JP3835296B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP3835296B2
JP3835296B2 JP2002013713A JP2002013713A JP3835296B2 JP 3835296 B2 JP3835296 B2 JP 3835296B2 JP 2002013713 A JP2002013713 A JP 2002013713A JP 2002013713 A JP2002013713 A JP 2002013713A JP 3835296 B2 JP3835296 B2 JP 3835296B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
current
arc
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013713A
Other languages
Japanese (ja)
Other versions
JP2003219649A (en
Inventor
浩二 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002013713A priority Critical patent/JP3835296B2/en
Publication of JP2003219649A publication Critical patent/JP2003219649A/en
Application granted granted Critical
Publication of JP3835296B2 publication Critical patent/JP3835296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源装置に係り、特に直流アーク炉やプラズマアーク炉等のように電力系統の瞬時停止が大きな問題となる装置へ電源を供給するのに好適な電源装置に関する。
【0002】
【従来の技術】
落雷等の事故による電力系統の瞬時停止は、電力を利用する様々な分野で問題となっている。例えば、製鋼業で溶解に用いられる直流アーク炉やプラズマアーク炉は、電力系統の事故で装置が停止すると、溶解中の鋼塊や電極が不良となって大きな損害が発生する恐れがある。
【0003】
従来、直流アーク炉用又はプラズマアーク炉用の電源装置としては、サイリスタ素子を用いた他励変換方式の電源装置が採用されていた。図3は、従来のアーク炉用電源装置の概略構成を示す図である。三相交流の系統電圧1は、サイリスタ整流器3により直流の出力電圧Vdcに変換され、アーク炉電圧Varcとしてアーク炉6の電極6aと炉6bとの間に印可される。サイリスタ整流器3の整流制御には、系統電圧1の位相が用いられている。5は回路抵抗である。このような他励変換方式の電源装置の場合、系統電圧1が低下すると、系統電圧1の低下に追従して電源装置の出力電圧Vdcが低下する。
【0004】
【発明が解決しようとする課題】
図4はアーク炉のアーク電流特性を示す図であって、直線Dは電源装置の出力特性、曲線Aはアーク炉のアーク電流特性である。系統電圧1の低下により電源装置の出力電圧VdcがVdc1からVdc2へ低下すると、アーク炉6のアーク電流IdはId1からId2へ低下する。アーク電流Idが低下して不安定領域に入ると、アーク炉6のアークが不安定になって消弧してしまう。アーク炉6のアークが消弧すると、アークを再点弧させる作業が必要となり、アーク炉6の操業効率を低下させる要因となる。
【0005】
このため、通常運転時にアーク炉6のアーク電流Idが小さくなった場合は、電源装置の出力電圧Vdcを上げてアーク電流Idを増加し、アーク炉6のアークを維持させる。しかしながら、系統電圧1の瞬時停止が発生した場合は、電源装置の出力電圧Vdcを上げることができない。
【0006】
図5は、従来のアーク炉用電源装置による系統電圧低下時のアーク電流の時間変化を説明する図である。図3に示した従来のアーク炉用電源装置では、図5に示すように、系統電圧1が低下するとアーク炉6のアーク電流Idが急激に低下する。
【0007】
また、図3に示した従来のアーク炉用電源装置では、交流の系統電圧1をサイリスタ整流器3により整流して直流化しているが、サイリスタ整流器3の整流制御にも系統電圧1の位相が用いられている。従って、系統電圧1の瞬時停止が発生すると、サイリスタ整流器3は正常な整流動作が行えなくなり、装置の停止を余儀なくされていた。
【0008】
なお、電源が回復した時にアークの再点弧を容易にする技術としては、例えば特開平7−263139号公報に記載のものがある。これは、蓄電池等に蓄えた電力により、アークの停止後所定期間内、制御整流素子のゲートへの制御信号の供給を維持するものであるが、アークの消弧を防止することはできない。
【0009】
また、短時間の停電時に水銀灯等の放電灯の点灯を維持する技術が、特開平6−168788号公報に記載されている。これは、整流平滑回路とチョッパ回路を用い、整流平滑回路内の平滑コンデンサの容量を大きくし、入力電圧が無電圧になったことを検出してチョッパ回路を低電力供給状態に制御するものである。しかしながら、特開平6−168788号公報に開示された構成では、平滑コンデンサの電圧が低下してくると、チョッパ回路のスイッチングトランジスタの通流率が大きくなり、通流率が大きくなると平滑コンデンサからの放電も増加して、放電灯の点灯を維持できる期間が短くなる。
【0010】
また、特開平6−168788号公報に記載の技術をアーク炉の電源装置に適用すると、アーク炉の電源装置では大きな容量の平滑コンデンサが必要であるのに、これをさらに通常の設計容量値より大きくしなければならない。また、アーク炉の場合は、図3に示したように、アーク電流が低下して不安定領域に入るとアークが不安定になって消弧してしまうので、安易にアーク電流を絞ることはアークを維持させるどころか消弧させる恐れがある。
【0011】
本発明は、入力電圧の瞬時停止が発生したときに、ある程度量の出力電流を長く持続することのできる電源装置を提供することを目的とする。
【0012】
本発明はまた、入力電圧の瞬時停止が発生したときに、アーク炉のアーク電流の急激な低下を防ぎ、アークの持続期間を長くすることを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る電源装置は、入力電圧を検出する入力電圧検出手段と、入力電圧を充電する中間回路を有し、中間回路の電圧を自励素子でスイッチングして出力するチョッパ回路と、負荷電流を検出する負荷電流検出手段と、負荷電流の指令値と負荷電流検出手段の検出値との偏差が無くなるようにチョッパ回路の自励素子を制御する制御手段と、電流指令値を発生する電流指令値発生手段とを備え、制御手段が、前記入力電圧検出手段の検出結果が所定値より高いとき、前記電流指令値発生手段の電流指令値を負荷電流の指令値とするとともに、入力電圧検出手段の検出結果が所定値以下のとき、負荷電流検出手段の検出値を負荷電流の指令値とするものである。
【0014】
チョッパ回路は、コンデンサ等の中間回路に充電した電圧をスイッチングして裁断することにより、出力電圧を調整する電圧調整器である。このため、チョッパ回路の通常時の出力電圧は、スイッチングで裁断しない場合の最大出力電圧より小さい。これに対し、従来のサイリスタ整流器を用いた他励変換方式の電源装置では、電力を蓄える機能がなく、通常時の出力電圧は最大出力電圧にほぼ等しい。本発明では、チョッパ回路を用いることにより、入力電圧の瞬時停止が発生したときに、最大出力電圧が大きい分だけ出力電流をある程度量維持することができる。そして、制御手段は、負荷電流検出手段の検出値を負荷電流の指令値とすることにより、チョッパ回路の自励素子の通流率を制限し、チョッパ回路の運転を継続する。還流期間中は中間回路の電圧が低下しないため、出力電流の維持期間が長くなる。
【0015】
なお、入力電圧が交流の場合には、交流の入力電圧を整流して直流電圧に変換する整流手段を備えることにより、チョッパ回路へ直流電圧を供給することができる。
【0016】
本発明の電源装置の出力電圧をアーク炉へ供給すると、入力電圧の瞬時停止が発生したときに、アーク炉のアーク電流の急激な低下を防ぎ、アークの持続期間を長くすることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。図1は、本発明の一実施の形態による電源装置の構成図である。本実施の形態は、電源装置の入力電圧として三相交流電圧を使用し、負荷としてアーク炉を接続した例を示している。電源装置は、ダイオード整流器2、直流リアクトル4、チョッパ回路10、及び制御回路部100を含んで構成されている。制御回路部100は、比較器20、電圧設定回路30、パルス発生回路40、電流制御回路50、電流指令回路60、電流検出回路70、及びスイッチSWを含んで構成されている。
【0018】
ダイオード整流器2は、三相交流の系統電圧1を整流して直流電圧に変換し、チョッパ回路10へ供給する。チョッパ回路10は、コンデンサ11、自励素子12、及び還流ダイオード13を含んで構成され、直流電圧を調整する機能を持つ。中間回路であるコンデンサ11は、ダイオード整流器2から供給された直流電圧を充電する。自励素子12は、パルス発生回路40からのパルスによりスイッチングし、中間回路から負荷であるアーク炉6へ通流する期間を調整する。自励素子12の通流率をαとすると、出力電圧Vdc、中間回路電圧Edc、アーク炉6のアーク電流Id、及び回路抵抗5の抵抗値Rの間には、
Vdc=Edc×α
Id=Vdc/R
の関係が成り立つ。ここで、自励素子12のオン時の電圧降下は無視している。
【0019】
自励素子12がオフしている期間は、直流リアクトル4の逆起電力により、還流ダイオード13を通して還流電流が流れる。このため、還流期間中は中間回路電圧Edcが低下しない。
【0020】
比較器20は、系統電圧1を検出して、検出結果を電圧設定回路30からの設定値と比較する。そして、比較器20は、系統電圧1が設定電圧より高い場合はスイッチSWの接点を電流指令回路60側へ接続し、設定電圧以下の場合はスイッチSWの接点を電流検出回路70側へ切り替える。
【0021】
電流指令回路60は、アーク炉6のアーク電流Idの指令値を発生する。電流検出回路70は、アーク炉6のアーク電流Idを検出する。通常運転時は、スイッチSWの接点が電流指令回路60側へ接続され、電流制御回路50には、電流指令回路60の指令値と電流検出回路70の検出値との偏差が入力される。電流制御回路50は、入力の偏差が無くなるように、パルス発生回路40を介してチョッパ回路10の自励素子12を制御する。
【0022】
系統電圧1が低下した場合、系統電圧1が電圧設定回路30の設定値に到達するまでは、スイッチSWの接点が電流指令回路60側へ接続されている。中間回路電圧Edcは、系統電圧1の低下と共に低下する。電流制御回路50は、チョッパ回路10の自励素子12の通流率αを大きくして、アーク電流Idを一定に保つ。通流率αが大きくなるため、中間回路電圧Edcが低下する。
【0023】
系統電圧1が低下して電圧設定回路30の設定値に到達した時、比較器20はスイッチSWの接点を電流指令回路60側から電流検出回路70側へ切り替える。これにより、電流制御回路50は、電流検出回路70の検出値をアーク電流Idの指令値とし、入力の偏差が無くなるためチョッパ回路10の自励素子12の通流率αを一定に保つ。通流率αは、この時の中間回路電圧Edcと出力電圧Vdcの比率(α=Vdc/Edc)となる。
【0024】
系統電圧1が低下して電圧設定回路30の設定値に到達した後、チョッパ回路10は、中間回路電圧Edcと出力電圧Vdcの比率を保持し、運転を継続する。還流期間中は中間回路電圧Edcが低下しないため、アーク電流Idを維持する期間が長くなる。
【0025】
図2は、本発明の電源装置による系統電圧低下時のアーク炉のアーク電流の時間変化を説明する図である。従来のアーク炉用電源装置では、図5に示すように系統電圧1が低下するとアーク電流Idが急激に低下していたのに対し、本発明では、図2に示すように系統電圧1が低下してもアーク電流Idは緩やかに低下し、ある程度量のアーク電流を長く維持することができる。
【0026】
以上説明した実施の形態によれば、ダイオード整流器2を用いて系統電圧1の整流を行い、チョッパ回路10が自励素子12を用いてスイッチングを行うことにより、整流やスイッチングの制御に系統電圧1の位相を利用する必要がない。従って、系統電圧1に瞬時停止が発生したとき、従来のように装置の運転が停止することはない。なお、本発明の整流手段はダイオード整流器2に限らず、交流電圧を直流電圧に変換できるものであればよい。また、直流電圧が直接入力される場合は、整流手段は必要ない。
【0027】
本発明の電源装置は、アーク炉に限らず、電源の瞬時停止が大きな問題となる様々な装置へ電源を供給する際に利用することができる。
【0028】
【発明の効果】
本発明の電源装置によれば、チョッパ回路を用い、入力電圧が低下したときに制御手段が負荷電流の検出値を負荷電流の指令値とすることによって、ある程度量の出力電流を長く持続することができる。
【0029】
本発明の電源装置でアーク炉へ電流を供給すると、入力電圧の瞬時停止が発生したときに、アーク炉のアーク電流の急激な低下を防ぎ、アークの持続期間を長くすることができる。従って、アーク炉のアーク停止事故の発生頻度を抑制することができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態による電源装置の構成図である。
【図2】 本発明の電源装置による系統電圧低下時のアーク炉のアーク電流の時間変化を説明する図である。
【図3】 従来のアーク炉用電源装置の概略構成を示す図である。
【図4】 アーク炉のアーク電流特性を示す図である。
【図5】 従来のアーク炉用電源装置による系統電圧低下時のアーク電流の時間変化を説明する図である。
【符号の説明】
1…系統電圧、2…ダイオード整流器、4…直流リアクトル、5…回路抵抗、6…アーク炉、10…チョッパ回路、11…コンデンサ、12…自励素子、13…還流ダイオード、20…比較器、30…電圧設定回路、40…パルス発生回路、50…電流制御回路、60…電流指令回路、70…電流検出回路、100…制御回路部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device, and more particularly to a power supply device suitable for supplying power to a device such as a direct current arc furnace or a plasma arc furnace in which an instantaneous stop of a power system is a serious problem.
[0002]
[Prior art]
Instantaneous stoppage of the power system due to an accident such as a lightning strike is a problem in various fields that use power. For example, in a DC arc furnace or a plasma arc furnace used for melting in the steel industry, when the apparatus stops due to an accident in the power system, there is a risk that the steel ingot or electrode being melted will be defective and cause great damage.
[0003]
Conventionally, as a power supply device for a DC arc furnace or a plasma arc furnace, a separately excited conversion type power supply device using a thyristor element has been adopted. FIG. 3 is a diagram showing a schematic configuration of a conventional arc furnace power supply device. The three-phase AC system voltage 1 is converted to a DC output voltage Vdc by the thyristor rectifier 3 and applied between the electrode 6a and the furnace 6b of the arc furnace 6 as the arc furnace voltage Varc. The phase of the system voltage 1 is used for the rectification control of the thyristor rectifier 3. Reference numeral 5 denotes a circuit resistance. In the case of such a separately-excited conversion type power supply device, when the system voltage 1 decreases, the output voltage Vdc of the power supply device decreases following the decrease of the system voltage 1.
[0004]
[Problems to be solved by the invention]
FIG. 4 is a diagram showing the arc current characteristics of the arc furnace, where the straight line D is the output characteristic of the power supply device and the curve A is the arc current characteristic of the arc furnace. When the output voltage Vdc of the power supply device decreases from Vdc1 to Vdc2 due to a decrease in the system voltage 1, the arc current Id of the arc furnace 6 decreases from Id1 to Id2. When the arc current Id decreases and enters the unstable region, the arc of the arc furnace 6 becomes unstable and extinguishes. When the arc of the arc furnace 6 is extinguished, an operation for re-igniting the arc is required, which causes a reduction in the operation efficiency of the arc furnace 6.
[0005]
For this reason, when the arc current Id of the arc furnace 6 decreases during normal operation, the arc voltage Idc is increased by increasing the output voltage Vdc of the power supply device, and the arc of the arc furnace 6 is maintained. However, when an instantaneous stop of the system voltage 1 occurs, the output voltage Vdc of the power supply device cannot be increased.
[0006]
FIG. 5 is a diagram for explaining the change over time of the arc current when the system voltage is lowered by the conventional arc furnace power supply device. In the conventional arc furnace power supply device shown in FIG. 3, as shown in FIG. 5, when the system voltage 1 decreases, the arc current Id of the arc furnace 6 decreases rapidly.
[0007]
3, the AC system voltage 1 is rectified to DC by the thyristor rectifier 3, but the phase of the system voltage 1 is also used for rectification control of the thyristor rectifier 3. It has been. Therefore, when an instantaneous stop of the system voltage 1 occurs, the thyristor rectifier 3 cannot perform a normal rectifying operation, and the apparatus must be stopped.
[0008]
As a technique for facilitating the re-ignition of the arc when the power supply is restored, for example, there is a technique described in JP-A-7-263139. This is to maintain the supply of the control signal to the gate of the control rectifying element within a predetermined period after the arc is stopped by the electric power stored in the storage battery or the like, but it is not possible to prevent the arc from being extinguished.
[0009]
Japanese Patent Application Laid-Open No. 6-168788 discloses a technique for maintaining the lighting of a discharge lamp such as a mercury lamp during a short power failure. This is to use a rectifying and smoothing circuit and a chopper circuit, increase the capacity of the smoothing capacitor in the rectifying and smoothing circuit, detect that the input voltage has become no voltage, and control the chopper circuit to a low power supply state. is there. However, in the configuration disclosed in Japanese Patent Laid-Open No. 6-168788, when the voltage of the smoothing capacitor decreases, the conduction rate of the switching transistor of the chopper circuit increases, and when the conduction rate increases, the voltage from the smoothing capacitor increases. The discharge also increases, and the period during which the discharge lamp can be kept on is shortened.
[0010]
Further, when the technique described in Japanese Patent Laid-Open No. 6-168788 is applied to an arc furnace power supply device, the arc furnace power supply device requires a smoothing capacitor having a large capacity. Must be bigger. In the case of an arc furnace, as shown in FIG. 3, when the arc current decreases and enters an unstable region, the arc becomes unstable and extinguishes. There is a risk of extinguishing rather than maintaining the arc.
[0011]
An object of the present invention is to provide a power supply device that can sustain a certain amount of output current for a long time when an instantaneous stop of an input voltage occurs.
[0012]
Another object of the present invention is to prevent a rapid decrease in the arc current of the arc furnace when the instantaneous stop of the input voltage occurs and to lengthen the arc duration.
[0013]
[Means for Solving the Problems]
A power supply apparatus according to the present invention includes an input voltage detecting means for detecting an input voltage, an intermediate circuit for charging the input voltage, a chopper circuit for switching and outputting the voltage of the intermediate circuit by a self-excited element, and a load current Load current detection means for detecting the load current, control means for controlling the self-excited element of the chopper circuit so that there is no deviation between the load current command value and the detection value of the load current detection means, and a current command for generating a current command value Value generating means, and when the detection result of the input voltage detecting means is higher than a predetermined value , the control means uses the current command value of the current command value generating means as the load current command value, and the input voltage detecting means. When the detection result is equal to or less than a predetermined value, the detection value of the load current detection means is used as the load current command value.
[0014]
The chopper circuit is a voltage regulator that adjusts an output voltage by switching and cutting a voltage charged in an intermediate circuit such as a capacitor. For this reason, the normal output voltage of the chopper circuit is smaller than the maximum output voltage when not cut by switching. On the other hand, a separately-excited conversion type power supply device using a conventional thyristor rectifier does not have a function of storing electric power, and the normal output voltage is substantially equal to the maximum output voltage. In the present invention, by using the chopper circuit, when an instantaneous stop of the input voltage occurs, the output current can be maintained to some extent by the amount of the maximum output voltage. Then, the control means limits the conduction rate of the self-excited element of the chopper circuit by using the detected value of the load current detecting means as the load current command value, and continues the operation of the chopper circuit. Since the voltage of the intermediate circuit does not decrease during the reflux period, the output current maintenance period becomes longer.
[0015]
When the input voltage is alternating current, a direct current voltage can be supplied to the chopper circuit by providing a rectifying means that rectifies the alternating current input voltage and converts it into a direct current voltage.
[0016]
When the output voltage of the power supply device of the present invention is supplied to the arc furnace, when an instantaneous stop of the input voltage occurs, it is possible to prevent a rapid decrease in the arc current of the arc furnace and lengthen the arc duration.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a power supply device according to an embodiment of the present invention. The present embodiment shows an example in which a three-phase AC voltage is used as an input voltage of a power supply device and an arc furnace is connected as a load. The power supply device includes a diode rectifier 2, a DC reactor 4, a chopper circuit 10, and a control circuit unit 100. The control circuit unit 100 includes a comparator 20, a voltage setting circuit 30, a pulse generation circuit 40, a current control circuit 50, a current command circuit 60, a current detection circuit 70, and a switch SW.
[0018]
The diode rectifier 2 rectifies the three-phase AC system voltage 1 to convert it into a DC voltage and supplies it to the chopper circuit 10. The chopper circuit 10 includes a capacitor 11, a self-excited element 12, and a freewheeling diode 13, and has a function of adjusting a DC voltage. The capacitor 11 that is an intermediate circuit charges the DC voltage supplied from the diode rectifier 2. The self-excited element 12 is switched by a pulse from the pulse generation circuit 40 and adjusts a period during which the intermediate circuit flows from the intermediate circuit to the arc furnace 6 as a load. When the conduction ratio of the self-excited element 12 is α, the output voltage Vdc, the intermediate circuit voltage Edc, the arc current Id of the arc furnace 6 and the resistance value R of the circuit resistance 5 are
Vdc = Edc × α
Id = Vdc / R
The relationship holds. Here, the voltage drop when the self-excited element 12 is on is ignored.
[0019]
During the period when the self-excited element 12 is off, the return current flows through the return diode 13 due to the back electromotive force of the DC reactor 4. For this reason, the intermediate circuit voltage Edc does not decrease during the reflux period.
[0020]
The comparator 20 detects the system voltage 1 and compares the detection result with the set value from the voltage setting circuit 30. The comparator 20 connects the contact of the switch SW to the current command circuit 60 side when the system voltage 1 is higher than the set voltage, and switches the contact of the switch SW to the current detection circuit 70 side when the voltage is equal to or lower than the set voltage.
[0021]
The current command circuit 60 generates a command value for the arc current Id of the arc furnace 6. The current detection circuit 70 detects the arc current Id of the arc furnace 6. During normal operation, the contact of the switch SW is connected to the current command circuit 60 side, and the current control circuit 50 receives a deviation between the command value of the current command circuit 60 and the detected value of the current detection circuit 70. The current control circuit 50 controls the self-excited element 12 of the chopper circuit 10 via the pulse generation circuit 40 so that there is no input deviation.
[0022]
When the system voltage 1 decreases, the contact of the switch SW is connected to the current command circuit 60 side until the system voltage 1 reaches the set value of the voltage setting circuit 30. The intermediate circuit voltage Edc decreases as the system voltage 1 decreases. The current control circuit 50 increases the conduction ratio α of the self-excited element 12 of the chopper circuit 10 to keep the arc current Id constant. Since the conduction ratio α increases, the intermediate circuit voltage Edc decreases.
[0023]
When the system voltage 1 decreases and reaches the set value of the voltage setting circuit 30, the comparator 20 switches the contact point of the switch SW from the current command circuit 60 side to the current detection circuit 70 side. As a result, the current control circuit 50 uses the detection value of the current detection circuit 70 as a command value of the arc current Id, and since there is no input deviation, the current flow rate α of the self-excited element 12 of the chopper circuit 10 is kept constant. The conduction ratio α is a ratio of the intermediate circuit voltage Edc and the output voltage Vdc at this time (α = Vdc / Edc).
[0024]
After the system voltage 1 decreases and reaches the set value of the voltage setting circuit 30, the chopper circuit 10 maintains the ratio between the intermediate circuit voltage Edc and the output voltage Vdc and continues operation. Since the intermediate circuit voltage Edc does not decrease during the recirculation period, the period for maintaining the arc current Id becomes longer.
[0025]
FIG. 2 is a diagram for explaining the change over time of the arc current of the arc furnace when the system voltage is lowered by the power supply device of the present invention. In the conventional arc furnace power supply apparatus, when the system voltage 1 decreases as shown in FIG. 5, the arc current Id decreases rapidly, whereas in the present invention, the system voltage 1 decreases as shown in FIG. Even so, the arc current Id gradually decreases, and a certain amount of arc current can be maintained for a long time.
[0026]
According to the embodiment described above, the system voltage 1 is rectified using the diode rectifier 2, and the chopper circuit 10 performs switching using the self-excited element 12, whereby the system voltage 1 is used for rectification and switching control. There is no need to use the phase of. Therefore, when an instantaneous stop occurs in the system voltage 1, the operation of the apparatus does not stop as in the prior art. The rectifying means of the present invention is not limited to the diode rectifier 2 and may be any means that can convert an AC voltage into a DC voltage. Further, when a DC voltage is directly input, no rectifying means is necessary.
[0027]
The power supply device of the present invention is not limited to an arc furnace, and can be used when supplying power to various devices in which an instantaneous stop of the power supply is a serious problem.
[0028]
【The invention's effect】
According to the power supply device of the present invention, when a chopper circuit is used and the input voltage decreases, the control means uses the detected value of the load current as the load current command value, thereby maintaining a certain amount of output current for a long time. Can do.
[0029]
When a current is supplied to the arc furnace by the power supply device of the present invention, when an instantaneous stop of the input voltage occurs, a rapid decrease in the arc current of the arc furnace can be prevented, and the arc duration can be lengthened. Therefore, the occurrence frequency of arc stop accidents in the arc furnace can be suppressed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power supply device according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a temporal change in arc current of an arc furnace when a system voltage is lowered by the power supply device of the present invention.
FIG. 3 is a diagram showing a schematic configuration of a conventional power source device for an arc furnace.
FIG. 4 is a diagram showing arc current characteristics of an arc furnace.
FIG. 5 is a diagram for explaining a temporal change in arc current when a system voltage is lowered by a conventional arc furnace power supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... System voltage, 2 ... Diode rectifier, 4 ... DC reactor, 5 ... Circuit resistance, 6 ... Arc furnace, 10 ... Chopper circuit, 11 ... Capacitor, 12 ... Self-excited element, 13 ... Free-wheeling diode, 20 ... Comparator, DESCRIPTION OF SYMBOLS 30 ... Voltage setting circuit, 40 ... Pulse generation circuit, 50 ... Current control circuit, 60 ... Current command circuit, 70 ... Current detection circuit, 100 ... Control circuit part

Claims (3)

入力電圧を検出する入力電圧検出手段と、
入力電圧を充電する中間回路を有し、中間回路の電圧を自励素子でスイッチングして出力するチョッパ回路と、
負荷電流を検出する負荷電流検出手段と、
負荷電流の指令値と前記負荷電流検出手段の検出値との偏差が無くなるように前記チョッパ回路の自励素子を制御する制御手段と
電流指令値を発生する電流指令値発生手段とを備え、
前記制御手段は、前記入力電圧検出手段の検出結果が所定値より高いとき、前記電流指令値発生手段の電流指令値を負荷電流の指令値とするとともに、
前記入力電圧検出手段の検出結果が所定値以下のとき、前記負荷電流検出手段の検出値を負荷電流の指令値とすることを特徴とする電源装置。
An input voltage detecting means for detecting an input voltage;
A chopper circuit that has an intermediate circuit for charging an input voltage, and switches and outputs the voltage of the intermediate circuit by a self-excited element;
Load current detecting means for detecting the load current;
Control means for controlling the self-excited element of the chopper circuit so that there is no deviation between the load current command value and the detection value of the load current detection means ;
Current command value generating means for generating a current command value ,
When the detection result of the input voltage detection means is higher than a predetermined value , the control means sets the current command value of the current command value generation means as a load current command value, and
When the detection result of the input voltage detection means is less than or equal to a predetermined value, the detection value of the load current detection means is used as a load current command value.
交流の入力電圧を整流して直流電圧に変換する整流手段を備えたことを特徴とする請求項1に記載の電源装置。The power supply apparatus according to claim 1, further comprising a rectifying unit that rectifies an AC input voltage and converts the AC input voltage into a DC voltage. 前記チョッパ回路の出力電圧をアーク炉へ供給することを特徴とする請求項1又は請求項2に記載の電源装置。The power supply apparatus according to claim 1, wherein an output voltage of the chopper circuit is supplied to an arc furnace.
JP2002013713A 2002-01-23 2002-01-23 Power supply Expired - Lifetime JP3835296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013713A JP3835296B2 (en) 2002-01-23 2002-01-23 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013713A JP3835296B2 (en) 2002-01-23 2002-01-23 Power supply

Publications (2)

Publication Number Publication Date
JP2003219649A JP2003219649A (en) 2003-07-31
JP3835296B2 true JP3835296B2 (en) 2006-10-18

Family

ID=27650602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013713A Expired - Lifetime JP3835296B2 (en) 2002-01-23 2002-01-23 Power supply

Country Status (1)

Country Link
JP (1) JP3835296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009788A (en) * 2007-06-27 2009-01-15 Osram-Melco Ltd High-pressure discharge lamp lighting device
IT202000002959A1 (en) * 2020-02-14 2021-08-14 Danieli Automation Spa ELECTRICAL POWER SUPPLY FOR A HIGH POWER USER DEVICE

Also Published As

Publication number Publication date
JP2003219649A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US8319480B2 (en) Apparatus and method of power control
US10888945B2 (en) Welding power supply with regulated background power supply
JP2001186689A (en) Uninterruptible power supply device
JP3618273B2 (en) DC feeder system for electric railway
JP4641137B2 (en) Welding machine
JP3480120B2 (en) Discharge lamp lighting device
JP3835296B2 (en) Power supply
JP7330817B2 (en) Power distribution system and method
JP4394302B2 (en) Uninterruptible power system
JP2019217544A (en) Weld power supply
JP3723868B2 (en) Rectifier control method and controller
JP2008043090A (en) Battery charger
JPS63309373A (en) Arc welding source
JP5051345B2 (en) Electric power supply for arc furnace
JP2003009588A (en) Inverter for continuous vehicle drive system
JP5760761B2 (en) DC feeder control device
JP2003111493A (en) Motor driving system
JPS60213358A (en) Interrupter for no-load current or the like of welding machine
JP2007020256A (en) Charging apparatus and method for controlling the apparatus
JP3920068B2 (en) Power supply unit for plasma arc melting furnace
JPH05219657A (en) Controller of dc power supply for battery charging
JP2014110710A (en) Welding power supply device
JP2002166197A (en) Electric precipitation method and electric precipitator
JP4720013B2 (en) Electronic electrical equipment
KR200261137Y1 (en) SCR Gate Trigger Circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Ref document number: 3835296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term