JP3835715B2 - Liquid injection sealed underfill material - Google Patents

Liquid injection sealed underfill material Download PDF

Info

Publication number
JP3835715B2
JP3835715B2 JP03380297A JP3380297A JP3835715B2 JP 3835715 B2 JP3835715 B2 JP 3835715B2 JP 03380297 A JP03380297 A JP 03380297A JP 3380297 A JP3380297 A JP 3380297A JP 3835715 B2 JP3835715 B2 JP 3835715B2
Authority
JP
Japan
Prior art keywords
epoxy resin
underfill material
particle size
liquid injection
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03380297A
Other languages
Japanese (ja)
Other versions
JPH10231351A (en
Inventor
雅浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP03380297A priority Critical patent/JP3835715B2/en
Publication of JPH10231351A publication Critical patent/JPH10231351A/en
Application granted granted Critical
Publication of JP3835715B2 publication Critical patent/JP3835715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低応力性、リワーク性に優れた半導体の注入封止に用いられる液状注入封止アンダーフィル材料に関する。
【0002】
【従来の技術】
ICチップの高密度化、高集積化に伴い、配線が短く、高周波用、多ピン化に適するフリップ実装方式のパッケージ形態が多くなってきている。同実装は、ほぼチップサイズの大きさでプリント基板にチップを直接搭載できることから、小型、軽量、薄型化が可能となる。ベアチップのプリント基板への実装技術は確立されてきたが、熱膨張によるチップと基板との寸法差が有るため、注入封止アンダーフィル材料による充填補強が必要となる。このフリップ実装型半導体封止には液状の封止材料が用いられているが、セラミックスによる気密封止型に比べて信頼性の点で充分でないためにプラスチックパッケージの普及が遅れていた。
フリップ実装型半導体の信頼性低下の原因としては、
(1)注入封止アンダーフィル材料を通して外気から湿気が侵入する。
(2)有機配線基板から湿気が侵入する。
(3)半田バンプから不純物が侵入する。
(4)大気圧下で注入封止アンダーフィル材料をパッケージ内へ流動させる際に気泡が生じ、熱ストレスが加わった際にクラックが発生する。
(5)封止材料、半導体チップ、有機基板および半田バンプとの線熱膨張係数が異なるために、熱ストレスが加わった際に界面で剥離が生じる。これにより湿気の侵入並びにチップへの機械的損傷が発生する。
等が挙げられる。液状注入封止アンダーフィル材料の実用化に際して、以上の問題はクリアされなければならない。
更に、1つの基板上に2個以上のチップを実装したタイプのいわゆるマルチチップモジュール(MCM)の用途には、今後前記フリップチップ実装型が増加することが予想されている。MCMでは、アンダーフィル樹脂封止後に不良が発見された場合、例えば接続材料(半田)の融点以上に加熱しチップを取り外し(リワーク)、再実装する場合がある。一般にリワーク性が高い、すなわち取り外しが容易な注入封止アンダーフィル材料ほど、実用温度領域でのチップおよび有機基板に対する密着性までもが低下し、上記(5)の問題が発生し易くなる。
【0003】
【発明が解決しようとする課題】
本発明は従来の注入封止アンダーフィル材料の上記の問題を解決するためになされたものであり、その目的とするところは熱ストレスに耐えうる低応力性とリワーク性を兼ね備えた注入封止アンダーフィル材料を提供するに有る。
【0004】
【課題を解決するための手段】
本発明は、常温で液状のエポキシ樹脂、硬化剤、球状無機フィラーからなり、エポキシ樹脂が全エポキシ樹脂中に式(1)で示されるエポキシ樹脂が5重量%から30重量%含み、且つ式(1)で示されるエポキシ樹脂は少なくともm=以上の成分が10重量%から60重量%含むことを特徴とする液状注入封止アンダーフィル材料である。
【0005】
【化1】

Figure 0003835715
【0006】
本材料を用いることにより有機プリント配線基板を用いたフリップチップ実装型半導体のリワーク性および信頼性を大幅に向上させることができる。
【0007】
【発明の実施の形態】
本発明に用いられる常温で液状のエポキシ樹脂は、全エポキシ樹脂中に式(1)で示されるエポキシ樹脂が5重量%から30重量%含み、且つ式(1)で示されるエポキシ樹脂は少なくともm=以上の成分が10重量%から60重量%含む。ここで全エポキシ樹脂中に式(1)で示されるエポキシ樹脂が5重量%以下では接着力が強くリワーク性は発現せず、30重量%以上では低応力性を示すが接着性が著しく低下する。また、式(1)で示されるエポキシ樹脂に含まれるm=以上の成分が10重量%未満だと、リワーク性が発現しない、60重量%より多く含むとブリードが起こり接着性が著しく低下する。後者の場合、例えばフェノール類などであらかじめ変性し相溶性を高くすることで、ブリードを抑えることもできる。エポキシ樹脂成分は25℃における粘度が500PA・s以下であることが好ましい。エポキシ樹脂成分の粘度が500Pa・sより高いと組成物の粘度が高くなり、フリップチップ実装型パッケージ中へのアンダーフィル材料を流動注入する際、気泡を巻き込んだり、コーナー端部への充填良が発生し易くなり信頼性低下につながり、好ましくない。
【0008】
エポキシ樹脂の粘度測定には、室温で液状のエポキシ樹脂の場合、25゜Cにおいて東機産業(株)・製E型粘度計、ブルックフィールド粘度計で測定する。この要件を満たすエポキシ樹脂で有れば特に限定される物ではないが、式(1)で示されるエポキシ樹脂以外の樹脂として例えばビスフェノールA、ビスフェノールF、フェノールノボラックとエピクロルヒドリンとの反応で得られるポリグリシジルエーテルで常温の物、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイドの様な脂環式エポキシ、更にn−ブチルグリシジルエーテル、パーサティック酸グリシジルエステル、スチレンオキサイドフェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、クレグリシジルエーテル、ジシクロペンタジエンジエポキシドの様な通常エポキシ樹脂の希釈材として用いられるものがある。これらは単独でも混合しても差し支えない。また、信頼性の優れた液状注入封止アンダーフィル材料を得るために、使用に耐えるエポキシ樹脂はNa+、Cl-等のイオン性不純物はできるだけ少ないものが好ましい。
【0009】
本発明に用いられる硬化剤はフリップチップとしての信頼性、ポットライフ、液状樹脂粘度に影響しないものであれば特に限定されないが、活性水素を分子内に有するものが望ましい。その例としてはフェノール類(例えばビスフェノールA、ビスフェノールF、ビスフェノールAP、ビスフェノールS、ビスフェノールZ、ジメチルビスフェノールA、ジメチルビスフェノールF、テトラメチルビスフェノールA、テトラメチルビスフェノールF、ビフェノール、テトラメチルビフェノール、ジヒドロキシジフェニルエーテル、ジヒドロキシベンゾフェノン、o−ヒドロキシフェノール、m−ヒドロキシフェノール、p−ヒドロキシフェノール、フェノールノボラック樹脂やオルソクレゾールノボラック樹脂等のポリフェノール類、トリヒドロキシフェニルメタンやトリヒドロキシフェニルメタンなどのトリスフェノール類)、一級アミン、芳香族ポリアミン類、イミダゾール等が挙げられる。これらは単独でも混合しても差し支えない。また、信頼性の優れた液状注入封止アンダーフィル材料を得るために、使用に耐えるアミン系硬化剤はNa+、Cl-等のイオン性不純物はできるだけ少ないものが好ましい。
【0010】
本発明に用いられる球状無機フィラーは、その平均粒径が10μm以下、最大粒径が30μm以下であることが好ましい。無機フィラーには、窒化アルミ、アルミナ、シリカなどがあるが、熱放散性とコストの面からシリカ粒子が好ましく、低放射線であればより好ましい。形状は球状、破砕状、フレーク状等があるが、フィラーの高充填化により線膨張係数の低減化が図られる為、球状が最も良い。球状無機フィラーの添加量は、全組成物に対して50〜80重量%が望ましい。50重量%未満だと、上述の線膨張係数の低減効果は小さく、80重量%を越えると結果として得られる組成物の粘度が高くなり過ぎ、流動特性が悪化するため好ましくない。
【0011】
液状注入封止アンダーフィル材料の流動特性はフィラーの粒度分布にも大きく依存する。一般に分布が広く、粒径の大きいフィラーほど、組成物の粘度が低く流動性がよい。しかし、低粘度化を目的に大きな粒径を含むフィラーを用いると、硬化中に粒径の大きなフィラー沈降し、間隙中の線熱膨張係数が不均一となり、信頼性の面で好ましくない。また液状注入封止アンダーフィル材料は有機基板とチップ間の間隙(Stand OFF:25〜150μm)を流動する必要から、フィラー粒径はStand OFFよりも小さくなければならない。逆に粒径が小さすぎると比表面積が増大するため、フィラーの充填量を高くすることができない。以上の要件を満たすには平均粒径が0.5μmから10μm、且つ最大粒径が30μm以下のフィラーである必要がある。より好ましくは平均粒径が3〜9μm、且つ最大粒径が20μm以下の粒度分布のフィラーを用いた方が良い。また、フィラーは請求項の範囲で有れば単独で用いても、混合して粒度分布に二峰性を持たせたものでも差し支えない。
【0012】
本発明の液状注入封止アンダーフィル材料には、前記の必須成分の他に必要に応じて他の樹脂や反応を促進するための触媒、希釈剤、顔料、カップリング剤、難燃剤、レベリング剤、消泡剤等の添加物を用いても差し支えない 液状注入封止アンダーフィル材料は、例えば各成分、添加物等を三本ロール、二本熱ロール、真空混合機にて分散混練し、真空下脱泡処理して製造する。
【0013】
【実施例】
本発明を実施例で具体的に説明する。
実施例1−7、比較例1−7で具体的に説明する。
表1及び表2の処方に従って秤量し、3本ロールにて、分散混練し真空下脱泡処理をして液状注入封止アンダーフィル材料を作製し、以下の特性評価を行った。
(1)接着強度−有機基板としてビスマレイミド−トリアジン(BT)レジン製基板上にソルダーレジスト(太陽インキ社製PSR−4000/CA−40)を形成した表面に液状注入封止アンダーフィル材料を塗布し、2×2mm角のシリコンチップを積載し、150度、120分で硬化し、150度及び250度における熱時接着力をプッシュプルゲージで測定した。
(2)低応力性製試験−(1)と同様に15×6×0.3mm(厚さ)のシリコンチップを厚さ0.5mmの有機基板に150度、120分で硬化封止し、低応力性の尺度としてチップの長手方向を表面粗さ計を用いて上下方向の変位の最大値を求め、代用特性とした。
(3)充填性試験−80℃の熱盤上で液状注入封止アンダーフィル材料をフリップチップ実装パッケージに5分間注入させた後、150℃で2時間、オーブン中で硬化して半導体パッケージを得た。超音波探傷機(以下、SATという)にて、パッケージ内部の充填性を確認した。
(4)信頼性試験−(3)で作製した半導体パッケージにPCT処理(125℃/2.3atm)、T/C処理(−65℃/30分←→150℃/30分 400サイクル)を施して、SATにて半導体チップとプリント基板界面との剥離、クラックの有無を確認した。
(4)リワーク性の評価試験−(3)と同様に半導体パッケージを作製し、250℃の熱盤上で半導体パッケージを5分間加熱後チップを剥がし、完全に剥離したものを「良好」、有機基板表面に封止樹脂が残存したものを「不良」とした。
各評価ごとに用いたフリップチップ実装パッケージの数は10個である。なお、チップの大きさは15mm角で、基板との間隙は100μmである(低応力試験を除く)。
【0014】
【表1】
Figure 0003835715
【0015】
表の組成の欄の数値は重量部である。
*1 液状エポキシ樹脂A:ビスフェノールF型エポキシ樹脂(当量170)
*2 液状エポキシ樹脂B:式(1)のエポキシ樹脂で=0のもの(当量181)
*3 液状エポキシ樹脂C:式(1)のエポキシ樹脂で=1のもの(当量329)
*4 液状エポキシ樹脂D:式(1)のエポキシ樹脂で=2のもの(当量477)
*5 液状エポキシ樹脂E:3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボン酸エステル(当量126)
*6 液状エポキシ樹脂F:式(1)の脂環式エポキシ樹脂で=0のもの(当量192)
*7 液状エポキシ樹脂G:式(1)の脂環式エポキシ樹脂で=1のもの(当量340)
*8 硬化剤 :アルキル化ジアミノジフェニルメタン硬化剤(当量65)
*9 硬化剤 :メチルヘキサヒドロフタル酸無水物
*10 シリカ :合成球状シリカで平均粒径1.7μm、最大粒径8.0μm
*11 シリカ :溶融球状シリカで平均粒径4.9μm、最大粒径16μm
*12 シリカ :溶融球状シリカで平均粒径7.9μm、最大粒径40μm
*13 シリカ :溶融球状シリカで平均粒径0.3μm、最大粒径4.0μm
【0016】
【表2】
Figure 0003835715
* 14 :比較例6及び7については流動性不良のため、信頼性試験並びにリワーク性試験は実施していない。
【0017】
比較例1では全エポキシ樹脂中に含まれる式(1)のエポキシ樹脂が少ないために、200℃での接着強度が高く、且つリワーク性に劣る。比較例2では全エポキシ樹脂中に含まれる式(1)のエポキシ樹脂が過剰であるために、低応力性とリワーク性に優れてはいるものの、150度での接着強度が低く且つ信頼性に欠ける。比較例3は式(1)で示されるエポキシ樹脂中にm=以上の成分が少ないために250℃での接着強度が高く、且つリワーク性に劣る。比較例4、及び5では式(1)で示されるエポキシ樹脂中にm=以上の成分が過剰であるために低応力性を示すが接着性が低く、実用レベルにない。比較例6ではフィラーの最大粒径が大きい為にパッケージのギャップへの流動性が悪い。比較例7はフィラーの平均粒径が小さいために高粘度で流動性が悪い。
【0018】
【発明の効果】
本発明の液状注入封止アンダーフィル材料を用いて封止を行うと、熱ストレスに耐えうる低応力性を示す高信頼性半導体パッケージを得られ、且つその良好なリワーク性により歩留まりの向上が可能となり、本発明の工業的メリットは大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid injection sealing underfill material used for semiconductor injection sealing excellent in low stress property and reworkability.
[0002]
[Prior art]
Along with the higher density and higher integration of IC chips, there are an increasing number of flip-mounting packages suitable for high-frequency and multi-pin use with short wiring. Since the mounting can be directly mounted on a printed circuit board with a chip size, it can be reduced in size, weight, and thickness. Although technology for mounting a bare chip on a printed circuit board has been established, since there is a dimensional difference between the chip and the board due to thermal expansion, filling reinforcement with an injection sealing underfill material is required. A liquid sealing material is used for the flip mounting type semiconductor sealing. However, since the reliability is not sufficient as compared with the hermetic sealing type using ceramics, the spread of plastic packages has been delayed.
As a cause of lower reliability of flip-mount semiconductors,
(1) Moisture enters from the outside air through the injection sealing underfill material.
(2) Moisture enters from the organic wiring board.
(3) Impurities enter from the solder bumps.
(4) Bubbles are generated when the injection-sealed underfill material flows into the package under atmospheric pressure, and cracks occur when thermal stress is applied.
(5) Since the linear thermal expansion coefficients of the sealing material, semiconductor chip, organic substrate, and solder bump are different, peeling occurs at the interface when thermal stress is applied. This causes moisture ingress and mechanical damage to the chip.
Etc. When the liquid injection sealing underfill material is put to practical use, the above problems must be cleared.
Furthermore, the flip-chip mounting type is expected to increase in the future for the use of a so-called multi-chip module (MCM) of a type in which two or more chips are mounted on one substrate. In MCM, when a defect is discovered after sealing an underfill resin, for example, the chip may be removed (reworked) by heating to a temperature higher than the melting point of the connection material (solder) and re-mounted. In general, an injection-sealed underfill material having higher reworkability, that is, easier to remove, lowers the adhesion to a chip and an organic substrate in a practical temperature range, and the problem (5) is likely to occur.
[0003]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems of conventional injection-sealed underfill materials, and the object of the present invention is to provide an injection-sealed underfill having both low stress and reworkability capable of withstanding thermal stress. In providing fill material.
[0004]
[Means for Solving the Problems]
The present invention comprises an epoxy resin that is liquid at room temperature, a curing agent, and a spherical inorganic filler. The epoxy resin contains 5 to 30% by weight of the epoxy resin represented by the formula (1) in all epoxy resins, and the formula ( The epoxy resin represented by 1) is a liquid injection sealing underfill material characterized in that at least m = 1 or more components are contained in an amount of 10% to 60% by weight.
[0005]
[Chemical 1]
Figure 0003835715
[0006]
By using this material, the reworkability and reliability of a flip chip mounting type semiconductor using an organic printed wiring board can be greatly improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin that is liquid at room temperature used in the present invention contains 5 to 30% by weight of the epoxy resin represented by the formula (1) in all epoxy resins, and the epoxy resin represented by the formula (1) is at least m. = One or more components comprise from 10% to 60% by weight. Here, if the epoxy resin represented by the formula (1) in the total epoxy resin is 5% by weight or less, the adhesive strength is strong and the rework property is not exhibited. . In addition, when the component of m = 1 or more contained in the epoxy resin represented by the formula (1) is less than 10% by weight, reworkability is not exhibited, and when it is contained more than 60% by weight, bleeding occurs and the adhesiveness is remarkably lowered. . In the latter case, for example, bleed can be suppressed by denaturing with phenols or the like in advance to increase compatibility. The epoxy resin component preferably has a viscosity at 25 ° C. of 500 PA · s or less. When the viscosity of the epoxy resin component is higher than 500 Pa · s, the viscosity of the composition becomes high. When the underfill material is flow-injected into the flip chip mounting type package, air bubbles are entrained and the corner end is well filled. It tends to occur and leads to a decrease in reliability, which is not preferable.
[0008]
In the case of an epoxy resin that is liquid at room temperature, the viscosity of the epoxy resin is measured at 25 ° C. using an E-type viscometer manufactured by Toki Sangyo Co., Ltd. and a Brookfield viscometer. The epoxy resin satisfying this requirement is not particularly limited, but as a resin other than the epoxy resin represented by the formula (1), for example, polyphenol obtained by reaction of bisphenol A, bisphenol F, phenol novolac and epichlorohydrin. Glycidyl ether at normal temperature, vinylcyclohexene dioxide, dicyclopentadiene oxide, alicyclic epoxy such as alicyclic diepoxy-adipate, n-butyl glycidyl ether, persic acid glycidyl ester, styrene oxide phenyl glycidyl ether Butylphenyl glycidyl ether, creglycidyl ether, and dicyclopentadiene diepoxide, which are usually used as diluents for epoxy resins. These can be used alone or in combination. Further, in order to obtain the reliability of excellent liquid injection sealing underfill material, an epoxy resin to withstand use Na +, Cl - ionic impurities such as those as small as possible is preferable.
[0009]
The curing agent used in the present invention is not particularly limited as long as it does not affect the reliability as a flip chip, the pot life, and the liquid resin viscosity, but it is preferable to have an active hydrogen in the molecule. Examples thereof include phenols (for example, bisphenol A, bisphenol F, bisphenol AP, bisphenol S, bisphenol Z, dimethyl bisphenol A, dimethyl bisphenol F, tetramethyl bisphenol A, tetramethyl bisphenol F, biphenol, tetramethyl biphenol, dihydroxy diphenyl ether, Dihydroxybenzophenone, o-hydroxyphenol, m-hydroxyphenol, p-hydroxyphenol, polyphenols such as phenol novolac resin and orthocresol novolac resin, trisphenols such as trihydroxyphenylmethane and trihydroxyphenylmethane), primary amines, Aromatic polyamines, imidazole and the like can be mentioned. These can be used alone or in combination. Further, in order to obtain a liquid injection sealing underfill material having excellent reliability, it is preferable that the amine-based curing agent that can withstand use is one having as little ionic impurities as Na + and Cl- as much as possible.
[0010]
The spherical inorganic filler used in the present invention preferably has an average particle size of 10 μm or less and a maximum particle size of 30 μm or less. Examples of the inorganic filler include aluminum nitride, alumina, and silica. Silica particles are preferable from the viewpoint of heat dissipation and cost, and low radiation is more preferable. The shape includes a spherical shape, a crushed shape, a flake shape, and the like, but a spherical shape is the best because the linear expansion coefficient can be reduced by increasing the filling of the filler. The addition amount of the spherical inorganic filler is desirably 50 to 80% by weight based on the total composition. If it is less than 50% by weight, the above-mentioned effect of reducing the linear expansion coefficient is small, and if it exceeds 80% by weight, the resulting composition has an excessively high viscosity and the flow characteristics are deteriorated.
[0011]
The flow characteristics of the liquid injection sealed underfill material also depend greatly on the particle size distribution of the filler. In general, a filler having a wider distribution and a larger particle size has a lower viscosity of the composition and better fluidity. However, if a filler having a large particle size is used for the purpose of reducing the viscosity, the filler having a large particle size settles during curing, and the linear thermal expansion coefficient in the gap becomes non-uniform, which is not preferable in terms of reliability. Further, since the liquid injection sealing underfill material needs to flow through the gap between the organic substrate and the chip (Stand OFF: 25 to 150 μm), the filler particle size must be smaller than that of Stand OFF. On the other hand, if the particle size is too small, the specific surface area increases, so that the filler filling amount cannot be increased. In order to satisfy the above requirements, the filler needs to have an average particle size of 0.5 μm to 10 μm and a maximum particle size of 30 μm or less. More preferably, it is better to use a filler having a particle size distribution with an average particle size of 3 to 9 μm and a maximum particle size of 20 μm or less. Further, the filler may be used alone as long as it is within the scope of the claims, or may be mixed to give the particle size distribution bimodality.
[0012]
In addition to the above essential components, the liquid injection sealing underfill material of the present invention includes other resins and catalysts for accelerating the reaction as necessary, diluents, pigments, coupling agents, flame retardants, and leveling agents. Additives such as antifoaming agents may be used. Liquid injection sealing underfill material is, for example, each component, additive, etc. dispersed and kneaded with a three-roll, two-heat roll, vacuum mixer, and vacuum Manufacture by defoaming.
[0013]
【Example】
The present invention will be specifically described with reference to examples.
This will be specifically described in Example 1-7 and Comparative Example 1-7.
Weighed according to the formulations shown in Tables 1 and 2, dispersed and kneaded with three rolls, defoamed under vacuum to produce a liquid injection sealed underfill material, and the following characteristics evaluation was performed.
(1) Adhesive strength-Applying a liquid injection sealing underfill material to the surface of a solder resist (PSR-4000 / CA-40 manufactured by Taiyo Ink Co., Ltd.) formed on a bismaleimide-triazine (BT) resin substrate as an organic substrate Then, a 2 × 2 mm square silicon chip was loaded and cured at 150 ° C. for 120 minutes, and the hot adhesion at 150 ° C. and 250 ° C. was measured with a push-pull gauge.
(2) Low-stress test--Similar to (1), a 15 × 6 × 0.3 mm (thickness) silicon chip was cured and sealed at 150 ° C. for 120 minutes on a 0.5 mm thick organic substrate, As a measure of low stress, the maximum value of displacement in the vertical direction was obtained by using a surface roughness meter in the longitudinal direction of the chip and used as a substitute characteristic.
(3) Fillability test—After injecting the liquid injection sealing underfill material on the flip chip mounting package on a hot plate at 80 ° C. for 5 minutes, it is cured in an oven at 150 ° C. for 2 hours to obtain a semiconductor package. It was. The inside of the package was confirmed with an ultrasonic flaw detector (hereinafter referred to as SAT).
(4) Reliability test-PCT treatment (125 ° C / 2.3atm) and T / C treatment (-65 ° C / 30 minutes ← → 150 ° C / 30 minutes 400 cycles) are applied to the semiconductor package produced in (3). Then, the presence or absence of peeling and cracks between the semiconductor chip and the printed circuit board interface was confirmed by SAT.
(4) Reworkability evaluation test—A semiconductor package was prepared in the same manner as in (3), the semiconductor package was heated on a hot plate at 250 ° C. for 5 minutes, and then the chip was peeled off. The case where the sealing resin remained on the substrate surface was defined as “defective”.
The number of flip chip mounting packages used for each evaluation is ten. The chip size is 15 mm square and the gap with the substrate is 100 μm (except for the low stress test).
[0014]
[Table 1]
Figure 0003835715
[0015]
The numerical values in the composition column of the table are parts by weight.
* 1 Liquid epoxy resin A: Bisphenol F type epoxy resin (equivalent 170)
* 2 Liquid epoxy resin B: epoxy resin of formula (1) with m = 0 (equivalent 181)
* 3 Liquid epoxy resin C: epoxy resin of formula (1) with m = 1 (equivalent 329)
* 4 Liquid epoxy resin D: epoxy resin of formula (1) with m = 2 (equivalent 477)
* 5 Liquid epoxy resin E: 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylic acid ester (equivalent to 126)
* 6 Liquid epoxy resin F: Alicyclic epoxy resin of formula (1) with m = 0 (equivalent 192)
* 7 Liquid epoxy resin G: alicyclic epoxy resin of formula (1) with m = 1 (equivalent 340)
* 8 Curing agent: alkylated diaminodiphenylmethane curing agent (equivalent 65)
* 9 Curing agent: Methylhexahydrophthalic anhydride * 10 Silica: Synthetic spherical silica with an average particle size of 1.7 μm and a maximum particle size of 8.0 μm
* 11 Silica: fused spherical silica with an average particle size of 4.9μm and maximum particle size of 16μm
* 12 Silica: fused spherical silica with an average particle size of 7.9μm and maximum particle size of 40μm
* 13 Silica: fused spherical silica with an average particle size of 0.3μm and maximum particle size of 4.0μm
[0016]
[Table 2]
Figure 0003835715
* 14: In Comparative Examples 6 and 7, due to poor fluidity, the reliability test and the reworkability test were not performed.
[0017]
In Comparative Example 1, since there are few epoxy resins of Formula (1) contained in all the epoxy resins, the adhesive strength at 200 ° C. is high and the reworkability is inferior. In Comparative Example 2, since the epoxy resin of the formula (1) contained in all the epoxy resins is excessive, the low stress property and the reworkability are excellent, but the adhesive strength at 150 degrees is low and the reliability is high. Lack. In Comparative Example 3, since the epoxy resin represented by the formula (1) has few components of m = 1 or more, the adhesive strength at 250 ° C. is high and the reworkability is inferior. In Comparative Examples 4 and 5, the epoxy resin represented by the formula (1) has an excess of m = 1 or more and thus exhibits low stress, but has low adhesiveness and is not at a practical level. In Comparative Example 6, the fluidity into the gap of the package is poor because the maximum particle size of the filler is large. In Comparative Example 7, since the average particle size of the filler is small, the viscosity is high and the fluidity is poor.
[0018]
【The invention's effect】
When sealing is performed using the liquid injection sealing underfill material of the present invention, a highly reliable semiconductor package exhibiting low stress that can withstand thermal stress can be obtained, and the yield can be improved by its good reworkability. Thus, the industrial merit of the present invention is great.

Claims (2)

常温で液状のエポキシ樹脂、硬化剤、球状無機フィラーからなり、エポキシ樹脂が全エポキシ樹脂中に式(1)で示されるエポキシ樹脂が5重量%から30重量%含み、且つ式(1)で示されるエポキシ樹脂は少なくともm=1以上の成分が10重量%から60重量%含むことを特徴とする液状注入封止アンダーフィル材料。
Figure 0003835715
It consists of an epoxy resin that is liquid at room temperature, a curing agent, and a spherical inorganic filler. The epoxy resin contains 5% to 30% by weight of the epoxy resin represented by the formula (1) in the total epoxy resin, and is represented by the formula (1). The liquid injection sealing underfill material is characterized in that the epoxy resin contains at least m = 1 or more components of 10 wt% to 60 wt%.
Figure 0003835715
球状無機フィラーの平均粒径が0.5μmから10μm、かつ最大粒径が30μm以下であることを特徴とする請求項1記載の液状注入封止アンダーフィル材料。The liquid injection-sealed underfill material according to claim 1, wherein the spherical inorganic filler has an average particle size of 0.5 to 10 µm and a maximum particle size of 30 µm or less.
JP03380297A 1997-02-18 1997-02-18 Liquid injection sealed underfill material Expired - Fee Related JP3835715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03380297A JP3835715B2 (en) 1997-02-18 1997-02-18 Liquid injection sealed underfill material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03380297A JP3835715B2 (en) 1997-02-18 1997-02-18 Liquid injection sealed underfill material

Publications (2)

Publication Number Publication Date
JPH10231351A JPH10231351A (en) 1998-09-02
JP3835715B2 true JP3835715B2 (en) 2006-10-18

Family

ID=12396618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03380297A Expired - Fee Related JP3835715B2 (en) 1997-02-18 1997-02-18 Liquid injection sealed underfill material

Country Status (1)

Country Link
JP (1) JP3835715B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186188A (en) * 1998-12-24 2000-07-04 Toshiba Chem Corp Liquid resin composition for sealing
US20050288458A1 (en) 2002-07-29 2005-12-29 Klemarczyk Philip T Reworkable thermosetting resin composition
WO2001074798A1 (en) * 2000-03-31 2001-10-11 Loctite Corporation Reworkable composition of oxirane(s) or thiirane(s)-containing resin and curing agent
US7012120B2 (en) 2000-03-31 2006-03-14 Henkel Corporation Reworkable compositions of oxirane(s) or thirane(s)-containing resin and curing agent
WO2003085024A1 (en) * 2002-04-08 2003-10-16 Kaneka Corporation Organic polymers having at the ends epoxy- and/or oxetanyl-containing silicon groups and process for production thereof
JPWO2005080502A1 (en) * 2004-02-24 2007-08-02 松下電工株式会社 Liquid epoxy resin composition for underfill and semiconductor device sealed using the composition
JP4947928B2 (en) * 2005-06-27 2012-06-06 日本化薬株式会社 Underfill material for semiconductor devices
JP4890804B2 (en) * 2005-07-19 2012-03-07 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP5114935B2 (en) * 2005-12-08 2013-01-09 日立化成工業株式会社 Liquid resin composition for electronic components, and electronic component device using the same
JP2010143949A (en) * 2008-12-16 2010-07-01 Shin-Etsu Chemical Co Ltd Underfill material and semiconductor device using the same
JP5614022B2 (en) * 2009-10-05 2014-10-29 日立化成株式会社 Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP2012224799A (en) * 2011-04-22 2012-11-15 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and semiconductor device using the same
JP7000698B2 (en) * 2017-03-31 2022-01-19 昭和電工マテリアルズ株式会社 Resin composition for underfill, manufacturing method of semiconductor device and semiconductor device
CN113278252B (en) * 2021-05-11 2023-02-10 湖北三选科技有限公司 Silicon-containing epoxy resin composition, mold sealing adhesive and application thereof

Also Published As

Publication number Publication date
JPH10231351A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3835715B2 (en) Liquid injection sealed underfill material
US6225704B1 (en) Flip-chip type semiconductor device
JP4892164B2 (en) Liquid epoxy resin composition and electronic component device
WO2011013326A1 (en) Liquid resin composition and semiconductor device formed using same
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
JP3591758B2 (en) Liquid injection sealing underfill material
JP3283451B2 (en) Liquid injection sealing underfill material
JP2001019745A (en) Semiconductor device and its production
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP2002121259A (en) Liquid sealing resin composition, method for producing semiconductor device and semiconductor device
JP2008088279A (en) Liquid resin composition for underfill and semiconductor device
JP4810835B2 (en) Liquid sealing resin composition for underfill and semiconductor device using the same
JP2004352939A (en) Liquefied encapsulation resin and semiconductor device using it
JP5708666B2 (en) Liquid epoxy resin composition and electronic component device
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JP2016040393A (en) Liquid epoxy resin composition, and electronic component device
JP4047613B2 (en) Liquid sealing resin and semiconductor device using the same
WO2005080502A1 (en) Liquid epoxy resin composition for underfill and semiconductor device encapsulated with the composition
JP3432410B2 (en) Liquid injection sealing underfill material
JP2008214548A (en) Liquid epoxy resin composition and semiconductor device using it
JP5924443B2 (en) Liquid epoxy resin composition and electronic component device
JP2002293880A (en) Liquid resin composition for sealing and semiconductor device using the same
JP2015110803A (en) Liquid epoxy resin composition and electronic part device
JP2004256646A (en) Resin composition for underfilling, and semiconductor device
JP3645739B2 (en) Liquid encapsulating resin composition and semiconductor device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees