し、TS
濃度が5%以上、好ましくは7.5%以上となる場合に
は、栄養塩類添加手段3にて、栄養塩類である鉄化合
物、ニッケル化合物およびコバルト化合物の少なくとも
いずれか一方を添加する。これら栄養塩類は、調質物中
に鉄として10mg/リットル以上、好ましくは10〜3
00mg/リットル、ニッケルとして1mg/リットル以
上、好ましくは1〜30mg/リットル、コバルトとして
1mg/リットル以上、好ましくは1〜30mg/リットル
を添加する。Here, the TS concentration of the tempered material was measured, and TS
When the concentration is 5% or more, preferably 7.5% or more, the nutrients adding means 3 adds at least one of iron compounds, nickel compounds, and cobalt compounds as nutrients. These nutrients are contained in the refined product in an amount of 10 mg / liter or more, preferably 10 to 3%, as iron.
00 mg / L, 1 mg / L or more, preferably 1 to 30 mg / L as nickel and 1 mg / L or more, preferably 1 to 30 mg / L as cobalt are added.
【0025】そして、TS濃度が5%より低い場合に
は、有機性廃棄物中に微量に含まれる鉄、ニッケル、コ
バルトは凝集や沈殿、スケールの生成などにより不活性
効果が低くなり、嫌気性微生物の活性に必要な十分な栄
養塩類量が得られるので、栄養塩類を別途添加する必要
がない。When the TS concentration is lower than 5%, trace effects of iron, nickel and cobalt contained in the organic waste are reduced due to agglomeration, sedimentation, scale formation, etc., and anaerobic. Since a sufficient amount of nutrients necessary for the activity of the microorganism can be obtained, it is not necessary to separately add nutrients.
【0026】また、鉄添加量が10mg/リットルより少
なくなると、後段でのメタン発酵処理の改善が認められ
ず、300mg/リットルより多くなっても鉄添加による
効果の差異が認められずコストが増大するため、鉄添加
量が10mg/リットル以上、好ましくは10〜300mg
/リットルとなるように鉄化合物を添加する。また、同
様に、ニッケル添加量が1mg/リットルより少なくなる
と、後段でのメタン発酵処理の改善が認められず、30
mg/リットルより多くなってもニッケル添加による効果
の差異が認められずコストが増大するため、ニッケル添
加量が1mg/リットル以上、好ましくは1〜30mg/リ
ットルとなるようにニッケル化合物を添加する。さら
に、同様に、コバルト添加量が1mg/リットルより少な
くなると、後段でのメタン発酵処理の改善が認められ
ず、30mg/リットルより多くなってもコバルト添加に
よる効果の差異が認められずコストが増大するため、コ
バルト添加量が1mg/リットル以上、好ましくは1〜3
0mg/リットルとなるようにコバルト化合物を添加す
る。On the other hand, if the amount of iron added is less than 10 mg / l, no improvement in the methane fermentation treatment in the subsequent stage is observed, and if it exceeds 300 mg / l, no difference in the effect due to the addition of iron is observed and the cost increases. Therefore, the amount of iron added is 10 mg / liter or more, preferably 10 to 300 mg.
Per liter of an iron compound. Similarly, when the amount of nickel added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and
Even if the amount is more than mg / liter, no difference in effect due to the addition of nickel is recognized and the cost increases. Therefore, the nickel compound is added so that the amount of nickel added is 1 mg / liter or more, preferably 1 to 30 mg / liter. Similarly, if the amount of cobalt added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and if it exceeds 30 mg / liter, no difference in the effect of the cobalt addition is observed and the cost increases. Therefore, the addition amount of cobalt is 1 mg / liter or more, preferably 1 to 3
A cobalt compound is added so as to be 0 mg / liter.
【0027】そして、栄養塩類が適宜添加された調質物
をメタン発酵消化槽4に流入させ、例えば55℃で適宜
攪拌しつつ8日滞留させて、メタン生成菌などにて有機
性物質をメタン発酵処理する。なお、メタン発酵処理に
より発生するメタンガスは、図示しないメタンガス回収
手段にて回収してガスタンクに貯溜し、発電などにて有
機性廃棄物の処理の際の運転エネルギやその他の汚水処
理、冷暖房などに利用する。Then, the refined material to which nutrients are appropriately added is flown into the methane fermentation digestion tank 4 and, for example, is kept at 55 ° C. for 8 days while appropriately stirring, and the organic substance is methane-fermented by methane-producing bacteria or the like. To process. The methane gas generated by the methane fermentation treatment is collected by a methane gas collection means (not shown) and stored in a gas tank, which is used for the operation energy for the treatment of the organic waste such as power generation, other sewage treatment, and cooling and heating. Use.
【0028】次に、メタン発酵処理した発酵処理物を固
液分離手段にて脱水ケーキと分離水とに固液分離する。
そして、分離液は、返送手段の返送管7を介して調整手
段2に返送し、脱水ケーキは固形燃料や建材、肥料など
に利用したり、焼却処分する。Next, the fermentation product subjected to the methane fermentation treatment is solid-liquid separated into a dehydrated cake and separated water by solid-liquid separation means.
Then, the separated liquid is returned to the adjusting means 2 through the return pipe 7 of the returning means, and the dehydrated cake is used as a solid fuel, a building material, a fertilizer, or incinerated.
【0029】ここで、鉄、ニッケル、コバルトは、メタ
ン生成菌などの微生物の補酵素成分を構成する物質で、
微生物の活性向上に欠かせない栄養元素である。なお、
鉄は約1000mg/リットル、ニッケルは約80〜24
0mg/リットル、および、コバルトは約50〜150mg
/リットル以上となると、逆に微生物の活性阻害を生じ
始める。Here, iron, nickel and cobalt are substances that constitute a coenzyme component of microorganisms such as methanogens.
It is a nutrient element indispensable for improving the activity of microorganisms. In addition,
Iron is about 1000mg / l, nickel is about 80-24
0 mg / liter and about 50-150 mg of cobalt
When the amount is more than 1 g / liter, the activity of the microorganisms starts to be inhibited.
【0030】また、メタン発酵消化槽4内では、有機性
汚水とは異なり、固形状の有機性廃棄物を含有する濃度
が濃いスラリ状の混合物を処理するので、凝集・沈殿、
スケール微粒子の形成や共沈吸着効果などの物理化学的
反応が生じている。In the methane fermentation digester 4, unlike an organic wastewater, a high-concentration slurry-like mixture containing solid organic waste is treated.
Physicochemical reactions such as formation of scale fine particles and coprecipitation adsorption effect are occurring.
【0031】このため、投入TS濃度であるメタン発酵
消化槽4へ投入される調質物のTS濃度が5%より低い
場合には、メタン発酵消化槽4における凝集・沈殿、ス
ケール形成物質の濃度が比較的低く、凝集・沈殿、スケ
ール形成などの物理化学的反応による微量栄養塩類であ
る鉄、ニッケル、コバルトの不活性効果も相対的に低く
なり、メタン生成菌などの嫌気性微生物は、調質物中の
活性のある鉄、ニッケル、コバルトを栄養源として吸収
して活性が増大し、効率よく有機性物質を分解処理す
る。なお、固形状の有機性廃棄物を処理可能な生物浮遊
型のメタン発酵処理方法では、BOD濃度が3〜5万pp
m で滞留時間が8日程度が処理のほぼ上限の負荷(BO
D負荷で3〜5kg/m3 ・日)、すなわち嫌気性微生物
が調質物中の活性のある鉄、ニッケル、コバルトを栄養
源として吸収して有機性物質を分解処理できる上限の処
理条件である。For this reason, when the TS concentration of the refined material fed into the methane fermentation digestion tank 4 which is the input TS concentration is lower than 5%, the concentration of the coagulation / sedimentation and scale forming substances in the methane fermentation digestion tank 4 is reduced. Relatively low, the inactive effect of iron, nickel, and cobalt, which are trace nutrients caused by physicochemical reactions such as coagulation / sedimentation and scale formation, is relatively low. It absorbs the active iron, nickel, and cobalt in it as a nutrient source, increases its activity, and efficiently decomposes organic substances. In the methane fermentation treatment method of a biological suspension type capable of treating solid organic waste, the BOD concentration is 30,000 to 50,000 pp.
m, the residence time is about 8 days, and the load (BO
D load: 3 to 5 kg / m 3 · day), that is, the upper limit processing condition under which anaerobic microorganisms can absorb active iron, nickel, and cobalt in the refined material as a nutrient source to decompose organic substances. .
【0032】一方、TS濃度が5%以上、特に7.5%
以上となると、沈殿やスケール形成により、鉄、ニッケ
ル、コバルトの不活性効果が増大し、嫌気性微生物が必
要とする鉄、ニッケル、コバルトが不足して活性が低下
し、上述した処理可能なTOC負荷やCOD負荷、BO
D負荷が同等または低くなる処理負荷の条件でもメタン
発酵効率が大きく低減あるいは停止してしまう。On the other hand, when the TS concentration is 5% or more, especially 7.5%
As a result, the inactive effect of iron, nickel, and cobalt increases due to precipitation and scale formation, the activity decreases due to the lack of iron, nickel, and cobalt required by anaerobic microorganisms, and the above-mentioned processable TOC is reduced. Load, COD load, BO
The methane fermentation efficiency is greatly reduced or stopped even under the condition of the processing load at which the D load is equal or lower.
【0033】したがって、上述したように、上記実施の
形態では、生ゴミや厨芥、農水産廃棄物などの固形状の
有機性廃棄物を含有する廃棄物をメタン発酵処理する際
に、メタン発酵消化槽4に投入する際のTS濃度が5%
以上となる場合に、鉄化合物、ニッケル化合物およびコ
バルト化合物の少なくともいずれか一方を鉄濃度が10
〜300mg/リットル、ニッケル濃度が1〜30mg/リ
ットル、コバルト濃度が1〜30mg/リットルとなるよ
うに添加する。Therefore, as described above, in the above-described embodiment, methane fermentation digestion is performed when waste containing solid organic waste such as garbage, kitchen waste, and agricultural and marine waste is subjected to methane fermentation. 5% TS concentration when put into tank 4
When the above is satisfied, at least one of the iron compound, the nickel compound and the cobalt compound has an iron concentration of 10
300300 mg / l, nickel concentration is 1-30 mg / l, and cobalt concentration is 1-30 mg / l.
【0034】このため、単にTOC負荷やCOD負荷、
BOD負荷が所定値以上となる場合に栄養塩類を添加す
る場合では、濃度が高いスラリ状の混合物を処理する際
に滞留時間を長くするなどして処理負荷を低く設定して
処理したとしても、栄養塩類のバランスが壊れてメタン
発酵処理が低減する場合も生じるので、処理の際に、負
荷を計測するとともに処理効率を観測し、処理負荷が低
くてもメタン発酵処理が低減するなどの処理状況に応じ
てニッケルやコバルトなどを適宜添加しなければなら
ず、処理作業も煩雑で、装置が複雑大型化する問題があ
るが、上記実施の形態では濃度に対応して栄養塩類を添
加して栄養塩類のバランスが確保することから、メタン
生成菌などの嫌気微生物の活性に必要な栄養源が補わ
れ、高効率でメタン発酵処理を進行できる。For this reason, the TOC load, the COD load,
In the case where the nutrients are added when the BOD load is equal to or more than a predetermined value, even if the treatment load is set to a low value, for example, by increasing the residence time when treating a slurry-like mixture having a high concentration, In some cases, the methane fermentation treatment is reduced due to the imbalance in nutrients, so during treatment, the load is measured and the treatment efficiency is observed. It is necessary to appropriately add nickel, cobalt, etc., depending on the conditions, and the processing operation is complicated, and there is a problem that the apparatus becomes complicated and large. However, in the above-described embodiment, nutrients are added by adding nutrients corresponding to the concentration. Since the balance of salts is ensured, nutrients necessary for the activity of anaerobic microorganisms such as methanogens are supplemented, and methane fermentation treatment can proceed with high efficiency.
【0035】また、あらかじめ嫌気性微生物にて処理で
きないプラスチックやガラス、その他の夾雑物を除去す
るので、メタン発酵処理の際の攪拌阻害や液体の流動阻
害などを防止でき攪拌混合が低負荷ででき、また、カド
ミウムや水銀などの重金属類の混入も低減でき、略均一
な混合が容易で効率よく処理できるとともに、夾雑物に
よる栄養塩類の不活性効果の増大も抑制でき、メタン発
酵処理効率を向上できる。In addition, since plastics, glass, and other contaminants which cannot be treated by anaerobic microorganisms are removed in advance, it is possible to prevent agitation in methane fermentation and hindrance to liquid flow, and to achieve agitation with low load. In addition, the mixing of heavy metals such as cadmium and mercury can be reduced, almost uniform mixing is easy and efficient, and the increase of the inactive effect of nutrients due to impurities can be suppressed, improving the efficiency of methane fermentation. it can.
【0036】そして、メタン発酵処理する際に、COD
やBODの測定より容易なTS濃度を測定するのみで、
メタン発酵処理中は確認程度に処理状況を観察するのみ
でよく、また、TS濃度はCODやBODの測定方法で
は測定が困難な固形状の有機性廃棄物を含有する濃度が
濃いスラリ状の混合物でも容易に測定でき、メタン発酵
処理が容易にできる。When methane fermentation is performed, COD
And simply measure the TS concentration, which is easier than BOD measurement,
During the methane fermentation treatment, it is only necessary to observe the treatment status to the degree of confirmation, and the TS concentration is a high-concentration slurry-like mixture containing solid organic waste that is difficult to measure by COD and BOD measurement methods. However, it can be easily measured, and methane fermentation can be easily performed.
【0037】なお、上記実施の形態において、固形状の
有機性廃棄物を含有する廃棄物をスチームにてスラリ状
の調質物に調製してメタン発酵させたが、調整手段2に
て調製する際に、例えば図2に示すように、屎尿系汚水
の処理の際に生じる除渣した屎渣や余剰汚泥などの固形
分の汚泥を混合したり、水分の代わりに農水産物加工工
場からの排液や飲料工場排液などの有機性汚水を混合し
て調製してもよい。In the above embodiment, the waste containing solid organic waste is prepared into a slurry-like refined product by steam and methane fermented. In addition, as shown in FIG. 2, for example, solid sludge such as debris and excess sludge generated during the treatment of human wastewater is mixed, and instead of water, drainage from agricultural and marine product processing plants is performed. It may be prepared by mixing organic sewage such as effluent from a beverage factory.
【0038】そして、生ゴミや厨芥、農水産廃棄物など
の有機性廃棄物は、メタン発酵にて容易に分解される炭
水化物が主成分であるが、炭素/窒素比が30とメタン
発酵処理の最適比である20に比して窒素分が少ない。
一方、屎尿系汚水から分離された汚泥は、炭素/窒素比
が5と窒素が多く、リン化合物も多い。このため、有機
性廃棄物に汚泥を混合することにより、良好な炭素/窒
素比が得られ、栄養源となるリンも補給でき、後段での
メタン発酵処理の効率をさらに向上できるとともに、屎
尿系汚水の処理の際に生じる汚泥をも合わせて処理で
き、処理効率の向上および処理施設の小型化が図れ、処
理コストも低減できる。また、有機性廃水を用いる場合
には、有機性廃棄物と合わせて処理でき、別途有機性廃
水を処理する工程が不要となり、処理効率の向上および
処理施設の小型化が図れ、処理コストも低減できる。Organic wastes such as garbage, kitchen garbage, and agricultural and marine wastes are mainly composed of carbohydrates that are easily decomposed by methane fermentation. The nitrogen content is smaller than 20 which is the optimum ratio.
On the other hand, sludge separated from human wastewater has a high carbon / nitrogen ratio of 5 and a large amount of nitrogen and a large amount of phosphorus compounds. For this reason, by mixing the sludge with the organic waste, a good carbon / nitrogen ratio can be obtained, phosphorus as a nutrient source can be supplied, and the efficiency of the methane fermentation treatment in the subsequent stage can be further improved. Sludge generated during the treatment of sewage can also be treated, so that treatment efficiency can be improved, treatment facilities can be downsized, and treatment costs can be reduced. In addition, when organic wastewater is used, it can be treated together with organic waste, eliminating the need for a separate organic wastewater treatment step, improving treatment efficiency, miniaturizing treatment facilities, and reducing treatment costs. it can.
【0039】なお、屎尿系汚水の処理の際に生じる固形
分や有機性汚水の混合は、例えばメタン発酵消化槽4に
調質物とは別途添加してメタン発酵消化槽4内で混合す
るようにしてもよい。The mixture of solids and organic wastewater generated during the treatment of human wastewater is added to the methane fermentation digestion tank 4, for example, separately from the temper and mixed in the methane fermentation digestion tank 4. You may.
【0040】また、調整手段2に栄養塩類添加手段3を
設け、鉄、ニッケル、コバルトをメタン発酵処理前にあ
らかじめ添加して説明したが、メタン発酵消化槽4に直
接鉄、ニッケル、コバルトを添加したり、調整手段2か
らメタン発酵消化槽4に調質物を搬送する搬送管の途中
で添加するなどしてもよい。なお、メタン発酵消化槽4
が、常時攪拌しない構成や攪拌動力が少ない構成などの
攪拌混合を十分に行えない構成の場合には、調整手段2
にてあらかじめ添加したり、調整手段2からメタン発酵
消化槽4へ調質物を搬送する搬送管に添加するなどによ
り、略均一混合させておくことが好ましい。また、調整
手段2は、一般にメタン発酵消化槽4にて処理する際の
温度程度まで加温され、有機性廃棄物の加水分解や酸発
酵を促進し、pH酸性条件となって微量元素が安定な状
態で存在するとともに、硫化水素などの発生もなく、硫
化物として沈殿して微生物にて利用できなくなることも
防止でき、メタン発酵消化槽と異なり密閉性を維持する
必要もないので、栄養塩類の添加が容易で、構造も簡単
であるため好ましい。Also, the nutrients adding means 3 is provided in the adjusting means 2 and iron, nickel and cobalt are added in advance before the methane fermentation treatment, but iron, nickel and cobalt are added directly to the methane fermentation digester 4. Alternatively, it may be added from the adjusting means 2 to the methane fermentation digester 4 in the middle of a transport pipe for transporting the tempered product. The methane fermentation digester 4
However, in the case of a configuration in which stirring and mixing cannot be performed sufficiently, such as a configuration in which stirring is not always performed or a configuration in which stirring power is small, the adjusting means 2
It is preferable to mix them substantially uniformly by adding them in advance, or by adding them to a transport pipe for transporting the refined product from the adjusting means 2 to the methane fermentation digestion tank 4. In addition, the adjusting means 2 is generally heated to about the temperature at which it is treated in the methane fermentation digestion tank 4, promotes hydrolysis of organic waste and acid fermentation, and becomes a pH acidic condition to stabilize trace elements. Nutrients because it exists in a stable state, does not generate hydrogen sulfide, etc., prevents precipitation as sulfides and makes it unusable for microorganisms. Is preferred because of easy addition and simple structure.
【0041】さらに、後段でのメタン発酵処理の際の温
度変化を抑制するため、調整手段2にて加温しつつ調製
して説明したが、加温せずに単に混合するなどしてもよ
い。Furthermore, in order to suppress the temperature change during the methane fermentation treatment in the subsequent stage, the preparation is described while heating with the adjusting means 2, but it is also possible to simply mix without heating. .
【0042】[0042]
【実施例】まず、野菜、果物、肉、魚、米飯などを混合
粉砕し、含水率が約80%(TS濃度で約20%)の合
成ゴミを作製する。そして、水を適宜添加してTS濃度
の異なる各種調質物を調製する。なお、水を添加して略
2倍に希釈すると、TS濃度が約10%の調質物とな
り、水で1.3倍に希釈するとTS濃度が約15%の調
質物となる。そして、これら調質物をTS濃度およびメ
タン発酵消化槽4の滞留時間を可変して、メタン発酵処
理における中温域である36℃におけるメタン発酵処理
状況を観察した。その結果を図3ないし図7に示す。な
お、鉄、コバルト、ニッケルの栄養塩類は、メタン発酵
処理が低減した運転開始から150日経過後から、塩化
第一鉄を約200mg/リットル(鉄として88mg/リッ
トル)、塩化コバルトを約40mg/リットル(コバルト
として18mg/リットル)連続的に添加した。First, vegetables, fruits, meat, fish, cooked rice and the like are mixed and pulverized to produce synthetic garbage having a water content of about 80% (TS concentration: about 20%). Then, water is appropriately added to prepare various refined products having different TS concentrations. Note that when the water is added and the dilution is approximately doubled, a TS having a TS concentration of about 10% is obtained, and when the dilution is 1.3 times with water, a TS having a TS concentration of about 15% is obtained. The TS concentration of these refined products and the residence time of the methane fermentation digester 4 were varied, and the state of methane fermentation treatment at 36 ° C., which is a medium temperature range in methane fermentation treatment, was observed. The results are shown in FIGS. The iron, cobalt, and nickel nutrients were reduced to about 200 mg / liter of ferrous chloride (88 mg / liter as iron) and about 40 mg / liter of cobalt chloride after 150 days from the start of operation when the methane fermentation treatment was reduced. (18 mg / liter as cobalt) was added continuously.
【0043】ここで、図3(a)はメタン発酵処理する
際のTS濃度を可変させた状況を示すグラフで、図3
(b)はTS濃度の可変および滞留時間の可変による化
学的酸素要求量(CODCr)の変化の状況を示すグラフ
である。Here, FIG. 3A is a graph showing the situation where the TS concentration during the methane fermentation treatment is varied.
(B) is a graph showing the state of change in the chemical oxygen demand (COD Cr ) due to the variable TS concentration and the variable residence time.
【0044】なお、ここで、生ゴミの主な組成はC46H
73O31Nであることが知られているが、合成ゴミは以下
に示す性状となった。Here, the main composition of the garbage is C 46 H
Although it is known to be 73 O 31 N, the synthetic garbage has the following properties.
【0045】 CODCr/TS=1.55 BOD/TS=0.83 VS(Volatile Solid:揮発性物質)/TS=0.90
8 TOC/TS=0.45 そして、図3(a)に示すTS濃度で、滞留時間を可変
すなわち滞留時間を徐々に短くなるように処理すると、
図3(a)に示すようにCODCr負荷が増大する状態と
なる。なお、上記性状のTSに対する比率から、BOD
負荷やVS負荷、TOC負荷も同様に増大することとな
る。COD Cr /TS=1.55 BOD / TS = 0.83 VS (Volatile Solid: volatile substance) /TS=0.90
8 TOC / TS = 0.45 Then, when processing is performed so that the residence time is variable, that is, the residence time is gradually shortened at the TS concentration shown in FIG.
As shown in FIG. 3A, the COD Cr load increases. From the ratio of the above properties to TS, BOD
The load, VS load, and TOC load also increase.
【0046】これら図3(a)および(b)に示す条件
で上記合成ゴミをメタン発酵処理すると、TS濃度が
7.5%から、図3(c)に示すようにメタンガス発生
量があきらかに低下し始めるとともに、図3(d)に示
すようにメタン発酵消化槽4内のpHの酸性が強くな
り、図3(e)に示すようにCOD換算による揮発性脂
肪酸(Volatile Fatty Acid :VFA)が増大し始め、
TS濃度が10%となると、これら図3(c)に示すメ
タンガス発生量、図3(d)に示すpH、および、図3
(e)に示す揮発性脂肪酸量が急激に変化し、メタン発
酵処理が停止した。そこで、150日を経過した時点
で、上記の条件で栄養塩類を添加した。When the synthetic garbage is subjected to methane fermentation under the conditions shown in FIGS. 3 (a) and 3 (b), the TS concentration becomes 7.5% and the methane gas generation amount becomes apparent as shown in FIG. 3 (c). At the same time, the acidity of the pH in the methane fermentation digestion tank 4 increases as shown in FIG. 3D, and as shown in FIG. 3E, volatile fatty acid (VFA) in terms of COD is obtained. Began to increase,
When the TS concentration becomes 10%, the methane gas generation amount shown in FIG. 3C, the pH shown in FIG.
The volatile fatty acid amount shown in (e) rapidly changed, and the methane fermentation treatment was stopped. Therefore, nutrients were added under the above conditions when 150 days had elapsed.
【0047】この栄養塩類の添加により、メタン発酵処
理が回復し、TS濃度が10%より高い15%やメタン
発酵消化槽4にて攪拌混合可能限界である18%まで増
大させても十分にメタン発酵処理できることが分かる。By the addition of the nutrients, the methane fermentation treatment is restored, and even if the TS concentration is increased to 15%, which is higher than 10%, or to 18%, which is the limit of stirring and mixing in the methane fermentation digestion tank 4, methane fermentation is sufficiently performed. It can be seen that fermentation can be performed.
【0048】次に、CODCr負荷が一定で容積負荷を
9.5g/リットル・日(TOC負荷換算で2.8g/
リットル・日)となるように上記合成ゴミのTS濃度を
可変させて、栄養塩類を上記の条件で添加する実施例1
と添加しない比較例とで、36℃の中温域でメタン発酵
処理した。その結果を図4に示す。Next, when the COD Cr load is constant and the volume load is 9.5 g / liter / day (2.8 g / liter in terms of TOC load).
Example 1 in which the TS concentration of the above-mentioned synthetic garbage is varied so as to be 1 liter / day and nutrients are added under the above conditions.
Methane fermentation treatment in a medium temperature range of 36 ° C. FIG. 4 shows the results.
【0049】そして、TS濃度が5%以上となると、栄
養塩類を添加しない比較例では、図4(a)に示すよう
にメタン発酵消化槽4内のpHの酸性が強くなり始める
とともに、図4(b)に示すように残存するVFA濃度
も増大し始め、図4(c)に示すように、メタンガスの
生成速度も低下し、TS濃度が10%となると、メタン
発酵が不能となった。一方、栄養塩類を添加する実施例
1の場合には、図4に示すように、TS濃度を増大させ
てもメタン発酵処理効率はほとんど低下せず、高効率で
メタン発酵処理できることが分かる。When the TS concentration becomes 5% or more, the acidity of the pH in the methane fermentation digestion tank 4 starts to increase as shown in FIG. As shown in FIG. 4 (b), the remaining VFA concentration also started to increase, and as shown in FIG. 4 (c), the methane gas generation rate also decreased. When the TS concentration became 10%, methane fermentation became impossible. On the other hand, in the case of Example 1 in which nutrients are added, as shown in FIG. 4, even when the TS concentration is increased, the methane fermentation treatment efficiency hardly decreases, and it can be seen that the methane fermentation treatment can be performed with high efficiency.
【0050】さらに、図4に示す実施例1と同様の方法
で、容積負荷を7.5g/リットル・日(TOC負荷換
算で2.4g/リットル・日)となるようにTS濃度を
可変させ、メタン発酵処理における高温域である約55
℃でメタン発酵処理した。その結果を図5に示す。Further, in the same manner as in Example 1 shown in FIG. 4, the TS concentration was varied so that the volume load was 7.5 g / liter / day (2.4 g / liter / day in terms of TOC load). , About 55 which is a high temperature area in methane fermentation treatment
Methane fermentation treatment was performed at ℃. The result is shown in FIG.
【0051】この図5に示す実施例2も、図4に示す実
施例1と同様に、栄養塩類を添加すると、TS濃度が5
%以上での嫌気性微生物の活性の低下を防止でき、高効
率でメタン処理できることが分かる。In the second embodiment shown in FIG. 5, as in the first embodiment shown in FIG.
%, The activity of the anaerobic microorganisms can be prevented from decreasing, and the methane treatment can be performed with high efficiency.
【0052】次に、図5に示す実施例2の合成ごみに屎
尿系汚水の処理にて得られた脱水汚泥を合成ゴミ9に対
して脱水汚泥が1となる比率で混合した混合物を同様に
高温域でメタン発酵処理した。その結果を図6に示す。Next, a mixture of the synthetic waste of Example 2 shown in FIG. 5 and the dewatered sludge obtained by the treatment of the human wastewater at a ratio of 1 to the synthetic waste 9 was similarly used. Methane fermentation was performed in a high temperature range. FIG. 6 shows the result.
【0053】この図6に示す実施例3も、図4に示す実
施例1および図5に示す実施例2と同様に、栄養塩類を
添加すると、TS濃度が5%以上での嫌気性微生物の活
性の低下を防止でき、高効率でメタン処理できることが
分かる。In the third embodiment shown in FIG. 6, similarly to the first embodiment shown in FIG. 4 and the second embodiment shown in FIG. 5, when nutrients are added, anaerobic microorganisms having a TS concentration of 5% or more can be obtained. It can be seen that a decrease in activity can be prevented, and methane treatment can be performed with high efficiency.
【0054】次に、添加する栄養塩類の種類によるメタ
ン発酵処理効率を比較した。実験方法としては、比較例
1および比較例2において、TS濃度が10%でメタン
発酵が停止した際の汚泥を取り出してバイアル瓶に移
し、各種栄養塩類を添加し、この栄養塩類の添加時点か
らのメタン発酵処理状態を観察した。また、処理温度と
しては、中温域である約36℃および高温域である約5
5℃の条件で行った。なお、栄養塩類は、塩化第一鉄を
100mg/リットル(鉄濃度として44mg/リット
ル)、塩化ニッケルを10mg/リットル(ニッケル濃度
として4.5mg/リットル)、塩化コバルトを10mg/
リットル(コバルト濃度として4.5mg/リットル)の
条件で添加した。その結果を図7よび図8に示す。Next, the efficiency of the methane fermentation treatment according to the type of nutrient added was compared. As an experimental method, in Comparative Example 1 and Comparative Example 2, the sludge obtained when the methane fermentation was stopped at a TS concentration of 10% was taken out, transferred to a vial bottle, and various nutrients were added. Of methane fermentation was observed. The processing temperature is about 36 ° C. which is a medium temperature range and about 5 ° C. which is a high temperature range.
The test was performed at 5 ° C. The nutrients were ferrous chloride 100 mg / l (iron concentration 44 mg / l), nickel chloride 10 mg / l (nickel concentration 4.5 mg / l), and cobalt chloride 10 mg / l.
Liter (4.5 mg / liter as cobalt concentration). The results are shown in FIGS.
【0055】この図7に示す結果から、栄養塩類を添加
しない比較例では、運転日数が20日ぐらいからメタン
発酵処理がほとんど進行しなくなるが、コバルトのみで
もメタン発酵処理が進行しなくなることはなく、特に、
処理温度が高い条件では、図8に示すように、鉄のみや
ニッケルのみでも添加しない場合よりメタン発酵処理の
効率が高くなることがわかる。また、鉄、ニッケル、コ
バルトを組み合わせにより、メタン発酵処理効率がさら
に増大することがわかる。From the results shown in FIG. 7, in the comparative example in which no nutrients were added, the methane fermentation treatment hardly proceeded from about 20 days of operation, but the methane fermentation treatment did not stop even with cobalt alone. ,In particular,
As shown in FIG. 8, it can be seen that the efficiency of the methane fermentation treatment is higher under the condition where the treatment temperature is high than when only iron or nickel alone is not added. In addition, it can be seen that the combination of iron, nickel and cobalt further increases the methane fermentation treatment efficiency.
【0056】上述したように、各種実験から、CODや
BOD、TOC負荷などの処理負荷が低い場合でもTS
濃度が5%以上になると、有機酸の蓄積が多くなり、酸
敗によりメタン発酵処理が低下することが認められた。
これは、単に処理負荷が増大することにより、負荷に対
応したメタン生成菌の活性が低減してメタン発酵処理が
低下するのではなく、TS濃度の増大により、凝集・沈
殿やスケールの形成などにより、メタン生成菌に必要な
栄養塩類の不活性効果が増大して摂取できなくなり、メ
タン生成菌の活性が低下するためと考えられる。このた
め、TS濃度が5%以上となる場合に、鉄、コバルト、
ニッケルを適量添加することにより、投入固形物濃度の
高いメタン発酵に適した栄養塩バランスが確保されて安
定したメタン発酵が着実に行われることがわかった。特
に、処理温度が高い条件では栄養塩類の添加による処理
効率の向上が顕著に認められた。As described above, from various experiments, even when the processing load such as COD, BOD, and TOC load is low, the TS
When the concentration was 5% or more, it was recognized that the accumulation of organic acids increased, and that the methane fermentation treatment decreased due to rancidity.
This is not because the activity of methanogens corresponding to the load is reduced simply by increasing the treatment load, and the methane fermentation treatment is not reduced. This is considered to be because the inactivating effect of nutrients necessary for the methanogen increases and the ingestion becomes impossible, and the activity of the methanogen decreases. Therefore, when the TS concentration is 5% or more, iron, cobalt,
It was found that by adding an appropriate amount of nickel, a nutrient balance suitable for methane fermentation with a high input solid concentration was secured and stable methane fermentation was steadily performed. In particular, when the treatment temperature was high, the treatment efficiency was significantly improved by the addition of nutrients.
【0057】[0057]
【発明の効果】請求項1記載の廃棄物処理方法によれ
ば、有機性廃棄物を含有する廃棄物を破砕した破砕物を
嫌気性生物にてメタン発酵処理する際に、破砕物中の全
蒸発残留物が5%以上となる場合に、鉄化合物、コバル
ト化合物およびニッケル化合物の少なくともいずれか一
方を添加するため、メタンガスの生成量を増大して有効
利用を図るために破砕物中に含有される嫌気性微生物の
栄養塩類の鉄分、コバルト分およびニッケル分の不活性
効果の増大分が補給されて、栄養塩バランスを確保で
き、メタン発酵の処理効率を向上できる。According to the waste treatment method of the present invention, when the crushed material obtained by crushing the waste containing organic waste is subjected to methane fermentation treatment with an anaerobic organism, the total amount of the crushed material is reduced. When the evaporation residue is 5% or more, at least one of an iron compound, a cobalt compound, and a nickel compound is added. The increased amount of the inactive effect of the nutrients of the anaerobic microorganisms such as iron, cobalt, and nickel can be replenished, thereby ensuring nutrient balance and improving the treatment efficiency of methane fermentation.
【0058】請求項2記載の廃棄物処理方法によれば、
有機性汚水を嫌気性生物にてメタン発酵処理する際に、
固形状の有機性廃棄物を含有する廃棄物を破砕攪拌混合
して混合物を調製し、この混合物の全蒸発残留物が5%
以上となる場合、鉄化合物、コバルト化合物およびニッ
ケル化合物の少なくともいずれか一方を添加するため、
メタンガスの生成量を増大して有効利用を図るために全
蒸発残留物の濃度が高い条件となることによる破砕物中
に含有される嫌気性微生物の栄養塩類の鉄分、コバルト
分およびニッケル分の不活性効果の増大分が補給され
て、栄養塩バランスを確保でき、メタン発酵の処理効率
を向上できる。According to the waste disposal method of the second aspect,
When methane fermentation treatment of organic wastewater with anaerobic organisms,
The mixture containing solid organic waste is crushed, stirred and mixed to prepare a mixture, and the total evaporation residue of this mixture is 5%.
In the case described above, to add at least one of an iron compound, a cobalt compound and a nickel compound,
In order to increase the amount of methane gas produced and increase its effective utilization, the conditions for the concentration of the total evaporation residue are set to be high, so that the iron, cobalt and nickel contents of nutrients of anaerobic microorganisms contained in the crushed material are reduced. The increased amount of the activating effect is replenished, the nutrient balance can be secured, and the processing efficiency of methane fermentation can be improved.
【0059】請求項3記載の廃棄物処理方法によれば、
請求項1または2記載の廃棄物処理方法の効果に加え、
廃棄物をメタン発酵処理するに際して固液分離した屎尿
系汚水の固形分を混合するため、屎尿系汚水の固形分か
ら窒素分およびリン分を補給でき、嫌気性微生物の活性
が向上して、メタン発酵の効率を向上できる。According to the waste disposal method of the third aspect,
In addition to the effects of the waste disposal method according to claim 1 or 2,
The solid matter is mixed with the solid matter of the human wastewater when the waste is subjected to methane fermentation. Efficiency can be improved.
【図1】本発明の廃棄物処理方法の実施の一形態の構成
を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an embodiment of a waste disposal method according to the present invention.
【図2】本発明の廃棄物処理方法の他の実施の形態の構
成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of another embodiment of the waste disposal method of the present invention.
【図3】同上図1に示す処理工程において合成ゴミを用
いてメタン発酵処理した実験の結果を示すタイミングチ
ャートである。FIG. 3 is a timing chart showing the results of an experiment in which methane fermentation was performed using synthetic waste in the processing step shown in FIG.
【図4】同上図1に示す処理工程において合成ゴミを用
いて投入TS濃度を可変してCODCr負荷を一定にし中
温域の条件でメタン発酵処理した実験の結果を示すタイ
ミングチャートである。FIG. 4 is a timing chart showing the results of an experiment in which methane fermentation treatment was performed under conditions of a medium temperature range with the input TS concentration varied and the CODCr load kept constant using synthetic waste in the treatment process shown in FIG.
【図5】同上図1に示す処理工程において合成ゴミを用
いて投入TS濃度を可変してCODCr負荷を一定にし高
温域の条件でメタン発酵処理した実験の結果を示すタイ
ミングチャートである。FIG. 5 is a timing chart showing the results of an experiment in which methane fermentation treatment was performed under conditions of a high temperature region with the input TS concentration varied and the CODCr load kept constant using synthetic waste in the treatment process shown in FIG.
【図6】同上図2に示す処理工程において合成ゴミを用
いて投入TS濃度を可変してCODCr負荷を一定にし高
温域の条件でメタン発酵処理した実験の結果を示すタイ
ミングチャートである。FIG. 6 is a timing chart showing the results of an experiment in which methane fermentation was performed under conditions of a high temperature range with the input TS concentration varied and the CODCr load kept constant using synthetic waste in the processing step shown in FIG.
【図7】同上図1に示す処理工程において添加する栄養
塩類の種類によるメタン発酵処理状況を示すグラフであ
る。FIG. 7 is a graph showing the methane fermentation treatment status according to the type of nutrients added in the treatment step shown in FIG.
【図8】同上図1に示す処理工程において添加する栄養
塩類の種類による異なる温度でのメタン発酵処理状況を
示すグラフである。8 is a graph showing the methane fermentation treatment status at different temperatures according to the type of nutrients added in the treatment step shown in FIG.
1 前処理手段 3 栄養塩類添加手段 4 メタン発酵手段としてのメタン発酵消化槽 1 Pretreatment means 3 Nutrient addition means 4 Methane fermentation digester as methane fermentation means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 芳男 大阪府大阪市西区立売堀二丁目1番9号 アタカ工業株式会社内 (56)参考文献 特開 平6−246288(JP,A) 特開 平3−165895(JP,A) 特開 平4−300698(JP,A) 特開 平3−12296(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09B 3/00 C02F 11/04,3/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshio Okuno 2-9-1, Noribori, Nishi-ku, Osaka-shi, Osaka Inside Ataka Industry Co., Ltd. (56) References JP-A-6-246288 (JP, A) JP-A-Hei 3-165895 (JP, A) JP-A-4-300968 (JP, A) JP-A-3-12296 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B09B 3/00 C02F 11 / 04,3 / 28
Claims (3)
性廃棄物を含有する廃棄物を破砕した破砕物をメタン発
酵処理する廃棄物処理方法において、 メタン発酵処理時の前記破砕物中の全蒸発残留物が5%
以上となる場合、鉄化合物、コバルト化合物およびニッ
ケル化合物の少なくともいずれか一方を添加することを
特徴とした廃棄物処理方法。1. A waste treatment method for methane fermenting a crushed waste containing solid organic waste that can be decomposed by anaerobic organisms, comprising: 5% total evaporation residue
In the above case, a waste disposal method characterized by adding at least one of an iron compound, a cobalt compound and a nickel compound.
をメタン発酵処理する廃棄物処理方法において、 前記有機性汚水に嫌気性生物にて分解可能な固形状の有
機性廃棄物を含有する廃棄物を破砕攪拌混合して混合物
を調製し、 この混合物をメタン発酵処理する際にこの混合物の全蒸
発残留物が5%以上となる場合、鉄化合物、コバルト化
合物およびニッケル化合物の少なくともいずれか一方を
添加することを特徴とした廃棄物処理方法。2. A waste treatment method for subjecting organic wastewater decomposable by anaerobic microorganisms to methane fermentation treatment, wherein the organic wastewater contains solid organic waste decomposable by anaerobic organisms. A mixture is prepared by crushing, stirring and mixing the waste, and when the mixture is subjected to methane fermentation treatment and the total evaporation residue of the mixture is 5% or more, at least one of an iron compound, a cobalt compound, and a nickel compound. A waste disposal method characterized by adding a compound.
分とともにメタン発酵処理することを特徴とした請求項
1または2記載の廃棄物処理方法。3. The waste treatment method according to claim 1, wherein methane fermentation treatment is carried out together with the solid matter of the human wastewater from which the waste is solid-liquid separated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18870997A JP3145957B2 (en) | 1997-07-14 | 1997-07-14 | Waste treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18870997A JP3145957B2 (en) | 1997-07-14 | 1997-07-14 | Waste treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1128445A JPH1128445A (en) | 1999-02-02 |
JP3145957B2 true JP3145957B2 (en) | 2001-03-12 |
Family
ID=16228432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18870997A Expired - Fee Related JP3145957B2 (en) | 1997-07-14 | 1997-07-14 | Waste treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3145957B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543504B2 (en) * | 2000-06-07 | 2010-09-15 | 栗田工業株式会社 | Dry methane fermentation method for organic waste |
JP3900341B2 (en) * | 2002-06-27 | 2007-04-04 | 富士電機システムズ株式会社 | Methane fermentation treatment method |
JP4266329B2 (en) * | 2003-06-20 | 2009-05-20 | 三菱電機株式会社 | Organic waste liquid processing method and processing apparatus |
JP5180132B2 (en) * | 2009-03-30 | 2013-04-10 | 株式会社明治 | Methane fermentation method and methane fermentation apparatus |
JP5686650B2 (en) * | 2011-03-30 | 2015-03-18 | 株式会社クボタ | Organic wastewater treatment facility and method |
JP5837654B1 (en) * | 2014-07-16 | 2015-12-24 | 三井造船株式会社 | Hopper for dehydrator |
JP6432226B2 (en) * | 2014-09-05 | 2018-12-05 | 栗田工業株式会社 | Method and apparatus for anaerobic digestion of sewage treatment sludge |
CN105130151A (en) * | 2015-09-08 | 2015-12-09 | 台明青 | Method for improving anaerobic digestion factor of created gas of residual sludge by using artificial diamond waste water |
JP6781660B2 (en) * | 2017-04-03 | 2020-11-04 | 三井E&S環境エンジニアリング株式会社 | Garbage methane fermentation processing system |
JP7111536B2 (en) * | 2018-07-17 | 2022-08-02 | 俊則 亀岡 | Methane fermentation apparatus and methane fermentation method |
JP6662424B2 (en) * | 2018-09-12 | 2020-03-11 | 栗田工業株式会社 | Anaerobic digestion method and apparatus for sewage sludge |
JP7180881B2 (en) * | 2019-07-26 | 2022-11-30 | 株式会社インターファーム | Method for methane fermentation of poultry manure and method for producing poultry manure fertilizer |
JP7015893B2 (en) * | 2020-10-16 | 2022-02-03 | Jfe環境テクノロジー株式会社 | Swill methane fermentation processing system |
-
1997
- 1997-07-14 JP JP18870997A patent/JP3145957B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1128445A (en) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansen et al. | Agricultural waste management in food processing | |
Nah et al. | Mechanical pretreatment of waste activated sludge for anaerobic digestion process | |
JP3145957B2 (en) | Waste treatment method | |
JP2007289946A (en) | Anaerobic treatment process and device of organic solid waste | |
JP3609332B2 (en) | Treatment method for oil-containing waste | |
KR101536000B1 (en) | equipment and method for making liquid fertilizer of livestocks' excrements rapidly | |
JP3570888B2 (en) | Waste treatment method | |
JPH10216785A (en) | Treatment of night soil, garbage and sludge | |
Wu et al. | Wet air oxidation of anaerobically digested sludge | |
JPH0751686A (en) | Treatment of sewage | |
JP3400292B2 (en) | Waste treatment method | |
JP3752603B2 (en) | Biofilm treatment method for wastewater | |
JPH11197636A (en) | Method for treatment of organic waste | |
JP4907123B2 (en) | Organic waste processing method and processing system | |
JP2001137812A (en) | Waste treatment method | |
JPH11300311A (en) | Treatment of organic waste | |
JP3276139B2 (en) | Organic waste treatment method | |
JPH11319782A (en) | Methane fermentation process | |
JP2000015230A (en) | Method for removing ammonia | |
JP3276138B2 (en) | Organic waste treatment | |
Crawford et al. | Anaerobic treatment of thermal conditioning liquors | |
JP3445464B2 (en) | Waste treatment method | |
JPH11221548A (en) | Treatment of organic waste | |
JP3303906B2 (en) | Biological treatment of garbage and organic wastewater | |
WO2002081386A1 (en) | Sludge and slurry destruction plant and process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140105 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |